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Abstract

Ebola virus (EBOV) targets immune cells and tries to inactivate dendritic cells and interferon

molecules to continue its replication process. Since EBOV detailed mechanism has not been

identified so far, it would be useful to understand the growth and spread of EBOV dynamics

based on mathematical methods and simulation approaches. Computational approaches such

as Cellular Automata (CA) have the advantage of simplicity over solving complicated differen-

tial equations. The spread of Ebola virus in lymph nodes is studied using a simplified Cellular

Automata model with only four parameters. In addition to considering healthy and infected

cells, this paper also considers T lymphocytes as well as cell movement ability during the simu-

lation in order to investigate different scenarios in the dynamics of an EBOV system. It is

shown that the value of the probability of death of T cells affects the number of infected cells

significantly in the steady-state. For a special case of parameters set, the system shows oscil-

lating dynamics. The results were in good agreement with an ordinary differential equation-

based model which indicated CA method in combination with experimental discoveries could

help biologists find out more about the EBOV mechanism and hopefully to control the disease.

Introduction

Viruses propagate through entering a cell and hijacking the genetic replication machinery in

order to make more copies. Once the cell has continued its usual function, the newly manufac-

tured viruses exit to infect other cells. Normally, the human immune system could be able to

identify infected cells and destroy them, but most viruses use different strategies to protect

their host cells from the immune system. Ebola virus (EBOV) uses a similar method for infec-

tion. It targets multiple types of immune cells including dendritic cells (which normally spread

alarm infections signals to T lymphocytes) and inactivates them. It also inhibits interferon

molecules to continue its replication process [1]. EBOV detailed mechanism has not been

identified so far. However, it was uncovered that EBOV encodes for two glycoproteins, one of

which disturbs cell attachment [2]. It was previously found that EBOV affects critical pathways

related to lymphocytes, such as a specific signalling pathway following binding to a receptor

called TLR4 [1]. Experiments suggest that Ebola-infected cells demonstrate fewer proteins on

the cell surface, which are critical for an immune recognition process. EBOV belongs to the

Filoviruses family first observed in Sudan and Zaire in 1976 and spread to other countries like
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Uganda and Congo [3]. Ebola viral infections are extremely dangerous, with a death rate near

90% for some specific variants. EBOV causes severe bleeding inside and outside the body. So,

it has been initially known as the hemorrhagic fever. Although there are some EBOV vaccines

and cures that have been established in different stages of clinical trials, none of them has

received final approval yet. Therefore, it seems that understanding how EBOV inactivates the

immune systems of a host would be a very essential step in developing targeted cures [4].

To understand the growth and spread of viruses and the damage that comes to various tissues,

numerous mathematical methods and simulation approaches have been used [5–8]. Most simula-

tion methods of diseases are based on ordinary differential equations (ODEs). In a recent study,

Tulu et al. developed a set of ODEs to investigate the dynamics of EBOV spreading [6]. Using

mathematical modelling, they demonstrate it is possible to control EBOV spreading by an incre-

ment in vaccination. In another work, Wester et al. considered T lymphocytes as targeting mole-

cules in their mathematical model [7]. In addition to the complexity of ODEs-based models, there

are still some limitations such as covering local characteristics for transmission of diseases, and

ignoring population density variables and population dynamics. Therefore, it is useful to consider

complementary simulation methods like Cellular Automata (CA) in order to Fig out more infor-

mation about virus infection processes. Cellular Automata is a discrete model that could simulate

various dynamical systems based on simple rules and local interactions. This model requires an ini-

tial configuration and a set of rules that develop the system over time. The central features of CA

are a discrete space (one, two, or three-dimensional network), discrete modes (different states for

every node), local deterministic or probabilistic rules for every node which only depend on the con-

figuration of adjacent sites, discrete dynamics (renew processes), and homogeneity (similar rules

for all sites at every time step) [9]. There are lots of studies using CA approaches on different physi-

cal systems such as Ising and Potts models, percolation study, and pattern formation, as well as var-

ious biological studies including cancer development, tumor growth, the effect of an anti-cancer

drug, angiogenesis, and environmental factors [10–18]. There were also some attempts to simulate

Ebola infection using CA method [19, 20]. However, in all CA simulation studies and most other

EBOV modelling approaches, healthy, infected, and dead cells have been considered, while T lym-

phocytes (T cells) are the initial targets for EBOV. Since T cells move through the organs, it could

be important if a simulation shows what happens to them during an EBOV infection.

In addition to experimental studies, various computational methods (including neural net-

works, Monte Carlo, molecular dynamics, and ODEs) have been performed to simulate the

dynamics of an EBOV system [6, 7, 21, 22]. However, computational approaches such as CA

have the advantage of simplicity over solving complicated differential equations.

This paper uses a CA method in a square lattice for the simulation of EBOV dynamics.

Moreover, it also considers T cells as well as cell movement ability during the simulation and

investigates different scenarios in the dynamics of an EBOV system.

Material and methods

We have considered the mathematical model with an ODE-based approach used by Wester

et al. [7] in order to obtain appropriate transition rules for our CA model.

dX
dt
¼ l � mX tð Þ � bV tð ÞX tð Þ

dI
dt
¼ bV tð ÞX tð Þ � rI tð ÞT tð Þ � aI tð Þ

dV
dt
¼ cI tð Þ � gV tð Þ

dT
dt
¼ rI tð ÞT tð Þ � dT tð Þ

ð1Þ
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where X, I, T, and V are healthy, infected, T cells, and virus, respectively. λ is the growth rate of

healthy cells, μ is the death rate of healthy cells, β is healthy cells-virus interaction rate which is

the only way to produce infected cells because the immune system does not naturally create

infected cells, ρ is infected-T cells interaction rate which shows the activation rate of CTL, and

production of lymphocytes, α is the death rate of infected cells. In fact, the first cells target for

the virus is lymphocytes. c is the growth rate of the virus, γ is the death rate of the virus, and δ
is the death rate of T cells. As it was mentioned in some experimental studies, the most notice-

able responses were seen in CD8 T cells (over 50% on activation and proliferation) [23]. There-

fore, when we talk about T cells in our model, in fact we consider CD8 types of T cells.

We used a 120 × 120 square network as lymphatic tissue with a periodic boundary condi-

tion. Increasing the size to 415 × 415 will not affect the results. In CA simulation, we have con-

sidered only three types of cells (healthy, infected, and T lymphocyte cells). We did not

consider a separate situation for dead cells. The Von Neumann neighborhood is used because

of its simplicity. Each site of the network just contained one cell at each time. The initial state

of all simulation runs consists of only healthy and T cells where the one infected cell is placed

at the centre of the network and lymphocytes T cells are distributed randomly with a probabil-

ity of 50% in the network. Although all the samples have the same number of healthy and T

cells and one infected cell at the centre in their initial state, for each sample a different random

seed is used, and the initial location of T cells differs for different samples. It should be noted

that due to a very small number of infected cells at initial state (only one infected cell) the num-

ber of infected cells might go to zero very fast in some samples. We excluded that kind of sam-

ples from measurement.

Transition rules include two steps, the stage in which the state of each cell will change (reac-

tion step), and the stage in which each cell moves to one of its adjacent sites (diffusion step).

Reaction step

Here are the general transition rules:

• In the case of a healthy cell in the site,

� if at least one infected cell is in its von Neumann vicinity, it will turn to an infected cell with

a probability of infection PI, or remains healthy with (1-PI) probability in the next time

step. PI simulates the probability of transmission of an infection to a healthy cell, which

plays the same role as to parameter β in Eq (1).

� if there is not any infected cell in its von Neumann vicinity, it remains healthy.

• In the case of an infected cell in the site,

� if at least one T cell is in its von Neumann vicinity, it will die and will be replaced by a T cell

with PT probability, or turn to a healthy cell with (1-PT) probability in the next time step. So

PT represents the probability of T cell proliferation in response to interaction with an

infected cell and (1-PT) represents the probability of the replacement of a dead target cell

with a healthy cell. PT is similar to parameter ρ in Eq (1).

� if there is not any T cell in its von Neumann vicinity, it will turn to a healthy cell with PH prob-

ability, or remains infected with (1-PH) probability in the next time step. PH simulates the

probability of natural death of the infected cell, which is equivalent to parameter α in Eq (1).

• In the case of a T cell in the site, it will die and turn to a healthy cell with PD probability, or

remains unchanged with (1-PD) probability in the next time step. PD simulates the probabil-

ity of death of T lymphocyte cells, which plays the same role as parameter δ in Eq (1).
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In this simulation, we have considered four probabilities PI, PT, PH, and PD. The definition

of these probabilities is given in Table 1.

Diffusion step

For entering cell movement ability, we used an algorithm similar to the method introduced by

Vanag et al. [24]. First, we divided the network into 3×3 blocks and the numbers of healthy,

infected, and T cells in each block were counted. Then, the cells were randomly redistributed

in the block whereas there was only one cell in each site. It should be noted that after the distri-

bution step, the total number of each cell type remains unchanged in every block. After each

time step, all blocks shifted one site in an ordered way; one column to the right, then one row

to the bottom, one column to the left, and one row to the top (Fig 1).

Results and discussion

For obtaining more accurate results, we run the simulation over 50 different samples with the

same initial condition, one infected cell at the centre of lattice and equal population of healthy

and T cells, and the average number of cells is computed over 50 different samples.

First, we set PI = 0.3, PT = 0.4, PH = 0.4, and PD = 0.12 during the simulation. Fig 2 shows

the snapshots of this situation in different time steps. Due to the parameter values, the proba-

bility of infected cells being dead and replaced with healthy cells (PH) are more than their crea-

tion (PI), nevertheless the number of infected cells in the steady state goes to non-zero value

(Fig 3). Initial decreasing of the number of T cells is the result of their natural death and small

number of infected cells at the start of simulation. Therefore, the number of T cells increases

by increasing the number of infected cells.

Fig 4 shows the dynamics of the system for the case of PI = 0.4, PT = 0.6, and PH = 0.4 while

changing PD. In this situation, by increasing the value of PI contamination ability of an infection

increased and total number of infected cells reached to non-zero values in all cases. The total

number of T cell in all cases shows a rapid decrease at first time steps because of the large values

of PD in all cases. According to transition rules, creation of T cells depends on the existence of

infected cells. Therefore, by increasing the number of infected cells the number of T cells

increases. As it is also seen, by increasing the value of the probability of death of T cells (PD), the

number of T cells and infected cells in the steady-state decreases and increases respectively.

We also showed a total number of different cell types as a vector graph in which a vector

direction shows temporal evolution while vector magnitude demonstrates variation amount.

As it is shown in Fig 5, for the case of PI = 0.4, PT = 0.6, PH = 0.4, and PD = 0.24, the number of

infected cells remains constant initially with increasing and decreasing the number of healthy

and T cells respectively, but after a few time step it increases and reach to a maximum then

decreases and goes to the steady-state. As it is seen in Fig 5B the number of T cells decreases

initially, but after a few time steps it increases and goes to the steady-state.

To investigate the effect of the value of PH (the probability of death of infected cells) on the

dynamics of the system, three different cases are compared in Fig 6. In all cases, the number of

Table 1. The probabilities definition.

Probability Definition

PI Probability of a healthy cell being infected

PT Probability of a T cell creation

PH Probability of an infected cell being dead

PD Probability of a T cell to be dead

https://doi.org/10.1371/journal.pone.0265065.t001
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infected cells increased to reach into a steady state. The number of healthy cells shows a rapid

growth at the beginning of the automata due to a rapid decrease of the number of T cells

because of the large value of PD. After 25 time steps, each infected cell was surrounded approx-

imately by four healthy cells which is the cause of a large number of the healthy cells. Although

the value of PT is greater than the value of PI, the number of T cells is low and a chance of a T

cell to come close to infected cells is small. So, the number of T cells increases slowly. By

increasing value of the probability of the natural death of the infected cells (PH), the chance

of a T cell to join an infected cell before its death decreases. As shown in Fig 6C, in the case of

PH = 0.9, the number of the T cells turned to a near zero value after initial decrement and then

an increment very smoothly to reach into a steady state after about 300 time steps.

The results in Fig 6 show for this set of parameters, increasing the value of PH does not

affect significantly the number of infected cells in the steady-state. Note in Fig 6C the value of

PH is very larger than the value of PI nevertheless the number of infected cells reaches a steady-

state.

Fig 1. Schematic view of a block movement in this study in order to consider cell movement ability (see text for more explanation).

https://doi.org/10.1371/journal.pone.0265065.g001
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Fig 2. The snapshots of CA simulation of one sample for the set of parameters (PI = 0.3, PT = 0.4, PH = 0.4, PD = 0.12) in different time steps; t = 1

(A), t = 20 (B), t = 60 (C), t = 100 (D), t = 120 (E), and t = 200 (F). Healthy, infected, and T cells are shown in green, red, and blue, respectively.

https://doi.org/10.1371/journal.pone.0265065.g002

Fig 3. Total number of healthy, infected, and T cells versus time for the case of PI = 0.3, PT = 0.4, PH = 0.4, PD = 0.12. Healthy,

infected, and T cells are shown in green, red, and blue, respectively. The standard errors are shown by error bars.

https://doi.org/10.1371/journal.pone.0265065.g003
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Fig 4. Total number of healthy, infected, and T cells versus time for the case of PI = 0.4, PT = 0.6, and PH = 0.4; A) PD = 0.24. B) PD =

0.36. C) PD = 0.4. Healthy, infected, and T cells are shown in green, red, and blue, respectively. The standard errors are shown by error

bars.

https://doi.org/10.1371/journal.pone.0265065.g004

Fig 5. Total number of different cell types as a vector graph for the case of PI = 0.4, PT = 0.6, PH = 0.4, and PD = 0.24. Vector

direction shows temporal evolution while vector magnitude demonstrates variation amount: A) The number of infected versus the

number of healthy cells, B) The number of infected versus the number of T cells.

https://doi.org/10.1371/journal.pone.0265065.g005

Fig 6. Total number of healthy, infected, and T cells versus time for the case of PI = 0.4, PT = 0.6, and PD = 0.3; A) PH = 0.3. B) PH = 0.6.

C) PH = 0.9. Healthy, infected, and T cells are shown in green, red, and blue, respectively. The standard errors are shown by error bars.

https://doi.org/10.1371/journal.pone.0265065.g006
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To study whether a large number of T cells is responsible for killing infected cells, we set

PI = 1 which means the contamination ability of infected cells is at its maximum value. Fig 7

shows simulation results for the case of PI = 1, PT = 0.2, and PH = 0.2 and different values of

PD.

For the long time life of T cells (Fig 7A) the number of infected cells after a maximum reach

to the steady-state which is small compared with the total number of cells and the number of T

cells in the steady-state is larger than the number of healthy cells. As it is shown in Fig 7, by

decreasing the time life of T cells (increasing the value of PD) the number of infected and T

cells at the steady-state increases and decreases respectively and the number of healthy cells at

the steady-state remains approximately unchanged.

For the case of PI = 1, PT = 0.4, PH = 0.4, and PD = 0.01, the results are shown in Fig 8 and

all sample included in the measurement. In this special case, the system shows oscillating

dynamics. Data analysis shows a large value for standard deviation (for example in an order of

3000 for the number of healthy cells after 500 time steps). Such a large value for standard devi-

ation indicates existence of constant error.

Total number of different cell types versus time for five different samples are shown in Fig

9. As it is seen, not all of individuals oscillate at the same frequency and amplitude. In addition,

one of the samples does not show oscillating dynamics and for this sample, the number of

infected cells goes to zero very fast due to a small number of this cells at initial state (namely

Fig 7. Total number of healthy, infected, and T cells versus time for the case of PI = 1.0, PT = 0.2, and PH = 0.2. A) PD = 0.01, B) PD =

0.05, C) PD = 0.1, D) PD = 0.3. Healthy, infected, and T cells are shown in green, red, and blue, respectively. The standard errors are

shown by error bars.

https://doi.org/10.1371/journal.pone.0265065.g007
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only one infected cell) and the number of T cells decreases slowly to a zero value due to the

natural death. We removed eleven samples of that kind of situations from the measurement.

Therefore, total number of different cell types versus time which were calculated by perform-

ing an average over 39 remaining samples, are shown in Fig 10 and their standard errors are

shown by error bars. By passing time the domain and frequency of oscillation will decrease

and increase respectively and finally reaches a constant value. Similar to the case of Fig 7A, the

number of infected cells at the steady-state in this case is very low.

The snapshots of one of the samples which are taken at every 20 time steps are shown in Fig

11. The simulation started by inserting one infected cell in the centre of the lattice. In this case,

we set PI = 1 which means the contamination ability of the infected cells is at its maximum

value. The ability of movements of the cells makes the chance to the infected cells to come

close to the healthy cells and convert them to the infected cells. In contrast, the number of T

cells will increase in the centre of the lattice because of the value of the probability of creation

of a T cell is much more than the value of the probability of their death. These two mechanisms

make the possibility of formation of moving circular waves with infected cells at their bound-

ary and large numbers of T cells at the inner layers. By passing time, the size and the number

of these waves decrease and increase respectively.

We also showed a total number of different cell types for this case as a 2-dimentional and

3-dimentional vector graphs in Fig 12A–12C. The oscillation in the number of infected cells is

clearer in this figure.

The effect of an increasing value of PI is shown in Figs 3, 4, 6 and 7D. For PI larger than 0.3,

the number of infected cells in the steady state reached to non-zero values and increased. Com-

paring Fig 7D with Figs 4 and 6 demonstrates that the number of healthy cells in this case at

Fig 8. Total number of healthy, infected, and T cells versus time for the case of PI = 1, PT = 0.4, PH = 0.4, and PD = 0.01.

https://doi.org/10.1371/journal.pone.0265065.g008
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the steady state is much smaller than the previous cases and the number of infected cells

increased.

Comparing Fig 7A with Fig 8 shows that increasing the value of PT has not a significant

effect on the number of infected and healthy cells in the steady state. The results show two

important factors which are able to decrease the number of infected cells significantly; the val-

ues of PI and PD. As shown in Figs 7A and 8, for the case of PI = 1 (maximum value of contam-

ination ability of infected cells) but the very small value of PD (long lifetime of T cells), the

number of infected cells in the steady-state goes to a very small value. By decreasing the life-

time of T cells, the number of infected cells in the steady state increases (Figs 4 and 7). Increas-

ing the value of the probability of death of infected cells (PH) has not a significantly effect on

the number of infected cells in the steady state. It should be noted that in Fig 6C the value of

PH is very larger than the value of PI nevertheless the number of infected cells does not go to

zero in the steady state.

In the above simulations we let each cell move to adjacent sites in each time step. The mech-

anism of this procedure is defined previously in section 2. Fig 13 shows the dynamics of the

system for the case of PI = 1, PT = 0.4, PH = 0.4, and PD = 0.01 without applying diffusion steps

in transition rules. In another word, for this situation, each cell has a fixed position and cannot

move. For this situation only two samples showed oscillating dynamics and the remained 48

samples passed one cycle of oscillation and some of them passed second cycle of oscillation

and presence of that kind of samples made larger standard errors in the number of T cells and

healthy cells in the times between 200 to 500 time steps. The number of infected cells at the

Fig 9. Total number of healthy, infected, and T cells versus time for 5 different samples for the case of PI = 1, PT = 0.4, PH = 0.4,

and PD = 0.01.

https://doi.org/10.1371/journal.pone.0265065.g009
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steady state reaches to a small value in this case but by passing time, the number of T cells and

healthy cells changes completely different compared to Fig 10. This result indicates a move-

ment of cells has important contribution in creating oscillating dynamics.

Conclusion

It is critical to know how the immune system responds to an infection caused by Ebola virus

since EBOV survival depends on host cell abilities. In addition to experimental studies, various

computational methods (including neural networks, Monte Carlo, molecular dynamics, and

ODEs) have been performed to simulate the dynamics of an EBOV system [6, 7, 21, 22]. How-

ever, computational approaches such as CA have the advantage of simplicity instead of solving

complicated differential equations. Here, we have studied the spread of EBOV in lymph nodes

including healthy, infected, and T cells using a simplified CA model with just four probability

values. The impairment ability of infected cells was considered with PI probability, while the

probability of a T cell creation was PT. Death probabilities of infected and T cells were PH and

PD probabilities, respectively. We also compared our results with the results of an ODE model

proposed by Wester et al. [7]. In general, they used combination of some parameters for gener-

ating their data and because of that, an exact and one by one comparisons of their results with

our CA results are not possible. However, some similarity could be found. For example, in Fig

8 of their work, an oscillation dynamics behaviour could be also seen which is in concordance

with an oscillation behaviour in the CA model.

Fig 10. Total number of healthy, infected, and T cells versus time which are calculated by averaging over 39 samples with

oscillating dynamics, for the case of PI = 1, PT = 0.4, PH = 0.4, and PD = 0.01. The standard errors are shown by error bars.

https://doi.org/10.1371/journal.pone.0265065.g010
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As far as we know, there is no approved vaccine available for clinical use of Ebola and scien-

tists try to find out more about its mechanism. For instance, they recently showed for the first

time that despite the incapability of Ebola to infect lymphocytes, it directly binds to them,

involves the TLR4 pathway, and causes cell death [25]. The results demonstrated that adding a

chemical that blocks TLR4 activation could protect the lymphocytes in the presence of Ebola.

This could lead to design a drug that blocks TLR4 and might be used to treat patients with

Ebola. Therefore, such experimental discoveries in combination with simulation methods

could lead to a better understanding of EBOV dynamics of operation, its replication, and

hopefully to control the disease. Our study revealed using CA methods could be useful in

exploring the dynamics of an EBOV system even in the case of considering details whereas

avoiding the complexity of ODEs. It is also possible to add new parameters and variables in a

Fig 11. The snapshots at different time steps for the case of PI = 1, PT = 0.4, PH = 0.4, and PD = 0.01. Healthy,

infected, and T cells are shown in green, red, and blue, respectively.

https://doi.org/10.1371/journal.pone.0265065.g011
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CA approach very easily. We believe, in the case of EBOV, CA method could help biologists to

find out more about the mechanism since there are still much vaguenesses about the EBOV

activity in the human body.

Fig 12. Total number of different cell types as a vector graph for the case of PI = 1, PT = 0.4, PH = 0.4, and PD = 0.01. Vector

direction shows temporal evolution while vector magnitude demonstrates variation amount: A) The number of infected versus the

number of healthy cells, B) The number of infected versus the number of T cells. C) a 3-dimentional graph of the number of infected

cells versus the number of healthy and T cells.

https://doi.org/10.1371/journal.pone.0265065.g012

Fig 13. Total number of healthy, infected, and T cells versus time for the case of PI = 1, PT = 0.4, PH = 0.4, and PD = 0.01 without

applying diffusion step in transition rules. Healthy, infected, and T cells are shown in green, red, and blue, respectively. The standard

errors are shown by error bars.

https://doi.org/10.1371/journal.pone.0265065.g013
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