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Abstract 

Calciphylaxis is a disorder that results in necrotic cutaneous lesions with a high rate of mortality. Due to its rarity 

and complexity, the risk factors for and the disease mechanism of calciphylaxis are not fully understood. This work 

focuses on the use of machine learning to both predict disease risk and model the contributing factors learned from 

an electronic health record data set. We present the results of four modeling approaches on several subpopulations 

of patients with chronic kidney disease (CKD). We find that modeling calciphylaxis risk with random forests learned 

from binary feature data produces strong models, and in the case of predicting calciphylaxis development among 

stage 4 CKD patients, we achieve an AUC-ROC of 0.8718. This ability to successfully predict calciphylaxis may 

provide an excellent opportunity for clinical translation of the predictive models presented in this paper. 

Introduction 

Calciphylaxis, also known as calcific uremic arteriolopathy, is a highly morbid disorder that presents with necrotic 

lesions of the skin resultant at least partially from ischemia caused by calcification of the small and medium-sized 

arteries1. The mortality rate of calciphylaxis has been measured in excess of 50% within one year of initial diagnosis2. 

One of the most commonly associated comorbidities with calciphylaxis is chronic kidney disease (CKD)1. In 

particular, calciphylaxis is found most often among patients in the late stages of CKD and end-stage renal disease 

(ESRD)1. While calciphylaxis was originally named by Hans Selye in 1962, there is still much that is unknown about 

its origin and risk factors. Known risk factors include: CKD, ESRD, mineral and bone disorders, diabetes mellitus, 

hyperphosphatemia, female gender, obesity, warfarin use, and ethnicity3. 

Currently, calciphylaxis is identified by histological examination of excised tissue. This examination and confirmation 

of calciphylaxis occurs after a patient has already developed the clinical manifestations of this highly morbid disease. 

Currently, there are no risk assessment models used in clinical practice for identifying patients at risk for development 

of calciphylaxis. In this work, we aim to produce such a risk assessment model for patients with CKD. A diagnosis of 

CKD is accompanied by regular monitoring through frequent patient contacts with their healthcare system. The 

translation of a calciphylaxis risk assessment model targeted to patients with CKD could allow for intervention which 

may prevent the disease. 

In recent years, the use of electronic health records (EHRs) has increased in healthcare systems4. This wealth of data 

has created unprecedented opportunities for computational approaches to not only augment existing knowledge of 

various diseases but also produce predictive models to assess patient risk. Diseases such as breast cancer5 and 

myocardial infarction6 have already been successfully modeled using machine learning algorithms. Machine learning, 

a branch of artificial intelligence, focuses on producing algorithms that learn rules or relationships about a set of 

variables to predict the value or outcome of an unknown variable. In the context of healthcare data, machine-learned 

models can be used to predict the disease risk of a patient from the information present in their health record. In some 

cases, the models produced by a machine learning algorithm can be manually inspected to understand which variables 

suggest different patient outcomes. In this paper, we present the use of two machine learning algorithms, lasso-

penalized logistic regression7 and random forests8, in the context of prediction and risk factor analysis for 

calciphylaxis. We present these methodologies on several subpopulations of CKD and ESRD and show that they 

produce a strong prediction of calciphylaxis. 

Experimental Methodology 

Data 
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Our dataset is derived from patient visits to the Marshfield Clinic, a health care system that serves Northern and 

Central Wisconsin. Data include diagnosis codes, in the forms of both ICD-9 and ICD-10 codes, demographic 

information, laboratory values, vital sign readings, procedures, and medications present on patient records. Apart from 

age and gender, all features were initially extracted as counts, that is the number of times an event occurred on a 

patient record from the start of their record to the censor date which we later define. These values were gathered from 

patients identified as case or control patients for our experiments. Case patients were manually identified by their 

attending surgeon, who confirmed calciphylaxis diagnosis via inspection of patient records and histological 

examination of excised tissue. Control patients were required to have no diagnosis codes indicative of calciphylaxis 

in their records including ICD-9 codes 275.49 and 709.1, and ICD-10 codes L95.9 and E83.59. Moreover, for both 

case and control patients, we required a minimum of 10 unique diagnosis codes on their records. The minimum data 

requirement was implemented to ensure sufficient patient history for prediction.  

Case-Control Matching 

We present research on 5 different CKD patient populations: patients with any stage of CKD, which we refer to as 

“any stage”, patients with stage 3 CKD (stage 3), patients with stage 4 CKD (stage 4), patients with stage 5 CKD 

(stage 5), and patients with stage 5 CKD requiring chronic dialysis, which we refer to as end-stage renal disease 

(ESRD).  In all experiments, we attempted to match up to 10 control patients for each case patient. We chose a 10-to-

1 ratio based on the small number of confirmed cases. For the purposes of illustrating our case-control matching 

scheme consider two patients, Bob (case) and Alex (control), who will become an eventual case-control pair. Bob was 

manually identified as a case patient via histological examination and inspection of his patient record. Furthermore, 

we require Bob to have some stage of CKD and place him in the appropriate population. We then search for candidate 

control patients to match with Bob who have a birthdate within 30 days of Bob’s and the same gender. Let Alex be 

one of these candidate control patients. Alex must have the same stage of CKD as Bob on or before Bob’s calciphylaxis 

diagnosis date. Furthermore, Alex must have entries on his record both before and after Bob’s calciphylaxis diagnosis 

date. This control data straddling of the case diagnosis date allows us to ensure that the control patient was alive and 

present in the Marshfield system during the case patient’s diagnosis. Now that we have identified Alex as a control 

match for our case patient, Bob, we finally truncate both their patient records by removing all data following 30-days 

prior to Bob’s calciphylaxis diagnosis date. This truncation allows us to control for class-label leakage and ensure we 

are performing a prediction task. This case-control matching procedure was performed up to 10 times for each case 

patient. Details of these patient populations are in Table 1. 

Table 1. Description of the five experimental patient populations. For each population, we describe the ICD-9 and 

ICD-10 diagnosis codes associated. Moreover, we present the number of case and control patients for each population 

and the total number of non-zero features on their records that were included in the model.  

 Any Stage Stage 3 Stage 4 Stage 5 ESRD 

ICD-9 Code(s) 585-585.9 585.3 585.4 585.5 585.6 

ICD-10 Code(s) N18-N18.9 N18.3 N18.4 N18.5 N18.6 

# Features 9,288 5,037 6,662 5,864 6,974 

# Cases 38 10 15 12 17 

# Controls 363 100 148 117 165 

Total Patients 401 110 163 129 182 

 

Feature Construction 

In addition to our experimentation based on the stage of chronic kidney disease, we explored the effects of binary 

versus continuous feature representations. The raw dataset was structured such that each non-demographic variable, 

e.g., a lab test, had a value for the number of times the patient had received that particular variable on their record. 

The counts for each variable were done from the start of the patient’s record until an experiment-specific date, e.g., 

their first entry of a particular stage of chronic kidney disease. One potential concern about using count data is the 

likelihood of chronically sick patients to have an increased number of healthcare encounters. In this way, uncorrelated 

variables that are recorded often such as a height measurement vital could become inappropriately correlated with 
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disease status. This was of particular concern as calciphylaxis tends to occur in much sicker patients. For this reason, 

we also explored the use of binary features. We constructed these features by setting any non-demographic feature 

value to 1 if the patient had ever had it entered on their record, and 0 if they had never had it on their record. In the 

case of continuous features, we simply scaled the counts for each feature to be between 0 and 1, which was of use 

when comparing the relative importance of features when evaluating our models. 

Model Construction Methods 

We explored the predictive capacities of two different machine learning models: random forests and logistic 

regression. Random forest models are well known for both their strong accuracy and their resilience to high 

dimensional data. Furthermore, random forests can capture nonlinear interactions in data. While random forests are 

strong predictors, they are often difficult to interpret, and interpretation is often critical in a healthcare context. For 

this reason, we additionally explored logistic regression models. Because logistic regression is not inherently resilient 

to high dimensional data, we employed lasso-penalized logistic regression, which utilizes an L1-regularization term 

in the objective function of the model to penalize features that were only marginally informative and to encourage a 

small set of strongly predictive features in the final model. This is necessary not only to obtain comprehensible models 

but also to obtain accurate ones, as the patient populations we modeled included thousands of unique features and 

logistic regression without some form of dimensionality reduction can perform very poorly in such situations.  The 

L1 or “lasso” penalty is a widely-used approach to dimensionality reduction in regression. 

For both the random forest and the logistic regression models we performed a case-control matched leave-one-case-

out cross-validation. For each experiment, we chose 𝑘-folds, one fold for each of the 𝑘 case patients and its matching 

controls. In this procedure, for each round of cross validation one fold was chosen to be left out and was comprised 

of a single case patient and the up to 10 control patients matched with it. In the case of random forests, models were 

constructed using the remaining 𝑘 − 1 folds of training data. We built 500 decision trees for each forest and used the 

square root of the number of features as the number of features to consider at each split. Trees were grown to leaf 

purity where possible and splits were chosen via Gini gain that was calculated in a balanced fashion in that case 

patients were weighted more heavily such that their total combined weight equaled that of the control patients. 

For logistic regression, we performed an additional layer of internal leave-one-case-out cross-validation to tune the 

penalty coefficient for the L1 regularization term. That is, we performed an internal 𝑘 − 1 rounds of internal cross 

validation with 1 tuning fold and 𝑘 − 2 training folds. In this tuning procedure, we consider 10 different penalty values 

logarithmically spaced between 10−4 and 104. Each penalty value was evaluated via an internal cross-validation layer 

and the optimal penalty value was chosen based on the performance of the various models as judged by a weighted 

accuracy measurement that ensured equal combined weights for the cases and the controls. Thus, for each external 

cross-validation fold, the remaining folds were used to select a penalty value and a new predictive model was trained 

on those folds and finally evaluated on the original held out fold. Logistic regression models were all constructed 

using a balanced class weight approach like that employed in the random forest models. 

For each of the 20 choices of CKD population, model family, and feature type, e.g. predicting CKD stage 4 with 

random forests using binary features, we repeated the model construction 30 times. To account of the skew of our 

data, for both, random forest and logistic regression we constructed the models with the “balanced” class-weight 

option in the scikit-learn library. These replications were done because random forests are stochastic by nature, and 

logistic regression may have multiple equally good solutions to their optimization problem, both of which can produce 

varying results across multiple runs from the same data set. In this way, we could better estimate the predictive quality 

achieved under each experimental condition. 

Model Evaluation Methods 

Model evaluation is done quantitatively via the construction of receiver operating characteristic (ROC) curves and 

precision-recall (PR) curves. While we report both the area under the ROC-curve (AUC-ROC) and PR-curve (AUC-

PR), we primarily use the AUC-ROC as a numerical evaluation of the quality of our models. We do this because 

AUC-ROC provides a metric of efficacy that is unbiased by the class skew of a dataset. Because we attempt to achieve 

a 10-to-1 control to case ratio this may not be representative of the true population skew, and thus we provide a fairer 

analysis of our results via ROC-curves9. For our best performing model and feature combination, we present both 

ROC- and PR-curves for completeness but do not use them in ranking the quality of the models. Both ROC-curves 

and PR-curves were constructed for each model in a similar fashion. For a single repetition of a single experiment we 

first produced a vector of predicted probabilities corresponding to model estimated risk for each patient. We produced 

this vector during the leave-one-case-out 𝑘-fold cross validation by using the model built on the training folds to 
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predict the labels of the test fold. Our final predicted probability vector was the union of these predictions as each 

patient was only in a test fold once. From these predicted probabilities and the true class labels we constructed either 

a ROC- or PR- curve in the typical fashion. Then across the 30 repetitions for each experiment, we performed vertical 

averaging of the 30 resulting curves to yield a final curve. 

For each of the five experimental conditions, we wish to know which of the four models performed best. We evaluated 

model performance via a sign test and evaluated 12 hypotheses which were of the form: “Binary feature random forest 

is significantly better than binary feature logistic regression”. These twelve hypotheses were all of the unique ordered 

pairs of the four models drawn without replacement. For each experimental condition, we chose an experiment-wide 

p-value of 𝛼 = 0.05 as our threshold for significance. We performed a Bonferroni correction and required 𝑝𝑖 ≤
0.05

12
 

for an individual hypothesis to be significant. If a model was significantly better than the three other models, then we 

considered it to be the best model for that experimental condition. 

Our p-values for each hypothesis were calculated via the aforementioned sign test, the details of which we provide 

now. Because the 30 repetitions of each experimental condition and model are not truly independent of one another, 

we cannot use bootstrapping to calculate confidence intervals on our AUCs. Instead, we use a sign test to determine 

if a model is correct more often than another model a statistically significant number of times. For each model, we 

first construct a ROC-curve in the fashion described above. To convert the probabilities from each algorithm to labels, 

we choose a threshold corresponding to an 80% true positive rate, or recall, for our algorithms. Because of the serious 

nature and high mortality rate of calciphylaxis we chose 80% recall to reflect the significant cost difference between 

false negatives and false positives. Thus, for each experiment, the threshold corresponding to 80% recall was used to 

label predictions as either positive or negative. For every patient we then checked the label assigned by both models 

and its true label, if both models assigned the same label, that patient was considered a tie and not counted, however, 

if the models differed then the first model received either a win or a loss if it was correct or incorrect respectively. 

Then, each hypothesis was tested by first counting 𝑛𝑤𝑖𝑛𝑠, the number of times the first model predicted a patient 

correctly and the second model predicted that patient incorrectly, and 𝑛𝑙𝑜𝑠𝑠, the converse statement. Finally, we 

calculate the cumulative distribution of the binomial function 𝐵𝑖𝑛𝑜𝑚(𝑛𝑤𝑖𝑛𝑠 , 𝑛𝑙𝑜𝑠𝑠 , 0.5) to determine a p-value for a 

particular hypothesis. 

We perform a qualitative evaluation of our models by inspecting the top performing features returned from our models. 

In the case of random forests, we used the approach detailed in Breiman 1984 to determine feature importance values 

via the Gini importance10. 

Results 

In general, we find that we achieve superior performance predicting calciphylaxis from a specific stage of CKD 

compared to an arbitrary stage. We present in Table 2 the precise ROC-AUC values achieved in each experiment. We 

note that in general random forests outperform logistic regression and that use of binary features roughly outperforms 

the use of continuous features.  In two of the five experimental conditions, we found random forests with binary 

features to outperform the other three approaches with a statistically significant difference. 

Given the strong performance of random forests using binary features, we chose to visualize the ROC- and PR-curves 

for this model and feature engineering scheme across the five experimental conditions and present this in Figure 1. 

We note that the models predicting CKD at a specific stage appear to be clustered together and roughly separated from 

the ROC-curve representing prediction at an arbitrary stage of CKD. Additionally, there appears to be some separation 

between the PR-curve representing prediction of ESRD as compared to the other stages of CKD. 
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Table 2. AUC-ROC, AUC-PR, Accuracy, and Precision @ Recall = 80% values for each experimental condition and 

algorithm. For each experimental condition, the algorithm that performed best is highlighted in bold if it is statistically 

significantly better than the other three algorithms as determined by a sign test. Note that just binary random forests 

achieved statistical significance and did so in two experimental conditions. For CKD stage 4 binary random forests 

outperformed its competitors with 𝑝 ≤ 3.78𝑒 − 04. For ESRD stage 4 binary random forests outperformed its 

competitors with 𝑝 ≤ 1.92𝑒 − 04. 

Stage Model Features AUC-ROC AUC-PR Accuracy Pre. @ 80% 

3 

Logistic 

Regression 

Binary 0.789 0.189 0.545 0.190 

Continuous 0.785 0.215 0.545 0.164 

Random 

Forest 

Binary 0.846 0.261 0.545 0.212 

Continuous 0.847 0.279 0.545 0.230 

4 

Logistic 

Regression 

Binary 0.791 0.190 0.515 0.188 

Continuous 0.635 0.125 0.528 0.131 

Random 

Forest 

Binary 0.872 0.292 0.546 0.269 

Continuous 0.791 0.200 0.546 0.194 

5 

Logistic 

Regression 

Binary 0.707 0.194 0.543 0.164 

Continuous 0.689 0.169 0.532 0.195 

Random 

Forest 

Binary 0.796 0.212 0.535 0.248 

Continuous 0.770 0.184 0.535 0.213 

ESRD 

Logistic 

Regression 

Binary 0.746 0.168 0.538 0.168 

Continuous 0.750 0.198 0.549 0.170 

Random 

Forest 

Binary 0.858 0.440 0.538 0.286 

Continuous 0.838 0.425 0.538 0.244 

Any 

Logistic 

Regression 

Binary 0.713 0.188 0.534 0.156 

Continuous 0.734 0.162 0.541 0.173 

Random 

Forest 

Binary 0.738 0.199 0.536 0.151 

Continuous 0.725 0.185 0.536 0.156 
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Figure 1. ROC- and PR-Curves for binary feature random forest across the five experimental conditions. 

Table 3. Ranking of 10 top random forest model features for each of the 5 CKD experiments: any CKD stage, stage 

3 CKD, stage 4 CKD, stage 5 CKD, and ESRD. For each experiment, feature importance values were averaged first 

across each of the 𝑘-folds for cross-validation, and then those values were averaged across the 30 repetitions completed 

to produce a final importance value for each feature.  

Rank Any Stage Stage 3 Stage 4 Stage 5 ESRD 

1 Hepatitis B 

Surface Ag 

Obesity Anemia in CKD Obesity Thyroxine (T4) 

2 Anemia in CKD Lactescence/ 

Chylomicrons 

Morbid Obesity Morbid Obesity Obesity 

3 Secondary Hyper-

parathyroidism of 

Renal Origin 

Chylomicrons Thyroid 

Stimulating 

Hormone-Reg'l C 

Parathyroid 

Hormone 

(PTH),1-84 

Amylase-

Pancreatic 

4 Direct Microscopy ALT (GPT) Obesity Radiologic exam 

knee complete 

4/more views 

Age 

5 Ulcer of Lower 

Limb, Unspecified 

Differential 

Polychromatophili 

Chylomicrons Instrument 

Neutrophil # 

Frac.O2 Hb, 

Arterial 

6 Iron Defic Anemia 

Nos 

Differential 

Poikilocytosis 

Lactescence/Chyl

omicrons 

Age Arthropathy, 

unspecified 

7 Hepatitis B 

Surface (HBs) Ab 

Uric Acid, Blood Thyroxine (T4) Uric Acid,Bld Prothrombin Time 

(PT) 

8 % O2 Saturation Differential 

Activated Lymph 

Secondary Hyper-

parathyroidism of 

Renal Origin 

Non-HDL 

Cholesterol 

Abdominal Pain 

9 Differential 

Poikilocytosis 

Sodium serum 

plasma or whole 

blood 

Prescription 

transmit via erx 

system 

Prescription 

transmit via erx 

system 

Chronic Liver 

Disease Nec 

10 Blood Urea 

Nirtrogen-Post-

Dial 

Platelet Estimate Hypercholesterole

mia 

Skin Suture Nec Blood count 

complete 

automated 
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For each of the five experimental conditions, we present in Table 3 the top 10 features used in prediction for the binary 

feature random forest. We note that many of these features are strongly related to many already known risk factors for 

calciphylaxis. Moreover, these features are suggestive that we successfully control for CKD, as few CKD related 

features appear among the top features for these models. We find that there may be some temporal confounding, as 

the feature “Prescription transmit via erx system” is present in the top ten features for both stage 4 and stage 5 models. 

This particular feature can appear when a model is attempting to distinguish cases and controls temporally, as the 

introduction of electronic transmission of prescriptions can be used to infer if a patient’s data is from a more recent 

period by inspecting if this feature is present on their record. 

Discussions 

In this work, we explored prediction of calciphylaxis at various stages of CKD, through the use of random forest or 

logistic regression models and either binary or continuous features. We find that overall prediction of calciphylaxis is 

achievable with strong results and note that in each of the experimental conditions in which we predict calciphylaxis 

during a specific stage of CKD, we find at least one model with an AUC-ROC of nearly 0.8 or above. Such AUC-

ROC values suggest models of a high quality capable of predicting calciphylaxis with reasonable efficacy. Given the 

high mortality rate of calciphylaxis, we feel that early prediction of calciphylaxis would be of great benefit for 

physicians who wish to monitor patient risk. In particular, we find some of our strongest results when predicting 

calciphylaxis using binary feature random forests for the experimental conditions of stages 3 and 4 where patients 

have moderate to advanced CKD. 

It is worth noting that for a given task and feature type, random forests nearly always outperformed logistic regression. 

We feel that this is likely due to the ability for random forests to capture nonlinear interactions in data. Furthermore, 

for a given task and model type, binary features achieved AUC-ROC values that were typically equal to or better than 

those achieved with the use of continuous features. This is of interest as our constructions for binary and continuous 

features ensured that continuous features had strictly greater information. For every feature other than age, the binary 

feature could be obtained from the continuous feature by thresholding such that a continuous feature of value 0 

becomes a binary feature of value 0, and a continuous feature of value anything greater than 0 becomes a binary feature 

of value 1. In the case of random forests, this could be expressed as splitting on a particular continuous feature, 𝑓𝑖, 
with 𝑓𝑖 > 0 being the logical test for indicating which branch to choose. The poorer performance from continuous 

features suggests that there may be some overfitting occurring. By using binary features, we are limiting the 

expressiveness of our models, and such an action could cause improvement in the case of a model that is overfitting. 

In our analysis of the top performing features for the various models and experimental conditions, we found that 

features could be grouped roughly into one of three categories: previously known calciphylaxis risk factors, indicators 

of potential confounding in the model, or potential calciphylaxis risk factors with minimal or no previous support. Of 

those risk factors for calciphylaxis that are previously discovered, our models pick up most strongly on obesity and 

its related risks, anemia/low iron, and hyperparathyroidism. It is worth noting that we see minimal use of CKD 

features, which suggests that our method for controlling for CKD was largely successful. There are some features 

which suggest either temporal confounding. In particular, the feature “Prescription transmit via erx system” is likely 

being used to separate patients by how recently they visited the Marshfield Clinics. Such a feature can be exploited 

during cases of temporal confounding as the use of an electronic prescription transmittal system is a relatively recent 

addition to workflows in healthcare systems. Finally, we find some of our top features are related to liver disease 

and/or liver function, a relationship that is not strongly established with calciphylaxis. In particular, we see both 

various liver function labs and testing for hepatitis B as strong features for predicting calciphylaxis. 

Conclusion 

Patients suffering from late-stage CKD and ESRD are known to be at a much higher risk for calciphylaxis1, a vascular 

disorder with a one-year mortality rate in excess of 50%2. By identifying at-risk patients, we provide an opportunity 

for these patients to take actions to mitigate their risk factors and avoid a potentially deadly disease. Additionally, by 

modeling calciphylaxis to predict patient risk, we invite the opportunity to discover more about the potential risk 

factors of what is a poorly understood disease. In this work, we explored prediction of calciphylaxis at various stages 

of CKD, through the use of random forest or logistic regression models and either binary or continuous features. From 

this work, we found that random forests using binary features tended to outperform other methodologies and that we 

could typically predict calciphylaxis with strong efficacy. Furthermore, we found that our models not only largely 

exploited known risk factors for calciphylaxis but also found some evidence for a previously unsupported connection 

to liver function and hepatitis. We note that our results show these models to be of high quality and intend to explore 
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the potential for translating these models to a clinical setting, where they could be used to identify patients who are of 

higher risk for developing calciphylaxis. 
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