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Prediction of subcellular localization of proteins from their amino acid sequences has a long
history in bioinformatics and is still actively developing, incorporating the latest advances in
machine learning and proteomics. Notably, deep learning-based methods for natural
language processing have made great contributions. Here, we review recent advances in
the field as well as its related fields, such as subcellular proteomics and the prediction/
recognition of subcellular localization from image data.
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INTRODUCTION

In bioinformatics, prediction of subcellular localization sites of proteins from their amino acid
sequences has remained to be an important field. Such studies are useful in understanding the
mechanisms of their localization process, including the recognition of their sequence determinants
(i.e., the sorting/targeting signals) coded in amino acid sequences, and in inferring the function of
those proteins. The prediction problem has also been used as a benchmark place for introducing
latest machine-learning algorithms. Many review articles including ours have been published in this
field. In this review, we would like to introduce recent advances mainly published after our latest
review (Imai & Nakai, 2020). We will also briefly review recent papers in related areas, such as the
prediction/recognition of protein subcellular localization based on image data and the subcellular
proteomics, which seems to give us hints for the future direction of this field.

GENERAL REVIEWS AND ASSESSMENT STUDIES

Several general review articles have been published recently (Nielsen, Konstantinos, et al., 2019;
Kumar & Dhanda, 2020; Barberis et al., 2021; Jiang, Wang, Wang, et al., 2021; Pan et al., 2021). Of
these, the review by Nielsen et al. is a retrospective of the field, emphasizing the prediction of signal
peptides; Kumar and Dhanda give a full list of available tools and their classification; and the review
by Jiang et al. emphasizes the mathematical foundation of various approaches, also giving a review of
some benchmark datasets. Similarly, Shen et al. reports their critical evaluation of web-based tools for
protein subcellular localization (Shen et al., 2020), though they seem to mainly focus on Gene
Ontology-based predictors, which are basically out of the scope of this review. Although the
prediction of subcellular localization of RNA molecules is also out of the scope, it is important to
establish reliable data sources for training the prediction models (Cui et al., 2022) and how to
integrate heterologous resources is an important issue (Savulescu et al., 2021).

As for the prediction of specific sorting signals, two assessment studies on the prediction of signal
peptides based on experimental data of rather untypical organisms were recently published: these
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organisms are phytoplasmas (Garcion et al., 2021) and a
thermoacidophilic archaeon (Singhal et al., 2021). It seems
that the current predictors are not highly reliable for the
prediction of these organisms (probably due to the scarcity of
their training data); among several versions of SignalP (see
below), not the latest version was the most reliable. We believe
that important future issues in the prediction of signal peptides
are 1) the improvement of distinction between cleavable signal
peptides and uncleaved N-terminal transmembrane segments
and 2) the prediction of secretory proteins without (apparent)
signal peptides (Lonsdale et al., 2016; Nielsen, Petsalaki, et al.,
2019).

DEEP LEARNING AND LANGUAGE
MODEL-BASED METHODS

As noted above, the prediction of protein subcellular localization
has always been a playground where the latest machine learning
algorithms are introduced. In recent years, deep learning-based
methods have become quite popular and thus a number of papers
have been published within a few years (Cong et al., 2020, 2022;
Semwal & Varadwaj, 2020; Jiang, Wang, Yao, et al., 2021; Liao
et al., 2021; Yuan et al., 2021). The architecture of deep learning
models has made rapid progress and they have also been applied
to bioinformatics, such as protein design (Ding et al., 2022).
Convolutional neural networks (CNNs) are the standard model;
Liao et al. introduced the PSSMs (position-specific scoring
matrices) derived from PSI-BLAST (Altschul et al., 1997) for
adding evolutionary information to input; Cong et al. used the
ant-colony optimization for letting the prediction model self-
evolving (Cong et al., 2020), which is a trend of deep learning. As
another big trend, techniques that have been successfully used in
natural language processing have been introduced. One of them is
the use of (multi-head) self-attention mechanism, which was first
introduced in Transformer (reviewed in Shreyashree et al., 2022).
Both Jiang et al. and Cong et al. report the improvement of
prediction performance with the use of the self-attention
mechanism (Jiang, Wang, Yao, et al., 2021; Cong et al., 2022).
Jiang et al. also claim that their method shows better performance
in suborganellar prediction (see below).

Deep neural networks have also been used in the prediction of
sorting signals, particularly signal peptides (J.-M.Wu et al., 2019).
SignalP, a standard tool for signal-peptide prediction, has
employed this technique since its version 5 (Almagro
Armenteros et al., 2019). The same group also used a similar
method, incorporating the self-attentionmechanism, for TargetP,
which can detect three kinds of targeting signals (Almagro
Armenteros et al., 2019). One of the merits of using attention-
based methods is that it enables us to see which parts of the input
sequence are paid with greater “attention”. Thus, Almagro
Armenteros et al. found that the second amino acid, which
appears after the first methionine, seems to be important for
the recognition of targeting signals, such as the chloroplast transit
peptides. Wu et al. used their Transformer-based model for a
different purpose: they generated novel signal peptides from the
model that learned a number of known signal peptides in many

organisms (Z. Wu et al., 2020). They confirmed experimentally
that the generated peptides actually worked as functional signal
peptides when appended to the N-terminus of cytosolic proteins
in Bacillus subtilis, though these sequences were not similar to any
of known ones.

After the appearance of Transformer, a kind of its successor
model, BERT (Bidirectional Encoder Representations from
Transformers), has become very popular in natural language
processing. One of the characteristics of BERT is that the
model has been pretrained with a very large unannotated
(unlabled) training set and that users are usually expected to
fine-tune the model with their own labeled data. This style, called
the transfer learning, meaning that pre-trained results are
transferred to specific topics, has become a new trend even in
molecular biology, too. Heinzinger et al. used this approach and
fine-tuned their model as an example, for the prediction of
protein subcellular localization sites (Heinzinger et al., 2019).
Jin et al. also applied their pre-trained model to the subcellular
localization prediction (Jin & Yang, 2022). Nowadays, models
pretrained with both DNA (Ji et al., 2021) and amino acid
sequences, ProtTrans (Elnaggar et al., 2021), are available for
end users. Indeed, SignalP ver. Six was constructed based on
ProtTrans and a significant improvement of its performance is
reported (Teufel et al., 2022).

The multi-head self-attention model with multi-scale
(i.e., parallel for various scales) CNNs was also used for the
prediction of subcellular localization sites of mRNAs (D. Wang
et al., 2021). Their system not only predicts multiple localizations
of mRNA isoforms but also is useful in interpreting the
mechanisms/signals of isoform-specific localization, based on
the analysis of attention weights.

MISCELLANEOUS ALGORITHMS

Of course, prediction methods which do not rely on deep learning
but on other machine learning methods have also been published
recently in this field. Most of them use general sequence features
rather than hand-crafted features related to specific sorting
signals and claim to be able to address the problem of
proteins localized at multiple sites (i.e., multi-labeled proteins),
though there still remains the problem that their training data do
not seem to have been annotated with a uniform criterion (see
below). Some of them proposed extensions of existing sequence
features, such as the k-mer compositions (Li et al., 2019; Yao et al.,
2019; Sahu et al., 2020), while some imported external
information, such as Gene Ontology and protein-protein
interactions (Chen et al., 2021; Liu et al., 2021; Zhang et al.,
2021). One method employed an ensemble approach of multiple
classifiers with voting, claiming that the approach is effective in
addressing the problem of imbalanced sizes of training data
between different localization sites (Wattanapornprom et al.,
2021). Among these newly published reports, the approach
reported by Alaa et al. might be a bit novel and have further
room for improvements: they used Markov models to produce a
feature vector which is based on the micro-similarities of the
probability distributions between the input sequence and the
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reference models (Alaa et al., 2019). Moreover, it might be notable
that Wang et al. attempted to incorporate hand-crafted features
derived from the three-dimensional structure information of
input proteins, such as their substructure frequency (G. Wang
et al., 2021). Although the improvement of performance may not
look so striking in their analysis, this field would be promising
because of the current significant improvement of the prediction
accuracy in the three-dimensional structure of proteins through
AlphaFold2 and related methods (Jumper et al., 2021). It seems
that the 3D structure-based approach could be promising in
understanding how some sorting signals that do not show
apparent sequence similarity are specifically recognized. In
addition, it has been known that there are some correlations
between the pI value of proteins and their subcellular localization
[reviewed in (Tokmakov et al., 2021)], which might be the reason
why amino acid composition is an effective feature for the
prediction. Comprehensive analyses using predicted structures
would be useful in understanding the adaption of individual
proteins to the environment provided by each localization site.

PREDICTION OF LOCALIZATION AT
SPECIFIC ORGANELLES AND
SUBORGANELLAR LOCALIZATION
Probably, partly because of a certain level of maturation in the
prediction of protein subcellular localization and partly because
of the progress of precise subcellular proteomics studies (see
below), it seems that a boom in the prediction of suborganellar
localization has come. Its most typical field is the prediction of
submitochondrial localization [for a recent review, see (Martelli
et al., 2021)]. In mitochondria, about 1000 proteins encoded in
the nuclear genome are sorted into four places (the matrix, the
inner membrane, the intermembrane space, and the outer
membrane). Several predictors have been released in only a
recent few years; most of them were based on (convolutional)
deep learning. For example, Savojardo et al. developed DeepMito,
which is based on CNN and the method was used to annotate the
potential mitochondrial proteins of four species (Savojardo,
Bruciaferri, et al., 2020; Savojardo, Martelli, et al., 2020). Wang
et al. proposed another predictor (DeepPred-SubMito), which is
also based on CNN and was taken care of the unbalanced sample
sizes with the random over-sampling approach (X. Wang et al.,
2020). Hou et al. developed another predictor (iDeepSubMito),
which is based on CNN and the bidirectional LSTM (i.e., Long
Short Term Memory) with the self-attention model (Hou et al.,
2021). In contrast, Yu et al. developed a predictor (SubMito-
XGBoost), which is based on eXtreme gradient boosting, a new
method in traditional machine learning, combining gradient
boosting and random forest ensemble learning (Yu et al.,
2020). Unlike CNN-based methods, this method uses a variety
of sequence features, such as the gapped dipeptide composition. It
seems possible that such approaches will be useful in finding
hidden sorting signals. More explicitly, Schneider et al. developed
a specialized predictor (iMLP) for detecting internal matrix
targeting-like sequences, which do not exist on the
N-terminus, unlike well-known mitochondrial (matrix)

targeting peptides, using recurrent neural networks (RNNs)
(Schneider et al., 2021).

Besides mitochondria, recent works on the prediction of
suborganellar localization are not many. One for subnuclear
localization (L. Wu et al., 2020), another for sub-peroxisomal
localization (Anteghini et al., 2021), and another for
distinguishing cis-Golgi and trans-Golgi proteins using deep
learned 107 features (Lv et al., 2021). However, we believe that
these works become pioneers for subsequent more elaborated
works. In addition, there are a few works dealing with some
specialized but biologically meaningful problems: Kaundal et al.
proposed two-step predictions, where input proteins are classified
into plastid or non-plastid proteins in the first step and the plastid
proteins are further classified into one of the four types
chloroplasts, chromoplasts, etioplasts, and amyloplasts)
(Kaundal et al., 2013). Kaleel et al. presented a CNN-based
predictor which simply detects endomembrane system and
secretory pathway proteins from the others (Kaleel et al.,
2020). It would be interesting to see how such an approach
could complement traditional approaches based on the
recognition of signal peptides.

At the end of this section, where a new trend in this field is
introduced, we would like to add one paper, which may become a
pioneering work in a new trend: prediction of tissue-specific
subcellular localization of proteins. Zhu et al. attempted this
based on the information of tissue-specific functional associations
and protein-protein interactions (PPIs) (Zhu et al., 2019). They
identified 1314 known differential localizations between nine
types of tissues as well as 549 novel candidates, some of which
were verified through literature survey. With the increase of more
known examples, further approaches should be taken to improve
the prediction accuracy.

LOCALIZATION OF BACTERIAL PROTEINS

As far as we notice, for the prediction of the subcellular
localization of bacterial proteins, only a few new predictors
have been released after the publication of our previous review
(Imai & Nakai, 2020), where we already reviewed PSORTm for
the prediction for metagenome data (Peabody et al., 2020) and
PSORTdb 4.0, which contains both experimentally-verified and
computationally-predicted subcellular localization information
(Lau et al., 2021), for example. We have also mentioned PSO-
LocBact, which gives a kind of consensus between various existing
predictors using the particle swarm optimization (PSO)
algorithm (Lertampaiporn et al., 2019). However, we noticed a
few new works in more specific prediction problems: GP4 is a
predictor specifically developed for the prediction of Gram-
positive proteins (Grasso et al., 2021). Next, T3SEpp is a
predictor for bacterial type III secreted effectors (T3SEs),
which are used for the infection of Gram-negative bacteria,
and thus the prediction has medical importance (Hui et al.,
2020). Finally, BetAware-Deep is a web server for the
discrimination and topology prediction of prokaryotic
transmembrane beta-barrel proteins (Madeo et al., 2021): this
discrimination is useful for the prediction of subcellular
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localization because these beta-barrel proteins exist in the outer
membrane of Gram-negative bacteria. In addition, the topology
prediction could be also useful for further predictions because it is
important to know that an additional signal faces to which side of
the membrane (i.e., the periplasm and the outside of the cell).

SUBCELLULAR PROTEOMICS

For the development of reliable prediction methods,
comprehensive lists of known (i.e., experimentally-verified)
localization information are essential. Although such
information is contained in standard databases, such as
UniProt/Swiss-Prot (Bateman et al., 2021), it is desirable that
the localization is determined in a uniform criterion because
information that a protein is localized at a single site or multiple
sites can be sometimes ambiguous, for example, and thus it must
be decided in an objective manner. Recently, there have been
notable advances in subcellular proteomics and thus we briefly
introduce these advances in this section, hoping that these trends
could be indicators for the future direction of novel prediction
methods.

In the field of transcriptomics, obtaining the expression profile
of individual cells (single cell RNA sequencing, scRNA-seq) has
become rather popular. With such approaches, we can now
explore what kind of cell types are contained in a certain
tissue. Moreover, the techniques to clarify the spatial
distribution of these cell types (spatial transcriptomics) is
under rapid development. And the information of subcellular
distribution of RNAs has begun to accumulate, too (Longo et al.,
2021). This field will undoubtedly stimulate the further
development of methods for the prediction of RNA subcellular
localization.

In the field of proteomics, equivalent studies exist. For
example, the importance of single-cell proteomics is increasing
because the amount of mRNAs is not enough to know the
amount of their protein products (Xie & Ding, 2022).
However, it seems that currently the word, spatial proteomics,
means subcellular proteomics, reflecting the current excitement
in this field. Naturally, many review articles have been published
in only a few years (Lundberg & Borner, 2019; Borner, 2020;
Christopher et al., 2021, Christopher et al., 2022; Paul et al., 2021).
Amongst them, Christopher et al. (2022) compares the methods
used in subcellular transcriptomics and proteomics.

There are several approaches in subcellular proteomics and
they can be classified in various ways. Perhaps, the most standard
method is to directly observe the localization of a protein labeled
by fluorescent antibody (or any other affinity reagents) through
microscopic imaging in situ. The analysis of the obtained images
requires computational procedures, where machine learning has
made significant contributions (see the next section). The
Subcellular section of the Human Protein Atlas (HPA)
database contains the immunofluorescence images of 65% of
the human protein-coding genes (Thul et al., 2017). Based on this
collection, a competition for machine-learning-based image
processing methods (the Kaggle competition for multi-label

classification of cell organelles in proteome scale Human
Protein Atlas data) was held (Ouyang et al., 2019).

Other direct methods include the physical separation of
specific organelles and the biochemical fractionation of cells
using centrifugation or detergents. Proteins contained/enriched
in the separated organelle or the specific fraction are determined
using tandemmass spectroscopy (MS). Since proteins that are co-
localized at the same compartment should share the same
distribution of their abundance between fractions,
computational methods, such as the cluster analysis (known as
correlation profiling), can be used to identify the subcellular
localization of thousands of proteins simultaneously (Itzhak
et al., 2019; Borner, 2020). If fractions are labeled with
different isotope tags, like in the LOPIT (Localization of
Organelle Proteins by Isotope Tagging) method, more accurate
distinction can be made between organelles with similar densities
(such as Golgi, plasma membrane and endoplasmic reticulum)
(Elzek et al., 2021). Using an MS-based pipeline, Orre et al.
identified the subcellular localization of about 12,000 proteins
across five cell lines and the data are available as SubCellBarCode
(Orre et al., 2019). It is interesting to see what kind of factors
contribute to differential localization across cell types. Joshi et al.
determined the three types of localization (cytosolic, nuclear, and
membrane) of 6572 proteins in human T cells. They also
monitored the time-course changes after the T cell receptor
stimulation and identified about 200 potentially translocating
proteins (Joshi et al., 2019). The data are released as TCellSubC.
Huang et al. also constructed a database (PSL-LCCL) of protein
subcellular localization (six organelles) in human cancer cell lines
(Huang et al., 2022). Finally, a database of mitochondrial
proteome (MitoCarta) was made mainly from an MS-based
approach and its latest version contains the sub-organellar
localization information (Rath et al., 2021). These resources
could be useful in planning the future directions of subcellular
localization predictions. It might be noteworthy that the advances
in MS technology have enabled the peptidome and metabolome
analyses in the single-cell level (Nemes, 2021).

The third systematic approach is to detect the protein-protein
interaction network (Pino & Schilling, 2021). The detection can
be made with co-immunoprecipitation or cross-linking. Recently,
an approach called proximity labeling is increasingly used, where
an expression plasmid containing the gene of a bait protein fused
with an engineered protein, such as BioID (biotin ligase) or APEX
(ascorbic acid peroxidase), is introduced into target cells; after the
fused protein is expressed within the cells, the addition of biotin
etc. causes labeling reactions, where nearby proteins are
biotinylated; then the biotinylated proteins are collected and
identified through LC-MS (Liquid Chromatography Mass
Spectrometry). With this approach, no specific antibodies are
required. Notably, a large BioID-based map of human cells
(HEK293) was published recently (Go et al., 2021). In this
work, the authors defined the intracellular locations of 4,145
proteins, using 192 subcellular markers. The data are provided at
humancellmap.org. This approach seems to be superior in its
sensitivity but it does not seem to be good at identifying proteins
with multiple locations. Another group also identified the protein
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proximity network in mitochondria, comprising 1,465 proteins
(Antonicka et al., 2020).

IMAGE ANALYSIS

As compared to amino acid sequences, images that present
proteins or subcellular locations with distinct patterns are
more intuitive and interpretable. Benefitting from the advent
of microscopic imaging techniques, there has been an increasing
interest in protein subcellular localization based on the analyses
of fluorescence microscope images and immunohistochemistry
(IHC) images. The image-based protein subcellular localization
methods can be roughly categorized into two groups,
i.e., traditional machine learning methods, and deep learning
methods. Traditional machine learning methods mainly rely on
the design of hand-crafted image feature descriptors for
predictive model construction. Typical image features in image
processing field, such as Haralick features, Zernike features, and
Local Binary Patterns (LBP), etc., are commonly used (Xu et al.,
2018). Considering the microscope images are quite different
from natural images, directly using the features are not sufficient
to capture the key information in microscope images. Therefore,
a number of methods based on essential properties of microscope
images have been developed. Yang et al. proposed a frequency
feature and intensity coding strategy to explore the local region
information, improving feature representation of IHC images
(Yang et al., 2019). Tahir et al. designed the threshold calculation
LBP operator for feature extraction from fluorescence
microscopy images (Tahir & Idris, 2020). To analyze the
feature patterns from images of multi-location proteins, Xu
et al. built the LDA models to extract various feature topics of
IHC images and map them to subcellular locations (Xu et al.,
2020). However, these hand-crafted image features are shallow
and low-level, and cannot fully explore the specificity of different
locations, due to the limited knowledge of imaging, thereby
impacting the performance in protein subcellular localization.

Recently, deep learning has made breakthroughs in computer
vision and has attracted considerable attention in biomedical
image analysis, due to its excellent ability in learning high-latent
image feature representations (Fuyong et al., 2018). Therefore,
recent computational efforts in this field are more focused on
deep learning methods. Convolutional neural networks are the
very first deep networks that are introduced as the image feature
extractor to capture the features for protein subcellular
localization (Pärnamaa & Parts, 2017). The deep features
learnt from deep neural networks are reportedly to be better
than the hand-crafted features (Su et al., 2021; F.Wang & Wei,
2022). Considering the feature space learnt from CNNs may exist
redundant information, Su et al. proposed a feature selection
strategy to optimize the feature space, thereby improving the
predictive performance and meanwhile reducing the
computational complexity (Su et al., 2021). Similarly, Long
et al. introduced the self-attention mechanism to capture the
key features derived from the deep convolutional neural network
(Long et al., 2020). Xue et al. combined multiple nonlinear
decomposing algorithms to unmix effective feature patterns

from deep image feature representations (M.-Q. Xue et al.,
2021). To further improve the predictive performance, Hu and
colleagues employed a label-correlation relevancy strategy to
enhance localization results (Hu et al., 2022). More recently,
Wang et al. proposed a multi-scale feature representation
learning framework and successfully learnt a set of
comprehensive features from low-level to high-level (F. Wang
& Wei, 2022). They demonstrate that the deep features from
different scales are complementary and useful to capture the
distinguishable information amongst different subcellular
locations. In addition, some methods integrating deep features
with traditional hand-crafted features are proposed. Xue et al.
split images into representative patches as model inputs, and
integrate feature engineering and deep learning methods (Z.-Z.
Xue et al., 2020). UIIah et al. extracted different handcrafted and
deep features learned from different viewpoints of the images
(Ullah et al., 2021). However, some existing methods still suffer
from data imbalance and insufficient data problems. To copy with
the issues, Tu et al. proposed a self-supervised learning
framework namely SIFLoc through introducing a hybrid data
augmentation strategy and contrastive learning (Tu et al., 2022).

Furthermore, these protein subcellular location prediction
methods have been used in location biomarker analysis (Fan
et al., 2021; Long et al., 2020; F.; Wang & Wei, 2022; Xu et al.,
2020; Z.-Z.; Xue et al., 2020). Proteins in the normal and
cancerous images are likely to have different subcellular
patterns. The methods based on images were expected to
detect the differences. To assess the significance of location
changes, an independent sample t-test is used to obtain the p
values for the prediction results of the normal and cancerous
images. Through the consistency evaluation analysis between
HPA and Swiss-Prot, Xu et al. recently demonstrate that
proteins having highly variable locations are more likely to be
biomarkers of diseases (Xu et al., 2021). Thus, comprehensive
analyses usingmicroscopic images would be useful in speeding up
the understanding of the mechanism of protein mislocalization
and providing the accurate identification of cancer biomarkers.

FUTURE DIRECTIONS AND CONCLUDING
REMARKS

As reviewed here, in only a few years, there have been many
advances in this field. Deep learning-based methods will continue
to play important roles in both image and sequence analyses.
Moreover, since subcellular proteomics-based localization
information has become increasingly popular, the need to
predict the localization of unknown proteins computationally
is becoming less important; rather, we believe that computational
approaches should become even more important in the following
aspects: 1) to assist the improvement of proteome-based
experiments with the use of more sophisticated methods in
their data analysis; 2) to contribute to understand specific
molecular mechanisms of protein sorting, through the
interpretation of learned features (such as the attentions), etc.;
3) to contribute to the understanding of “exceptional”
mechanisms of protein sorting, such as the secretion without
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N-terminal signal peptides (Nielsen, Petsalaki, et al., 2019); 4) to
characterize the dynamic translocation processes upon external
stimulation, disease, etc.; this includes the effort to interpret these
phenomena through the change of their sequences (via
alternative splicing) or environments. Lastly, 5) the
contribution to synthetic biology, e.g., the design of novel
targeting signals with desired characteristics, would become
more important (Rajendran et al., 2010). The next few years
will continue to be exciting for researchers in the field. Almagro

Armenteros et al., 2019,Jiang et al., 2021, Nielsen et al., 2019,
Savojardo et al., 2020, Wang et al., 2021, Wu et al., 2020.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it for
publication.

REFERENCES

Alaa, A., Eldeib, A. M., andMetwally, A. A. (2019). Protein Subcellular Localization
Prediction Based on Internal Micro-similarities of Markov ChainsIEEE
Engineering in Medicine and Biology Society. Annu. Int. Conf. IEEE Eng.
Med. Biol. SocAnnual Int. Conf. 2019, 1355–1358. doi:10.1109/EMBC.2019.
8857598

Almagro Armenteros, J. J., Salvatore, M., Emanuelsson, O., Winther, O., von
Heijne, G., Elofsson, A., et al. (2019). Detecting Sequence Signals in Targeting
Peptides Using Deep Learning. Life Sci. Alliance 2 (5). doi:10.26508/lsa.
201900429

Almagro, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N.,Winther, O., Brunak,
S., et al. (2019). SignalP 5.0 Improves Signal Peptide Predictions Using Deep
Neural Networks. Nat. Biotechnol. 37 (4), 420–423. doi:10.1038/s41587-019-
0036-z

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al.
(1997). Gapped BLAST and PSI-BLAST: a New Generation of Protein Database
Search Programs.Nucleic Acids Res. 25 (17), 3389–3402. doi:10.1093/nar/25.17.
3389

Anteghini, M., Martins Dos Santos, V., and Saccenti, E. (2021). In-Pero: Exploiting
Deep Learning Embeddings of Protein Sequences to Predict the Localisation of
Peroxisomal Proteins. Int. J. Mol. Sci. 22 (12). doi:10.3390/ijms22126409

Antonicka, H., Lin, Z. Y., Janer, A., Aaltonen, M. J., Weraarpachai, W., Gingras, A.
C., et al. (2020). A High-Density Human Mitochondrial Proximity Interaction
Network. Cell Metab. 32 (3), 479–e9. e9. doi:10.1016/j.cmet.2020.07.017

Barberis, E., Marengo, E., and Manfredi, M. (2021). Protein Subcellular
Localization Prediction. Methods Mol. Biol. Clift. N.J. 2361, 197–212. doi:10.
1007/978-1-0716-1641-3_12

Bateman, A., Bateman, A., Martin, M.-J., Orchard, S., Magrane, M., Agivetova, R.,
et al. (2021). UniProt: the Universal Protein Knowledgebase in 2021. Nucleic
Acids Res. 49 (D1), D480–D489. doi:10.1093/nar/gkaa1100

Borner, G. H. H. (2020). Organellar Maps through Proteomic Profiling A
Conceptual Guide. Mol. Cell Proteomics 19 (7), 1076–1087. doi:10.1074/
mcp.R120.001971

Chen, L., Li, Z., Zeng, T., Zhang, Y. H., Zhang, S., Huang, T., et al. (2021).
Predicting Human Protein Subcellular Locations by Using a Combination of
Network and Function Features. Front. Genet. 12, 783128. doi:10.3389/fgene.
2021.783128

Christopher, J. A., Stadler, C., Martin, C. E., Morgenstern, M., Pan, Y., Betsinger, C.
N., et al. (2021). Subcellular Proteomics. Nat. Rev. Methods Prim. 1. doi:10.
1038/s43586-021-00029-y

Christopher, J. A., Geladaki, A., Dawson, C. S., Vennard, O. L., and Lilley, K. S.
(2022). Subcellular Transcriptomics and Proteomics: A Comparative Methods
Review.Mol. Cell. Proteomics 21 (2), 100186. doi:10.1016/j.mcpro.2021.100186

Cong, H., Liu, H., Chen, Y., and Cao, Y. (2020). Self-evoluting Framework of Deep
Convolutional Neural Network for Multilocus Protein Subcellular Localization.
Med. Biol. Eng. Comput. 58 (12), 3017–3038. doi:10.1007/s11517-020-02275-w

Cong, H., Liu, H., Cao, Y., Chen, Y., and Liang, C. (2022). Multiple Protein
Subcellular Locations Prediction Based on Deep Convolutional Neural
Networks with Self-Attention Mechanism. Interdiscip. Sci. Comput. Life Sci..
doi:10.1007/s12539-021-00496-7

Cui, T., Dou, Y., Tan, P., Ni, Z., Liu, T., Wang, D., et al. (2022). RNALocate v2.0: an
Updated Resource for RNA Subcellular Localization with Increased Coverage

and Annotation. Nucleic Acids Res. 50 (D1), D333–D339. doi:10.1093/nar/
gkab825

Ding, W., Nakai, K., and Gong, H. (2022). Protein Design via Deep Learning.
Briefings Bioinforma. 2022, bbac102. doi:10.1093/bib/bbac102

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Wang, Y., Jones, L., et al.
(2021). ProtTrans: Towards Cracking the Language of Lifes Code through Self-
Supervised Deep Learning and High Performance Computing. IEEE Trans.
Pattern Anal. Mach. Intell. 1, 1. –1. doi:10.1109/TPAMI.2021.3095381

Elzek, M. A. W., Christopher, J. A., Breckels, L. M., and Lilley, K. S. (2021).
Localization of Organelle Proteins by Isotope Tagging: Current Status and
Potential Applications in Drug Discovery Research. Drug Discov. Today
TechnolTechnologies 39, 57–67. doi:10.1016/j.ddtec.2021.06.003

Fan, J., Liu, J., Xie, S., Zhou, C., and Wu, Y. (2021). Cervical Lesion Image
Enhancement Based on Conditional Entropy Generative Adversarial Network
Framework. Methods. doi:10.1016/J.YMETH.2021.11.004

Fuyong, X., Yuanpu, X., Hai, S., Fujun, L., and Lin, Y. (2018). Deep Learning in
Microscopy Image Analysis: A Survey. IEEE Trans. Neural Netw. Learn Syst. 29
(10), 4550–4568. doi:10.1109/TNNLS.2017.2766168

Garcion, C., Béven, L., and Foissac, X. (2021). Comparison of Current Methods for
Signal Peptide Prediction in Phytoplasmas. Front. Microbiol. 12, 661524. doi:10.
3389/fmicb.2021.661524

Go, C. D., Knight, J. D. R., Rajasekharan, A., Rathod, B., Hesketh, G. G., Abe, K. T.,
et al. (2021). A Proximity-dependent Biotinylation Map of a Human Cell.
Nature 595 (7865), 120–124. doi:10.1038/s41586-021-03592-2

Grasso, S., van Rij, T., and van Dijl, J. M. (2021). GP4: an Integrated Gram-Positive
Protein Prediction Pipeline for Subcellular Localization Mimicking Bacterial
Sorting. Brief. Bioinform 22 (4). doi:10.1093/bib/bbaa302

Heinzinger, M., Elnaggar, A., Wang, Y., Dallago, C., Nechaev, D., Matthes, F., et al.
(2019). Modeling Aspects of the Language of Life through Transfer-Learning
Protein Sequences. BMC Bioinforma. 20 (1), 723. doi:10.1186/s12859-019-
3220-8

Hou, Z., Yang, Y., Li, H., Wong, K. C., and Li, X. (2021). iDeepSubMito:
Identification of Protein Submitochondrial Localization with Deep Learning.
Brief. Bioinform 22 (6). doi:10.1093/bib/bbab288

Hu, J. X., Yang, Y., Xu, Y. Y., and Shen, H. B. (2022). Incorporating Label
Correlations into Deep Neural Networks to Classify Protein Subcellular
Location Patterns in Immunohistochemistry Images. Proteins 90 (2),
493–503. doi:10.1002/prot.26244

Huang, F., Tang, X., Ye, B., Wu, S., and Ding, K. (2022). PSL-LCCL: a Resource for
Subcellular Protein Localization in Liver Cancer Cell Line SK_HEP1. Database
J. Biol. Databases Curation 2022, baab087. doi:10.1093/database/baab087

Hui, X., Chen, Z., Lin, M., Zhang, J., Hu, Y., Zeng, Y., et al. (2020). T3SEpp: an
Integrated Prediction Pipeline for Bacterial Type III Secreted Effectors.
MSystems 5 (4). doi:10.1128/mSystems.00288-20

Imai, K., and Nakai, K. (2020). Tools for the Recognition of Sorting Signals and the
Prediction of Subcellular Localization of Proteins from Their Amino Acid
Sequences. Front. Genet. 11, 607812. doi:10.3389/fgene.2020.607812

Itzhak, D. N., Schessner, J. P., and Borner, G. H. H. (2019). Dynamic Organellar
Maps for Spatial Proteomics. Curr. Protoc. Cell Biol. 83 (1), e81. doi:10.1002/
cpcb.81

Ji, Y., Zhou, Z., Liu, H., and Davuluri, R. v. (2021). DNABERT: Pre-trained
Bidirectional Encoder Representations from Transformers Model for DNA-
Language in Genome. Bioinformatics 37 (15), 2112–2120. doi:10.1093/
bioinformatics/btab083

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 9105316

Nakai and Wei Prediction of Protein Subcellular Localization

https://doi.org/10.1109/EMBC.2019.8857598
https://doi.org/10.1109/EMBC.2019.8857598
https://doi.org/10.26508/lsa.201900429
https://doi.org/10.26508/lsa.201900429
https://doi.org/10.1038/s41587-019-0036-z
https://doi.org/10.1038/s41587-019-0036-z
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.3390/ijms22126409
https://doi.org/10.1016/j.cmet.2020.07.017
https://doi.org/10.1007/978-1-0716-1641-3_12
https://doi.org/10.1007/978-1-0716-1641-3_12
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1074/mcp.R120.001971
https://doi.org/10.1074/mcp.R120.001971
https://doi.org/10.3389/fgene.2021.783128
https://doi.org/10.3389/fgene.2021.783128
https://doi.org/10.1038/s43586-021-00029-y
https://doi.org/10.1038/s43586-021-00029-y
https://doi.org/10.1016/j.mcpro.2021.100186
https://doi.org/10.1007/s11517-020-02275-w
https://doi.org/10.1007/s12539-021-00496-7
https://doi.org/10.1093/nar/gkab825
https://doi.org/10.1093/nar/gkab825
https://doi.org/10.1093/bib/bbac102
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1016/j.ddtec.2021.06.003
https://doi.org/10.1016/J.YMETH.2021.11.004
https://doi.org/10.1109/TNNLS.2017.2766168
https://doi.org/10.3389/fmicb.2021.661524
https://doi.org/10.3389/fmicb.2021.661524
https://doi.org/10.1038/s41586-021-03592-2
https://doi.org/10.1093/bib/bbaa302
https://doi.org/10.1186/s12859-019-3220-8
https://doi.org/10.1186/s12859-019-3220-8
https://doi.org/10.1093/bib/bbab288
https://doi.org/10.1002/prot.26244
https://doi.org/10.1093/database/baab087
https://doi.org/10.1128/mSystems.00288-20
https://doi.org/10.3389/fgene.2020.607812
https://doi.org/10.1002/cpcb.81
https://doi.org/10.1002/cpcb.81
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btab083
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Jiang, Y., Wang, D., Wang, W., and Xu, D. (2021). Computational Methods for
Protein Localization Prediction. Comput. Struct. Biotechnol. J. 19, 5834–5844.
doi:10.1016/j.csbj.2021.10.023

Jiang, Y., Wang, D., Yao, Y., Eubel, H., Künzler, P., Møller, I. M., et al. (2021).
MULocDeep: A Deep-Learning Framework for Protein Subcellular and
Suborganellar Localization Prediction with Residue-Level Interpretation.
Comput. Struct. Biotechnol. J. 19, 4825–4839. doi:10.1016/j.csbj.2021.08.027

Jin, Y., and Yang, Y. (2022). ProtPlat: an Efficient Pre-training Platform for Protein
Classification Based on FastText. BMC Bioinforma. 23 (1), 66. doi:10.1186/
s12859-022-04604-2

Joshi, R. N., Stadler, C., Lehmann, R., Lehtiö, J., Tegnér, J., Schmidt, A., et al. (2019).
TcellSubC: An Atlas of the Subcellular Proteome of Human T Cells. Front.
Immunol. 10, 2708. doi:10.3389/fimmu.2019.02708

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al.
(2021). Highly Accurate Protein Structure Prediction with AlphaFold. Nature
596 (7873), 583–589. doi:10.1038/s41586-021-03819-2

Kaleel, M., Zheng, Y., Chen, J., Feng, X., Simpson, J. C., Pollastri, G., et al. (2020).
SCLpred-EMS: Subcellular Localization Prediction of Endomembrane System
and Secretory Pathway Proteins by Deep N-To-1 Convolutional Neural
Networks. Bioinformatics 36 (11), 3343–3349. doi:10.1093/bioinformatics/
btaa156

Kaundal, R., Sahu, S. S., Verma, R., and Weirick, T. (2013). Identification and
Characterization of Plastid-type Proteins from Sequence-Attributed Features
Using Machine Learning. BMC Bioinforma. 14, S7. doi:10.1186/1471-2105-14-
S14-S7

Kumar, R., and Dhanda, S. K. (2020). Bird Eye View of Protein Subcellular
Localization Prediction. Life 10 (12), 347. doi:10.3390/life10120347

Lau, W. Y. V., Hoad, G. R., Jin, V., Winsor, G. L., Madyan, A., Gray, K. L., et al.
(2021). PSORTdb 4.0: Expanded and Redesigned Bacterial and Archaeal
Protein Subcellular Localization Database Incorporating New Secondary
Localizations. Nucleic Acids Res. 49 (D1), D803–D808. doi:10.1093/nar/
gkaa1095

Lertampaiporn, S., Nuannimnoi, S., Vorapreeda, T., Chokesajjawatee, N.,
Visessanguan, W., and Thammarongtham, C. (2019). PSO-LocBact: A
Consensus Method for Optimizing Multiple Classifier Results for Predicting
the Subcellular Localization of Bacterial Proteins. Biomed. Res. Int. 2019,
5617153. doi:10.1155/2019/5617153

Li, B., Cai, L., Liao, B., Fu, X., Bing, P., and Yang, J. (2019). Prediction of Protein
Subcellular Localization Based on Fusion of Multi-View Features. Molecules 24
(5). doi:10.3390/molecules24050919

Liao, Z., Pan, G., Sun, C., and Tang, J. (2021). Predicting Subcellular Location of
Protein with Evolution Information and Sequence-Based Deep Learning. BMC
Bioinforma. 22 (Suppl. 10), 515. doi:10.1186/s12859-021-04404-0

Liu, Y., Jin, S., Gao, H., Wang, X., Wang, C., Zhou, W., et al. (2021). Predicting the
Multi-Label Protein Subcellular Localization through Multi-Information
Fusion and MLSI Dimensionality Reduction Based on MLFE Classifier,
Bioinformatics, 38, 1223–1230. doi:10.1093/bioinformatics/btab811

Long, W., Yang, Y., and Shen, H. B. (2020). ImPLoc: a Multi-Instance Deep
Learning Model for the Prediction of Protein Subcellular Localization Based on
Immunohistochemistry Images. Bioinformatics 36 (7), 2244–2250. doi:10.1093/
bioinformatics/btz909

Longo, S. K., Guo, M. G., Ji, A. L., and Khavari, P. A. (2021). Integrating Single-Cell
and Spatial Transcriptomics to Elucidate Intercellular Tissue Dynamics. Nat.
Rev. Genet. 22 (10), 627–644. doi:10.1038/s41576-021-00370-8

Lonsdale, A., Davis, M. J., Doblin, M. S., and Bacic, A. (2016). Better Than
Nothing? Limitations of the Prediction Tool SecretomeP in the Search for
Leaderless Secretory Proteins (LSPs) in Plants. Front. Plant Sci. 7, 1451. doi:10.
3389/fpls.2016.01451

Lundberg, E., and Borner, G. H. H. (2019). Spatial Proteomics: a Powerful
Discovery Tool for Cell Biology, Nat. Rev. Mol. Cell Biol. 20, 285–302.
doi:10.1038/s41580-018-0094-y

Lv, Z., Wang, P., Zou, Q., and Jiang, Q. (2021). Identification of Sub-golgi Protein
Localization by Use of Deep Representation Learning Features. Bioinformatics
36 (24), 5600–5609. doi:10.1093/bioinformatics/btaa1074

Madeo, G., Savojardo, C., Martelli, P. L., and Casadio, R. (2021). BetAware-Deep:
An Accurate Web Server for Discrimination and Topology Prediction of
Prokaryotic Transmembrane β-barrel Proteins. J. Mol. Biol. 433 (11),
166729. doi:10.1016/j.jmb.2020.166729

Martelli, P. L., Savojardo, C., Fariselli, P., Tartari, G., and Casadio, R. (2021).
Computer-Aided Prediction of Protein Mitochondrial Localization. Methods
Mol. Biol. Clift. N.J. 2275, 433–452. doi:10.1007/978-1-0716-1262-0_28

Nemes, P. (2021). Mass Spectrometry Comes of Age for Subcellular Organelles.
Nat. Methods 18 (10), 1157–1158. doi:10.1038/S41592-021-01287-0

Nielsen, H., Petsalaki, E. I., Zhao, L., and Stühler, K. (2019). Predicting Eukaryotic
Protein Secretion without Signals. Biochim. Biophys. Acta Proteins Proteom
1867 (12), 140174. doi:10.1016/j.bbapap.2018.11.011

Nielsen, H., Tsirigos, K. D., Brunak, S., von Heijne, G., and Gunnar Von Heijne, ·.
(2019). A Brief History of Protein Sorting Prediction. Protein J. 38 (3), 200–216.
doi:10.1007/s10930-019-09838-3

Orre, L. M., Vesterlund, M., Pan, Y., Arslan, T., Zhu, Y., Fernandez Woodbridge,
A., et al. (2019). SubCellBarCode: Proteome-wide Mapping of Protein
Localization and Relocalization. Mol. Cell 73 (1), 166–e7. doi:10.1016/j.
molcel.2018.11.035

Ouyang, W., Winsnes, C. F., Hjelmare, M., Cesnik, A. J., Åkesson, L., Xu, H., et al.
(2019). Analysis of the Human Protein Atlas Image Classification Competition.
Nat. Methods 16 (12), 1254–1261. doi:10.1038/s41592-019-0658-6

Pan, G., Sun, C., Liao, Z., and Tang, J. (2021). Machine and Deep Learning for
Prediction of Subcellular Localization. Methods Mol. Biol. Clift. N.J. 2361,
249–261. doi:10.1007/978-1-0716-1641-3_15

Pärnamaa, T., and Parts, L. (2017). Accurate Classification of Protein Subcellular
Localization from High-Throughput Microscopy Images Using Deep Learning.
G3 Genes|Genomes|Genetics 7 (5), 1385–1392. doi:10.1534/g3.116.033654

Paul, I., White, C., Turcinovic, I., and Emili, A. (2021). Imaging the Future: the
Emerging Era of Single-Cell Spatial Proteomics. FEBS J. 288 (24), 6990–7001.
doi:10.1111/febs.15685

Peabody, M. A., Lau, W. Y. V., Hoad, G. R., Jia, B., Maguire, F., Gray, K. L., et al.
(2020). PSORTm: a Bacterial and Archaeal Protein Subcellular Localization
Prediction Tool for Metagenomics Data. Bioinformatics 36 (10), 3043–3048.
doi:10.1093/bioinformatics/btaa136

Pino, L., and Schilling, B. (2021). Proximity Labeling and Other Novel Mass
Spectrometric Approaches for Spatiotemporal Protein Dynamics. Expert Rev.
Proteomics 18 (9), 757–765. doi:10.1080/14789450.2021.1976149

Rajendran, L., Knölker, H. J., and Simons, K. (2010). Subcellular Targeting
Strategies for Drug Design and Delivery. Nat. Rev. Drug Discov. 9 (1),
29–42. doi:10.1038/nrd2897

Rath, S., Sharma, R., Gupta, R., Ast, T., Chan, C., Durham, T. J., et al. (2021).
MitoCarta3.0: an Updated Mitochondrial Proteome Now with Sub-organelle
Localization and Pathway Annotations. Nucleic Acids Res. 49 (D1),
D1541–D1547. doi:10.1093/nar/gkaa1011

Sahu, S. S., Loaiza, C. D., and Kaundal, R. (2020). Plant-mSubP: a Computational
Framework for the Prediction of Single- and Multi-Target Protein Subcellular
Localization Using Integrated Machine-Learning Approaches. AoB PLANTS 12
(3), plz068. doi:10.1093/aobpla/plz068

Savojardo, C., Bruciaferri, N., Tartari, G., Martelli, P. L., and Casadio, R. (2020).
DeepMito: Accurate Prediction of Protein Sub-mitochondrial Localization
Using Convolutional Neural Networks. Bioinformatics 36 (1), 56–64. doi:10.
1093/bioinformatics/btz512

Savojardo, C., Martelli, P. L., Tartari, G., and Casadio, R. (2020). Large-scale
Prediction and Analysis of Protein Sub-mitochondrial Localization with
DeepMito. BMC Bioinforma. 21 (Suppl. 8), 266. doi:10.1186/s12859-020-
03617-z

Savulescu, A. F., Bouilhol, E., Beaume, N., and Nikolski, M. (2021). Prediction of
RNA Subcellular Localization: Learning from Heterogeneous Data Sources.
IScience 24 (11), 103298. doi:10.1016/j.isci.2021.103298

Schneider, K., Zimmer, D., Nielsen, H., Herrmann, J. M., and Mühlhaus, T. (2021).
iMLP, a Predictor for Internal Matrix Targeting-like Sequences in
Mitochondrial Proteins. Biol. Chem. 402 (8), 937–943. doi:10.1515/hsz-2021-
0185

Semwal, R., and Varadwaj, P. K. (2020). HumDLoc: Human Protein Subcellular
Localization Prediction Using Deep Neural Network. Curr. Genomics 21 (7),
546–557. doi:10.2174/1389202921999200528160534

Shen, Y., Ding, Y., Tang, J., Zou, Q., and Guo, F. (2020). Critical Evaluation ofWeb-
Based Prediction Tools for Human Protein Subcellular Localization. Brief.
Bioinform 21 (5), 1628–1640. doi:10.1093/bib/bbz106

Shreyashree, S., Sunagar, P., Rajarajeswari, S., and Kanavalli, A. (2022). A Literature
Review on Bidirectional Encoder Representations from Transformers, Inventive

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 9105317

Nakai and Wei Prediction of Protein Subcellular Localization

https://doi.org/10.1016/j.csbj.2021.10.023
https://doi.org/10.1016/j.csbj.2021.08.027
https://doi.org/10.1186/s12859-022-04604-2
https://doi.org/10.1186/s12859-022-04604-2
https://doi.org/10.3389/fimmu.2019.02708
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1093/bioinformatics/btaa156
https://doi.org/10.1093/bioinformatics/btaa156
https://doi.org/10.1186/1471-2105-14-S14-S7
https://doi.org/10.1186/1471-2105-14-S14-S7
https://doi.org/10.3390/life10120347
https://doi.org/10.1093/nar/gkaa1095
https://doi.org/10.1093/nar/gkaa1095
https://doi.org/10.1155/2019/5617153
https://doi.org/10.3390/molecules24050919
https://doi.org/10.1186/s12859-021-04404-0
https://doi.org/10.1093/bioinformatics/btab811
https://doi.org/10.1093/bioinformatics/btz909
https://doi.org/10.1093/bioinformatics/btz909
https://doi.org/10.1038/s41576-021-00370-8
https://doi.org/10.3389/fpls.2016.01451
https://doi.org/10.3389/fpls.2016.01451
https://doi.org/10.1038/s41580-018-0094-y
https://doi.org/10.1093/bioinformatics/btaa1074
https://doi.org/10.1016/j.jmb.2020.166729
https://doi.org/10.1007/978-1-0716-1262-0_28
https://doi.org/10.1038/S41592-021-01287-0
https://doi.org/10.1016/j.bbapap.2018.11.011
https://doi.org/10.1007/s10930-019-09838-3
https://doi.org/10.1016/j.molcel.2018.11.035
https://doi.org/10.1016/j.molcel.2018.11.035
https://doi.org/10.1038/s41592-019-0658-6
https://doi.org/10.1007/978-1-0716-1641-3_15
https://doi.org/10.1534/g3.116.033654
https://doi.org/10.1111/febs.15685
https://doi.org/10.1093/bioinformatics/btaa136
https://doi.org/10.1080/14789450.2021.1976149
https://doi.org/10.1038/nrd2897
https://doi.org/10.1093/nar/gkaa1011
https://doi.org/10.1093/aobpla/plz068
https://doi.org/10.1093/bioinformatics/btz512
https://doi.org/10.1093/bioinformatics/btz512
https://doi.org/10.1186/s12859-020-03617-z
https://doi.org/10.1186/s12859-020-03617-z
https://doi.org/10.1016/j.isci.2021.103298
https://doi.org/10.1515/hsz-2021-0185
https://doi.org/10.1515/hsz-2021-0185
https://doi.org/10.2174/1389202921999200528160534
https://doi.org/10.1093/bib/bbz106
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


ComputatioInventive Computation and Information Technologiesn and
Information Technologies, 336, 305–320. doi:10.1007/978-981-16-6723-7_23

Singhal, N., Garg, A., Singh, N., Gulati, P., Kumar, M., and Goel, M. (2021). Efficacy
of Signal Peptide Predictors in Identifying Signal Peptides in the Experimental
Secretome of Picrophilous Torridus, a Thermoacidophilic Archaeon. PloS One,
16(8), e0255826. doi:10.1371/journal.pone.0255826

Su, R., He, L., Liu, T., Liu, X., and Wei, L. (2021). Protein Subcellular Localization
Based on Deep Image Features and Criterion Learning Strategy. Briefings
Bioinforma. 22 (4). doi:10.1093/bib/bbaa313

Tahir, M., and Idris, A. (2020). MD-LBP: An Efficient Computational Model for
Protein Subcellular Localization from HeLa Cell Lines Using SVM. Cbio 15 (3),
204–211. doi:10.2174/1574893614666190723120716

Teufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gíslason, M. H., Pihl, S. I.,
Tsirigos, K. D., et al. (2022). SignalP 6.0 Predicts All Five Types of Signal
Peptides Using Protein LanguageModels.Nat. Biotechnol.. doi:10.1038/s41587-
021-01156-3

Thul, P. J., Åkesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., et al.
(2017). A Subcellular Map of the Human Proteome. Science 356 (6340). doi:10.
1126/science.aal3321

Tokmakov, A. A., Kurotani, A., and Sato, K. I. (2021). Protein pI and Intracellular
Localization. Front. Mol. Biosci. 8, 775736. doi:10.3389/fmolb.2021.775736

Tu, Y., Lei, H., Shen, H.-B., and Yang, Y. (2022). SIFLoc: a Self-Supervised Pre-
training Method for Enhancing the Recognition of Protein Subcellular
Localization in Immunofluorescence Microscopic Images. Briefings
Bioinforma. 23. doi:10.1093/bib/bbab605

Ullah, M., Han, K., Hadi, F., Xu, J., Song, J., and Yu, D. J. (2021). PScL-HDeep:
Image-Based Prediction of Protein Subcellular Location in Human Tissue
Using Ensemble Learning of Handcrafted and Deep Learned Features with
Two-Layer Feature Selection. Brief. Bioinform 22 (6). doi:10.1093/bib/bbab278

Wang, D., Zhang, Z., Jiang, Y., Mao, Z., Wang, D., Lin, H., et al. (2021). DM3Loc:
Multi-Label mRNA Subcellular Localization Prediction and Analysis Based on
Multi-Head Self-Attention Mechanism. Nucleic Acids Res. 49 (8), e46. doi:10.
1093/nar/gkab016

Wang, F., andWei, L. (2022). Multi-scale Deep Learning for the Imbalanced Multi-
Label Protein Subcellular Localization Prediction Based on
Immunohistochemistry Images, Bioinformatics 11, btac123. doi:10.1093/
bioinformatics/btac123

Wang, G., Zhai, Y. J., Xue, Z. Z., and Xu, Y. Y. (2021). Improving Protein
Subcellular Location Classification by Incorporating Three-Dimensional
Structure Information. Biomolecules 11 (11). doi:10.3390/biom11111607

Wang, X., Jin, Y., and Zhang, Q. (2020). DeepPred-SubMito: A Novel
Submitochondrial Localization Predictor Based on Multi-Channel
Convolutional Neural Network and Dataset Balancing Treatment. Int.
J. Mol. Sci. 21 (16). doi:10.3390/ijms21165710

Wattanapornprom, W., Thammarongtham, C., Hongsthong, A., and
Lertampaiporn, S. (2021). Ensemble of Multiple Classifiers for Multilabel
Classification of Plant Protein Subcellular Localization. Life 11 (4), 293.
doi:10.3390/life11040293

Wu, J. M., Liu, Y. C., and Chang, D. T. (2019). SigUNet: Signal Peptide Recognition
Based on Semantic Segmentation. BMC Bioinforma. 20 (24), 677. doi:10.1186/
s12859-019-3245-z

Wu, L., Huang, S., Wu, F., Jiang, Q., Yao, S., and Jin, X. (2020). Protein Subnuclear
Localization Based on Radius-SMOTE and Kernel Linear Discriminant
Analysis Combined with Random Forest. Electronics 9 (10), 1566. doi:10.
3390/electronics9101566

Wu, Z., Yang, K. K., Liszka, M. J., Lee, A., Batzilla, A., Wernick, D., et al. (2020).
Signal Peptides Generated by Attention-Based Neural Networks. ACS Synth.
Biol. 9 (8), 2154–2161. doi:10.1021/acssynbio.0c00219

Xie, H., and Ding, X. (2022). The Intriguing Landscape of Single-Cell Protein
Analysis, Adv. Sci. 9, 2105932. doi:10.1002/advs.202105932

Xu, Y.-Y., Yao, L.-X., and Shen, H.-B. (2018). Bioimage-based Protein Subcellular
Location Prediction: a Comprehensive Review. Front. Comput. Sci. 12 (1),
26–39. doi:10.1007/s11704-016-6309-5

Xu, Y. Y., Shen, H. B., and Murphy, R. F. (2020). Learning Complex Subcellular
Distribution Patterns of Proteins via Analysis of Immunohistochemistry
Images. Bioinformatics 36 (6), 1908–1914. doi:10.1093/bioinformatics/btz844

Xu, Y. Y., Zhou, H., Murphy, R. F., and Shen, H. B. (2021). Consistency and
Variation of Protein Subcellular Location Annotations. Proteins 89 (2),
242–250. doi:10.1002/prot.26010

Xue, M.-Q., Zhu, X.-L., Wang, G., and Xu, Y.-Y. (2021). DULoc: Quantitatively
Unmixing Protein Subcellular Location Patterns in Immunofluorescence
Images Based on Deep Learning Features. Bioinformatics 38, 827–833.
doi:10.1093/bioinformatics/btab730

Xue, Z. Z., Wu, Y., Gao, Q. Z., Zhao, L., and Xu, Y. Y. (2020). Automated
Classification of Protein Subcellular Localization in Immunohistochemistry
Images to Reveal Biomarkers in Colon Cancer. BMC Bioinforma. 21 (1), 398.
doi:10.1186/s12859-020-03731-y

Yang, F., Liu, Y., Wang, Y., Yin, Z., and Yang, Z. (2019). MIC_Locator: a Novel
Image-Based Protein Subcellular Location Multi-Label Prediction Model Based
on Multi-Scale Monogenic Signal Representation and Intensity Encoding
Strategy. BMC Bioinforma. 20 (1), 522. doi:10.1186/s12859-019-3136-3

Yao, Y. H., Lv, Y. P., Li, L., Xu, H. M., Ji, B. B., Chen, J., et al. (2019). Protein Sequence
Information Extraction and Subcellular Localization Prediction with Gapped K-Mer
Method. BMC Bioinforma. 20 (22), 719. doi:10.1186/s12859-019-3232-4

Yu, B., Qiu, W., Chen, C., Ma, A., Jiang, J., Zhou, H., et al. (2020). SubMito-
XGBoost: Predicting Protein Submitochondrial Localization by FusingMultiple
Feature Information and eXtreme Gradient Boosting. Bioinformatics 36 (4),
1074–1081. doi:10.1093/bioinformatics/btz734

Yuan, X., Pang, E., Lin, K., and Hu, J. (2021). Deep Protein Subcellular Localization
Predictor Enhanced with Transfer Learning of GOAnnotation. IEEJ Trans. Elec
Engng 16 (4), 559–567. doi:10.1002/tee.23330

Zhang, Q., Li, S., Zhang, Q., Zhang, Y., Han, Y., Chen, R., et al. (2021). MpsLDA-
ProSVM: Predicting Multi-Label Protein Subcellular Localization by wMLDAe
Dimensionality Reduction and ProSVM Classifier. Chemom. Intelligent
Laboratory Syst. 208, 104216. doi:10.1016/j.chemolab.2020.104216

Zhu, L., Hofestadt, R., and Ester, M. (2019). Tissue-Specific Subcellular
Localization Prediction Using Multi-Label Markov Random Fields. IEEE/
ACM Trans. Comput. Biol. Bioinform 16 (5), 1471–1482. doi:10.1109/TCBB.
2019.2897683

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Nakai and Wei. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 9105318

Nakai and Wei Prediction of Protein Subcellular Localization

https://doi.org/10.1007/978-981-16-6723-7_23
https://doi.org/10.1371/journal.pone.0255826
https://doi.org/10.1093/bib/bbaa313
https://doi.org/10.2174/1574893614666190723120716
https://doi.org/10.1038/s41587-021-01156-3
https://doi.org/10.1038/s41587-021-01156-3
https://doi.org/10.1126/science.aal3321
https://doi.org/10.1126/science.aal3321
https://doi.org/10.3389/fmolb.2021.775736
https://doi.org/10.1093/bib/bbab605
https://doi.org/10.1093/bib/bbab278
https://doi.org/10.1093/nar/gkab016
https://doi.org/10.1093/nar/gkab016
https://doi.org/10.1093/bioinformatics/btac123
https://doi.org/10.1093/bioinformatics/btac123
https://doi.org/10.3390/biom11111607
https://doi.org/10.3390/ijms21165710
https://doi.org/10.3390/life11040293
https://doi.org/10.1186/s12859-019-3245-z
https://doi.org/10.1186/s12859-019-3245-z
https://doi.org/10.3390/electronics9101566
https://doi.org/10.3390/electronics9101566
https://doi.org/10.1021/acssynbio.0c00219
https://doi.org/10.1002/advs.202105932
https://doi.org/10.1007/s11704-016-6309-5
https://doi.org/10.1093/bioinformatics/btz844
https://doi.org/10.1002/prot.26010
https://doi.org/10.1093/bioinformatics/btab730
https://doi.org/10.1186/s12859-020-03731-y
https://doi.org/10.1186/s12859-019-3136-3
https://doi.org/10.1186/s12859-019-3232-4
https://doi.org/10.1093/bioinformatics/btz734
https://doi.org/10.1002/tee.23330
https://doi.org/10.1016/j.chemolab.2020.104216
https://doi.org/10.1109/TCBB.2019.2897683
https://doi.org/10.1109/TCBB.2019.2897683
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles

	Recent Advances in the Prediction of Subcellular Localization of Proteins and Related Topics
	Introduction
	General Reviews and Assessment Studies
	Deep Learning and Language Model-Based Methods
	Miscellaneous Algorithms
	Prediction of Localization at Specific Organelles and Suborganellar Localization
	Localization of Bacterial Proteins
	Subcellular Proteomics
	Image Analysis
	Future Directions and Concluding Remarks
	Author Contributions
	References


