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Abstract

Primary objective: Excessive accumulation of amyloid beta (Aβ) and tau have been observed in
older individuals with chronic neurological symptoms related to a traumatic brain injury (TBI),
yet little is known about the possible role of Aβ in younger active duty service members
following a TBI. The purpose of the study was to determine if Aβ 40 or 42 related to sustaining
a TBI or to chronic neurological symptoms in a young cohort of military personnel.
Research design: This was a cross-sectional study of active duty service members who reported
sustaining a TBI and provided self-report of neurological and psychological symptoms and
provided blood.
Methods and procedures: An ultrasensitive single-molecule enzyme-linked immunosorbent assay
was used to compare concentrations of Aβ in active duty service members with (TBI+; n = 53) and
without (TBI–; n = 18) a history of TBI. Self-report and medical history were used to measure TBI
occurrence and approximate the number of total TBIs and the severity of TBIs sustained during
deployment.
Main outcomes and results: This study reports that TBI is associated with higher concentrations of
Aβ40 (F1,68 = 6.948, p = 0.009) and a lower ratio of Aβ42/Aβ40 (F1,62 = 5.671, p = 0.020). These
differences remained significant after controlling for co-morbid symptoms of post-traumatic
stress disorder and depression.
Conclusions: These findings suggest that alterations in Aβ relate to TBIs and may contribute to
chronic neurological symptoms.
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Introduction

The Department of Defense estimates that over 300 000
active duty service members sustained one or more traumatic
brain injuries (TBIs) during Operations Iraqi Freedom and
Enduring Freedom, with many personnel experiencing multi-
ple TBIs [1]. TBIs significantly increase risk for the onset of
neurodegenerative processes and chronic neurological symp-
toms, especially when sustained multiple times [2] and
increase the risk for neurological and psychological symp-
toms [3]; however, this risk is not universal and is not well
understood. Neurodegenerative conditions such as chronic
traumatic encephalopathy (CTE) and Alzheimer’s disease
(AD) are linked to TBIs [4,5], suggesting that TBIs involve
neurological changes that may exacerbate some common

neurodegenerative pathways that contribute to chronic neuro-
logical symptoms and deficits.

CTE is a tauopathy characterized by the deposition of hyper-
phosphorylated tau (p-tau) protein as neurofibrillary tangles,
pathological processes that are also likely related to Aβ neuronal
accumulations; however, this relationship is not definitive and is
influenced greatly by age [6]. Recently, deployment-related
TBIs have been linked to high concentrations of total tau in the
peripheral blood in a similar cohort of active duty service
members with chronic symptoms, suggesting for the first time
that these neurodegenerative processes can be detected in indi-
viduals with mild-to-moderate TBIs [7]. This finding led the
authors to question the role of Aβ in chronic symptoms follow-
ing TBI in a sample of young active duty servicemembers and to
determine if use of a more sensitive detection method, which
allows for Aβ measurement in peripheral blood, will provide
evidence of Aβ involvement in TBI and chronic symptoms. In
search of a minimally-invasive biomarker of TBI, there is inter-
est in using peripheral blood concentrations of proteins to indi-
cate injury severity. If a relationship between TBI and Aβ
concentrations is found, it could possibly be used—along with
tau—to create a prognostic biomarker for TBI patients.
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Although PET studies continue to link tau accumulations to
TBIs and chronic neurological symptoms [8], the relationship
between TBIs and formation of cerebral Aβ plaques has only
been substantiated in subjects over the age of 50 years [9]. In
severe TBI, one study found decreased brain extracellular con-
centration of Aβ, a finding that may indicate TBI-induced sup-
pression of neuronal activity [10]. In peripheral blood samples,
only one study has linked Aβ toTBIs, with higher concentrations
in the blood during the acute recovery period after severe TBIs and
the highest concentrations correlating with mortality risk [11].
Aβ40 and Aβ42 are the two major isoforms of Aβ. They form
from cleavage of the amyloid precursor protein and are the two
amyloid peptides implicated in toxic plaque formation [12,13].
Aβ42 is considerably more hydrophobic and is, therefore, more
likely to aggregate and form plaques than Aβ40 [12]. There is
interest in using the ratio of the two amyloid peptides as a bio-
marker of injury severity. Although the secondary injury pathway
is not fully understood, there is evidence the amyloid peptide ratio
could be an indicator of amyloid plaque formation or other TBI-
related pathology. The plasma ratio of Aβ42/Aβ40 has been
shown to correlatewithADpathology [13–16].One study showed
that an increase in Aβ40/42 ratios was associated with less plaque
formation [15]. Another study of patients with Alzheimer’s dis-
ease correlated cognitive decline with a decrease in Aβ42/40
ratios [13].

Although these studies suggest a relationship between TBIs
and Aβ peptides in the brain and periphery, no work has been
undertaken to measure concentrations of Aβ in the peripheral
blood of chronic TBI patients. This is due in part to the limits of
previous technology in measuring Aβ peptides in the peripheral
blood of patients with less severe TBIs. The concentrations of
CNS proteins leaked to the plasma are in low concentrations that
conventional analogue immunoassays are insufficiently sensi-
tive enough to measure. The Simoa technology introduced by
Quanterix Inc. (Lexington, MA) uses femtoliter-sized wells
capable of trapping individual molecules and using a digital
readout of beads to determine if they are bound to the target
molecule—Aβ in this case. This ultrasensitive technology
allows for detection of Aβ with increased sensitivity—over
1000 times more sensitive than conventional assays.

This exploratory study aims to fill a gap in the literature about
chronic Aβ40 and Aβ42 concentrations in TBI patients by
utilizing the novel Simoa methodology. It is hypothesized
there will be a significant difference in concentrations of Aβ40
and Aβ42 between those who had a TBI (TBI+) and those who
did not have a TBI (TBI–). If these differences are found, it may
play a role in establishing Aβ as a peripheral biomarker that can
help track central neurodegenerative processes related to chronic
neurological symptoms following TBI. This line of research is
necessary to determine the role of Aβ40 and Aβ42 in chronic
neurological symptoms in a younger cohort who have often
sustained multiple TBIs during deployment.

Methods

Participants

This was a prospective observational assessment of 71 active
duty personnel who volunteered and consented to be in a
larger research study at Madigan Army Medical Center that

examined symptoms and biomarkers related to deployment.
In the total study, there were a 172 participants who provided
clinical information. For this sub-study, participants who
provided blood and matched TBI cases to controls in demo-
graphics and clinical characteristics were included. This study
was approved by the Institutional Review Board at Madigan
Army Medical Center in Tacoma, WA. The patients provided
voluntary informed consent and completed self-report ques-
tionnaires. The Warrior Administered Retrospective Casualty
Assessment Tool (WARCAT) was used to determine if parti-
cipants in this sample had a TBI, as well as the number of
TBIs and the severity of the TBI. Controls were subjects who
were similar to cases but did not report a TBI determined by
the WARCAT. All participants had deployed within 16
months prior to sample collection. Exclusion criteria included
the following: (1) history of drug or alcohol abuse in the
previous year, (2) current severe medical conditions requiring
chronic treatment (e.g. cancer, diabetes, HIV, autoimmune
disorders) or a severe psychiatric condition (i.e. schizophre-
nia, bipolar disorder) and (3) severe neurological disorders
(e.g. multiple sclerosis, seizure disorders, history of stroke).
This study was approved by the Institutional Review Board
(#145947) and informed consent was obtained from each
individual prior to any baseline measurements.

Procedures for determining TBI groups

Fifty-three individuals with a history of TBI (TBI+) were
identified by either self-reporting a TBI on the Warrior
Administered Retrospective Casualty Assessment Tool
(WARCAT) or by having a documented TBI in their medical
record. Eighteen participants without a medical history of
TBI in their records or a self-reported TBI on the WARCAT
were classified as controls (TBI–). The military medical
record was used to extract diagnosis of TBI and/or treatment
for TBI during deployment. The WARCAT assesses war-
related and post-deployment injuries by investigating the
mechanism of injury as well as by asking about immediate
symptoms or loss of consciousness after injury, indications
that a subject sustained a TBI. Controls were matched to TBI
cases as much as possible on critical variables that would
have influenced biomarkers, including the following: age,
gender, ethnicity, time since deployment and military rank.

Collection methods

Plasma samples were obtained from non-fasting subjects into
EDTA tubes, transported on ice, centrifuged, aliquoted and
frozen at –80°C. Subject availability varied such that collec-
tion times ranged from 9:00 a.m. to 4:00 p.m. (mean =
11:36 a.m.; SD = 1 hour, 54 minutes). Samples were thawed
and analysed in a single batch.

Measures

Aβ40 and Aβ42 concentrations in plasma samples were ana-
lysed using Simoa, a high-definition-1 analyser, which is a
paramagnetic bead-based ELISA. The kit includes a mono-
clonal anti-Aβ40 and 42 capture antibody directed to the
N-terminus (Covance 6E10) and a biotinylated detector with
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a monoclonal anti-Aβ40 and Aβ42 antibody (ADx
Neurosciences ADx and Invitrogen H31L21, respectively)
directed to the C-terminus (Quanterix, Inc.) [11]. The Aβ40
and Aβ42 assays have a low limit of detection of 0.76 pg ml–1

and 0.034 pg ml–1, respectively. The reported CV (intra- and
inter-plate) values were below 10% for both Aβ40 and Aβ42.
Samples with a CV value higher than 10% were excluded
from analysis.

Symptoms of PCSwere measured using the Neurobehavioural
Symptom Inventory (NSI), a self-report measure evaluating 22
symptoms (e.g. balance, nausea and headache). The presence and
severity of each symptom is evaluated on a 5-point scale: none,
mild, moderate, severe, very severe). A total score is obtained by
summation of each symptom score (range = 0–88), where a
higher total score indicates higher symptom severity. The NSI
has high internal consistency (total alpha = 0.95; sub-scale
alpha = 0.88–0.92) and reliability (r = 0.88–0.93) [17].

PTSD symptoms were measured using the PTSD Checklist
Military Version (PCL-M), which has a score ranging from
0–80. Higher scores indicate higher severity, and a score over
50 indicates a clinical diagnosis of PTSD [18].

Depression symptoms were measured using the Quick
Inventory of Depressive Symptomatology (QIDS), which
has a score ranging from 0–27. Higher scores indicate high
severity and a score over 13 indicates a clinical diagnosis of
depression [19].

Statistical analysis

Descriptive statistics for all demographic and clinical vari-
ables were calculated using SPSS Statistics (IBM SPSS Inc.,
Chicago, IL; Table I). Comparisons were made between the
two groups using Chi-square for categorical variables, analy-
sis of variance (ANOVA) for continuous variables and analy-
sis of covariance (ANCOVA) when adjusting for covariates.
ANOVA models were used to compare Aβ40 and Aβ42
concentrations and the ratio of Aβ42 and Aβ40 in active
duty service members who sustained a TBI to controls with
no TBI. Lastly, the Spearman rank correlation coefficient was
used to determine correlations between Aβ40 and Aβ42 con-
centrations, the Aβ42/Aβ40 ratio, injury characteristics, and
clinical symptoms of PTSD and depression.

Results

This sample consisted of 71 active duty service members
who were primarily male and who had deployed within the
previous 16 months to combat stations (Table I). The mean
time since latest deployment was 9.7 months (SD = 5.0) and
the mean time since the most severe deployment-related TBI
was 20.6 months (SD = 12.3). The TBI+ (n = 53) and TBI–
(n = 18) groups did not differ significantly in age or gender.
The TBI+ group had significantly more symptoms of PTSD,
depression and PCS. In the TBI+ group, the mean number of
TBIs was 3.89 (SD = 1.93) and ~ 56.6% had a loss of
consciousness ranging from less than a minute to 20 minutes,
with 9.4% having a loss consciousness of more than 20
minutes in duration (Table 2). Approximately 38.43% of the
TBI+ group had a medical diagnosis of TBI or had

documentation of receiving care for a TBI during deploy-
ment. These ICD codes included the following: 85.40 or
959.01.

Concentrations of Aβ40 were significantly higher in the
TBI+ group than the TBI– group (F1,68 = 6.948, p = 0.009;
Figure 1(a)). Concentrations of Aβ42 tended to be higher in
the TBI+ group than the TBI– group (F1,64 = 2.979,
p = 0.089; Figure 1(b)) in active duty service members
The ratio of Aβ42/Aβ40 was also significantly different
between the groups (F1,62 = 5.671, p = 0.020), with the
ratio being significantly lower in the TBI+ group (Figure 2).
In an ANCOVA model controlling for PTSD and depression,
Aβ40 (F1,68 = 3.32, p = 0.025) and the ratio of Aβ42/Aβ40
(F1,62 = 5.01, p = 0.03) remained significantly different
between the TBI+ and TBI– groups. Symptomatology of

Table I. Demographics and clinical characteristics for TBI– and TBI+
groups (n = 71).

TBI–
(n = 18)

TBI+
(n = 53) Significance

Mean age in
years (SD)

28.91 (5.49) 30.56 (8.78) F1,70 = 1.38, p = 0.41

Gender, % (n)
Male 100.0% (18) 98.1% (52) χ2 = 0.89, p = 0.89
Race, % (n) χ2 = 1.19, p = 0.66
Caucasian 83.3% (15) 88.7% (47)
African
American

5.2% (1) 7.5% (4)

Mixed Race 5.2% (1) 1.8% (1)
Hispanic/
Latino

5.2% (1) 1.8% (1)

PTSD (PCL-
M), Mean
(SD)

24.33 (10.84) 36.21 (13.05) F1,68 = 7.32, p < 0.01

n (% PTSD
Dx)

5 (27.78) 13 (24.52) χ2 = 0.79, p = 0.86

Depression
(QIDS),
Mean (SD)

7.00 12.85 (4.08) F1,67 = 6.52, p < 0.01

n (%
Depression
Dx)

5 (27.78) 14 (26.41) χ2 = 0.74, p = 0.79

PCS (NSI),
Mean (SD)

26.33 (13.55) 38.39 (14.20) F1,58 = 6.84, p < 0.01

SD, standard deviation; PTSD, post-traumatic stress disorder; PCL-M,
PTSD Checklist Military Version; QIDS, Quick Inventory of
Depression; PCS, post-concussive syndrome; NSI, Neurobehavioral
Symptom Inventory.

Table II. TBI characteristics according to the WARCAT.

n %

Severity of TBI
Dazed/confused/seeing stars 22 41.51%
Not remembering injury 20 37.73%
LOC < 1 minute 26 49.05%
LOC 1–20 minutes 11 20.75%
LOC > 20 minutes 5 9.43%
TBI symptoms after injury
Headache 33 62.64%
Memory problems 24 45.28%
Balance problems 20 37.73%
Irritability 26 49.05%
Sleeping problems 31 58.49%
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PTSD and depression was not related to concentrations of
Aβ40 or Aβ42 in a correlation analysis of the ratio of Aβ42/
Aβ40.

Discussion

This study reports for the first time that Aβ40 is elevated
and the Aβ42/Aβ40 ratio is lower in the blood of young
males with a history of deployment-related TBIs compared
to those without a TBI. This finding provides insight into
the mechanisms related to the onset of chronic neurological
symptoms, which may lead to neurodegenerative processes
later in life and the onset of CTE- and AD-related deficits
[3,20]. Neurodegenerative processes, such as AD and CTE,
include senile plaques and intracellular neurofibrillary tan-
gles formed by hyper-phosphorylated tau in older indivi-
duals with Aβ accumulation [9]. Previously, it has been
shown that, in active duty service members, tau is also
chronically elevated in individuals who have sustained a
TBI compared to controls [7]. The current study adds a
novel investigation concerning peripheral Aβ concentra-
tions in chronic TBI patients from a similar military

cohort. This report now shows that Aβ also remains chroni-
cally elevated for months to years after sustaining a TBI,
suggesting that the neuropathology may be related to that
of AD and CTE.

Although one limitation to this study is that it is reliant on
peripheral samples that cannot be generalized to central sam-
ples and processes, other studies suggest that these peripheral
elevations result from TBI-induced axonal injuries [21,22].
Elevated Aβ concentrations suggest that there is an on-going
neural injury, potentially leading to neurodegeneration, and
that blood–brain barrier disruption may persist for long per-
iods following TBI. While it is highly controversial whether
amyloid plaques are toxic, there is ample experimental evi-
dence to suggest that oligomeric forms of Aβ may be synap-
totoxic and neurotoxic, promoting disruptions in cellular
membrane and mitochondrial function and activating micro-
glia to induce neuroinflammatory processes, with Aβ42 being
more toxic than Aβ40 [23–30]. The plasma ratio of
Aβ42/Aβ40 has been shown to be consistently associated
with AD pathology [13–16] and plaque formation [15].
Moreover, a study with patients with Alzheimer’s disease
correlated cognitive decline with a decrease in Aβ42/40 ratios
[13]. Similarly, in this study, the ratio of Aβ42/Aβ40 was
significantly lower in the TBI+ group. Although this finding
suggests the ratio of Aβ42/40 could be a useful biomarker of
neurodegeneration, there are limitations to the Simoa technol-
ogy used in this study. It is possible that, because Aβ42 is
more hydrophobic and prone to aggregation, Simoa’s ability
to differentiate between oligomers and monomers is impeded,
thereby resulting in an under-estimation of the peripheral
concentrations of Aβ42 and affecting the ratio [31]. This
will require further study to differentiate the meaning of the
ratio in chronic TBI and replication of this study using digital
immunoassay technology advances.

The findings are also consistent with previous findings
in TBI and CTE research [32–36]. A recent study using
amyloid PET scans showed that patients who sustained a
mild TBI, an average of 6 years prior to the study, had
increased concentrations of amyloid, and these accumula-
tions were associated with cognitive impairments in a sam-
ple of older subjects [37]. In this sample of younger

Figure 2. The ratio of Aβ42/Aβ40 was also significantly different
between the groups (F1,62 = 5.671, p = 0.020), with the ratio being
significantly lower in the TBI+ group compared to TBI– controls.

Figure 1. (a) Concentrations of Aβ40 were significantly different (F1,68 =
6.948, p = 0.009), with higher concentrations in the TBI+ group compared
toTBI– controls. (b) Concentrations of Aβ42 tended to be different (F1,64 =
2.979, p = 0.089), with a tendency to have higher concentrations in the
TBI+ group compared to TBI– controls.
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subjects, it was seen that individuals with TBIs, irrelevant
of symptoms, have a higher concentration of Aβ40. In
studies of CTE, it is reported that, in the earlier stages,
the predominant symptoms are neurobehavioural and then
progress to cognitive deficits [38] and that cognitive symp-
toms only occur in older individuals with CTE, suggesting
that age may be a contributor to Aβ accumulation and
cognitive symptoms [37]. Interestingly, epidemiological
studies suggest that a TBI stimulates the accumulation of
central Aβ and considerably shortens the time of onset of
AD from 18 to 10 years [20]. Indeed, a single TBI may
result in neurofibrillary tangle and senile plaque formation
that can promote the development of neurodegenerative
processes and neurological disorders [39]. Taken together
with previous studies, the findings suggest that active duty
service members exposed to TBI during combat may be at
higher risk for developing AD or CTE. This diagnosis
could present a window of opportunity for studying
mechanisms of the neurodegenerative process and help
slow the progression. Thus, in this younger cohort, it is
likely that the Aβ-related neurodegenerative processes have
not yet resulted in substantial cognitive-related deficits and
it may be that these peripheral elevations are early indica-
tors of neurodegeneration. This study suggests that these
younger cohorts are followed over time to determine the
relationship between AB and cognitive symptoms.

Although these findings suggest future implications,
some limitations to this study are the sample size and
lack of follow-up data. Additional studies with larger
sample sizes and more long-term follow-up are necessary
to determine the role of Aβ in TBI and chronic symptoms.
In addition, the method to measure Aβ in a peripheral
sample provides an opportunity to examine possible links
in patients with non-severe traumatic brain injuries; how-
ever, these findings do not provide the necessary informa-
tion to understand the role of neuronal Aβ accumulation
in the formation of neurofibrillary tangles and risk for
CTE without corroborating evidence in the form of ima-
ging results or cerebrospinal fluid. Another limitation is
the variable time of sample collection following head
injury. Additional efforts should be made for prospective
studies that acquire samples immediately after TBI and
follow them longitudinally. Long-term prospective studies
would help elucidate the temporal changes in post-TBI
amyloid accumulations, which in turn would provide a
clearer understanding of injury-catalysed biochemical cas-
cades and support the use of these proteomic markers as
prognostic tools.
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