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Abstract: Neoadjuvant Chemotherapy (NAC) in Breast Cancer (BC) has proved useful for the
reduction in tumor burden prior to surgery, allowing for a more extensive breast preservation and the
eradication of subjacent micrometastases. However, the impact on prognosis is highly dependent on
the establishment of Pathological Complete Response (pCR), in particular for Triple Negative (TN)
and Hormonal Receptor negative/Human Epidermal growth factor Receptor 2 positive (HR−/HER2+)
subtypes. Several pCR predictors, such as PAM50, Integrative Cluster (IntClust), mutations in
PI3KCA, or the Trastuzumab Risk model (TRAR), are useful molecular tools for estimating response
to treatment and are prognostic. Major evolution events during BC NAC that feature the Residual
Disease (RD) are the loss of HR and HER2, which are prognostic of bad outcome, and stemness and
immune depletion-related gene expression aberrations. This dynamic nature of the determinants of
response to BC NAC, together with the extensive heterogeneity of BC, raises the need to discern the
individual and subtype-specific determinants of resistance. Moreover, refining the current approaches
for a comprehensive monitoring of tumor evolution during treatment, RD, and eventual recurrences
is essential for identifying new actionable alterations and the integral best management of the disease.

Keywords: breast cancer; neoadjuvant chemotherapy; pathological complete response; predictive
markers; residual disease

1. Neoadjuvant Chemotherapy in Breast Cancer Treatments

Neoadjuvant Chemotherapy (NAC) is widely used as a standard of care for early and
locally advanced Breast Cancer (BC). The standard practice consists of the administration of
anthracycline-based chemotherapy and subsequent treatment with a taxane, with the addition
of anti-Human Epidermal Growth Factor Receptor 2 (HER2) therapy in HER2+ disease [1]. The main
purposes of NAC in the clinical setting are the increase in breast preservation rate (reduction in tumor
burden) and the achievement of a pathological Complete Response (pCR), which greatly influences
Disease-Free Survival (DFS) and Overall Survival (OS). In addition, the implementation of NAC
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became a driving force in the search for new therapeutic targets and generated excellent in vivo models
to investigate the sensitivity and resistance mechanisms of novel therapeutic approaches.

The response to NAC is key for the assessment of outcome after surgery, which is based on the
pathological examination of breast tissue and lymph nodes that are surgically removed after NAC [2,3].
This assessment can be dichotomized in pCR and Residual Disease (RD). pCR is defined as the absence
of invasive cancer cells in the breast and/or axillary nodes (ypT0/Tis ypN0), while RD is defined as
the non-absence of invasive cancer cells in the breast and axillary nodes. Within this frame, several
types of grading and classifications of pCR and RD have been established depending on the employed
pathological examination (reviewed in Penault-Llorca et al., 2016 [3]). Classifications such as Miller
and Payne [4] and Residual Cancer Burden (RCB) [5] quantify the response to NAC in several grades,
where one is pCR and the others correspond to a spectrum of values that reflect the extent of RD [3].

The association of sensitivity to NAC in terms of pCR achievement with better long-term outcomes
has been established [6], particularly in specific BC subtypes, such as luminal B/HER2 negative
(HER2−), HER2-positive (HER2+)/non-luminal, and Triple Negative (TN) BC [7].

Different studies from Collaborative Trials in Neoadjuvant Breast Cancer (CTNeoBC) showed that
the absence of invasive tumor cells in breast and axillary lymph nodes after NAC added prognosis
value when using Event-Free Survival (EFS) and OS as outcome measurements, to the sole detection of
breast invasive tumor cells (EFS HR 0.44 vs. 0.6; OS HR 0.36 vs. 0.51) [8]. In general, patients that
have pCR following NAC are much less likely to recur than those with RD [6,9–12]. The approximate
general percentage of pCR in BC is 31%, whereas pCR achievement in BC subtypes is 12% for
HR+/HER2−, 40% for TN, and 47% for HER2+ (anti-HER2 treated) subtypes [12]. The subtype-specific
associations between pCR and outcome arose in three pivotal clinical trials, NeoALTTO [13], NOAH [14],
and NeoSphere [15], which collectively show that pCR is a highly informative prognosis biomarker
in the HER2+ subtype; those patients with HER2+ breast tumors treated with NAC and anti-HER2
treatment (Trastuzumab or Trastuzumab plus Pertuzumab) that achieved pCR had a significantly
higher 6-year EFS (77% vs. 65%) and OS (86% vs. 77%) compared with those without pCR [16].
The association between pCR and long-term outcomes in the different BC subtypes has been reviewed
elsewhere [6]; when pCR is documented, the risk of death was reduced by 84% in TN, 92% in HER2+,
and 71% in HR+ BC. The most relevant recent clinical trials about NAC treatment with pCR as endpoint
are described in Table 1. Specific recent reviews on clinical trials evaluating NAC in TN and HER2+

BC give a good account of them [17,18].

Table 1. Summary of clinical trials based on chemotherapy.

Clinical Trials Patients Treatment pCR (%)

I-SPY [11] All Subtypes NAC
HER2-enriched and Basal-like subtypes achieved

the best % of pCR compared with Luminal B
subtype (55% and 34% vs. 13%, respectively).

GeparDuo [19] All Subtypes NAC Those tumors HR− had better response to NAC
than those HR+ (22.8% vs. 6.2% of pCR)

WSG-ADAPT-TN [20] TN NAC

In TN, basal-like subtype, High Ki67 and low
HER2 score were associated with

chemosensitivity (p = 0.015, p < 0.001 and
p < 0.001, respectively)

GeparSepto [21] All Subtypes NAC TN breast cancer obtained the best ratio of
pCR (48%).

NeoALTTO [22] HER2+ NAC + (L + T) 51% with dual HER2 therapy versus 30% and
25% with T and L respectively.

CALGB 40,601 [23] HER2+ NAC + (L + T) 51% with dual HER2 therapy versus 40% and
32% with T and L respectively.

NSABP B-41 [24] HER2+ NAC + (L + T) 62% with dual HER2 therapy versus 53% and
53% with T and L respectively.
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Table 1. Cont.

Clinical Trials Patients Treatment pCR (%)

CherLOB [25] HER2+ NAC + (L + T)
TILs are associated with pCR (OR 1.03; p < 0.001).
The PAM50 subtype with better pCR ratio was

HER2-enriched (50%, p < 0.001).

NeoSphere [15] HER2+ NAC + (p + T) 46% with dual HER2 therapy versus 29 and 24
with T and p respectively.

TRYPAHENA [26] HER2+ NAC + (p + T) 57–66% with dual HER2 therapy.

BERENICE [27] HER2+ NAC + T + p The highest pCR rate was in HER2-enriched
PAM50 subtype (75%).

NeoPACT TN NAC +/− Immune
checkpoint inhibitors Ongoing

GeparNuevo TN NAC +/− Immune
checkpoint inhibitors Ongoing

NeoTala TN NAC +/− PARP
inhibitors Ongoing

GeparOla TN NAC +/− PARP
inhibitors Ongoing

Given this relevant potential as a prognostic biomarker, and considering the discrete percentage
of patients that achieve pCR after NAC (31%) [12], there is an urgent need to define those predictive
factors that can anticipate response to NAC, and therefore, cooperate to determine the best therapeutic
approach in advance.

2. Predictive Factors of Pathological Complete Response

The utility of pCR as a surrogate of outcome has raised growing interest in identifying those
biomarkers that predict pCR, particularly in a scenario where NAC fails in more than 70% of
patients [12].

Therefore, defining the biomarkers that can discern between responder and non-responder patients
before NAC could help to determine the initial pharmacological treatment or to decide whether to
apply breast conservative surgery at the start of the therapeutic approach.

2.1. Clinicopathological Factors

2.1.1. cT-Stage

The tumor size, expressed as cT-stage, has been identified in several studies as an independent
predictor of pCR. Prat et al. (2015) studied a cohort of 957 BC (10.3% HER2-enriched, 18.2% Luminal B,
30.6% Luminal A, and 32.7% Basal-like by PAM50 classification) treated with NAC, and showed that
the most significant variable associated with pCR was cT-stage (p < 0.001). Half of the patients with
cT3-4 reached pCR compared to patients with cT1-2 (12% vs. 24%) [28]. Additionally, in a cohort of
2046 patients evaluated by Goorts et al. (2017), of all of the tested variables (Estrogen Receptor (ER)
status, Progesterone Receptor (PR) status, HER2 amplification, and tumor grade), the most important
predictor of pCR was cT-stage [9]. For cT1 patients, pCR was achieved in 31%, 22.4% of those with cT2
showed pCR, and response success rates were 17.6% and 16.5% in cT3 and cT4, respectively. Lower
cT-stage (cT1-2 vs. cT3-4) was a significant independent predictor of pCR (p = 0.001, OR 3.15). In the
same study, positive HER2 status, negative ER, and negative PR were also pCR predictors [9].

2.1.2. Tumor Grade

Another pathological factor associated with pCR after NAC is tumor grade. Different studies have
shown that histological grade can predict the response to treatment [29,30]. In 2013, Lips et al. studied
in a cohort of 560 primary BC (51.3% ER+, 11.6% ER+/HER2+, 10% HER2+, and 27.1% TN) tumors
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treated with NAC and determined that a high histological grade (G3) was the best predictor of pCR in
ER+/HER2− tumors (p < 0.004) [29]. Interestingly, in TN patients, this association could be further
refined according to specific NAC treatments, where G3 only predicted pCR in the arm of the cohort
receiving platinum-based therapy (n = 121) (OR 2.27) [30]. Moreover, in a cohort of 353 patients with
BC treated with NAC (55.8% HR+, 15.6% HR+/HER2+, 9.6% HER2+, and 19% TN), the multivariate
analysis with other clinicopathological factors, such as Ki67, ER, PR, HER2, and negative status for ER,
PR, and HER2 (TN), yielded tumor grade and ER status as independent predictors of pCR (p < 0.004).
Tumor grade 3 versus the other grades was associated with pCR (OR 6.36, p = 0.004). In univariate
analysis, tumor grade was noticeably associated with pCR status in patients with G1 and G2 tumors,
where pCR rarely occurs, while 31.3% of G3 tumors had pCR (p < 0.0001) [31]. Finally, in 2019,
Diaz-Redondo et al., in a HER2+ cohort of 259 patients treated with NAC-Trastuzumab ± Pertuzumab,
determined that histological grade 3 was significantly related to pCR in a multivariate analysis [32].

2.1.3. Immunohistochemical Subtypes

Irrespective of the type of predictor of pCR, it is important to emphasize that the survival
advantage associated with the achievement of pCR is limited to specific breast cancer subtypes [8],
as stated before, and is probably related to the pCR achievement bias that is inherent to BC-subtype.
In locally advanced breast cancer (LABC), multivariate analysis indicated that 48% of patients with the
overexpression of HER2 (treated with NAC plus Trastuzumab ± Pertuzumab) achieved pCR versus
7% of patients with the HR+/HER2− subtype, or 23% of TN patients; both of the latter groups were
only treated with NAC (p < 0.001) [13]. In young women with breast cancer, the pattern of pCR
achievement was also subtype-specific, with such an achievement being more frequent in the HER2+

subtype (47%) [12], as shown in another study that evaluated 6337 patients with primary breast cancer
treated with NAC from seven randomized trials [7]. Apart from HER2 status, hormone receptor status
was also found to be one of the best predictors of pCR, both by univariate and multivariate analysis in
the study by Gentile et al. in 2017, with 321 LABC patients distributed as follows: 43% HR+/HER2−,
23% TN, and 34% HER2+ subtypes. The overall pCR rate was 25%, whereas those patients with
HR+/HER2− subtypes achieved a rate of 7%, those with TN subtype 23%, and those with HER2+

tumors achieved a pCR rate of 48% (p < 0.001) [33]. Indeed, the fact that the pCR rate is so low for most
HR+ breast cancers that chemotherapy does not seem to be useful in these cases constitutes a good
example of the use of predictors of response to NAC for treatment decision-making algorithms [34].

2.1.4. Pre-Treatment Ki67

Among the clinicopathological predictive factors, pre-therapy Ki67 has emerged as a promising
candidate [3]. The immunohistochemistry (IHC)-based quantification of Ki67 in pre-treatment core
biopsies is predictive of pCR, consistent with the anti-mitotic major mechanism of action of NAC. In a
study of 262 patients, the proportion of patients with breast cancer achieving pCR was significantly
higher among those presenting Ki67 >50% than among patients with Ki67 < 50% (40% and 19%,
respectively; p = 0.0004). ER−/HER2+ was the subtype associated with the highest pCR rate (49%) and
was also in patients with tumors with pre-therapy Ki67 >50% (63.6%), followed by patients with TN
(41.7%) [35]. In a TN cohort, the pCR rate was 3.36-times higher in patients with high Ki67 expression
than those with low expression [36]. Similar results were found in a recent study (2020) by Gluz et al.
in a cohort of TN (n = 642 patients divided in two arms: 306 treated with nab-Paclitaxel + Carboplatin
and 336 treated with nab-Paclitaxel + Gemcitabine), where the main objective was to find a predictive
marker of pCR in non-anthracycline NAC; in both treatment arms, high Ki67 was a strong predictor
of a high ratio of pCR (p < 0.001) [20]. The fact that this correlation has been observed primarily in
TN cohorts is in good agreement with the well-known proliferative TN nature. Indeed, in ER+ BC,
which is not enriched in cell proliferation pathways, the pre-treatment Ki67 index did not show any
predictive value regarding pCR achievement [3,37].
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2.1.5. Tumor-Associated Lymphocytes

Based on previous evidence of the contribution of the immune system in chemotherapy response,
in 2010, Denkert et al. evaluated the presence of tumor-associated lymphocytes as a predictor
of pCR by IHC detection of CD3, CD20, and CXCR3 in a training cohort from the GeparDuo
trial (n = 218), and a validation cohort from the GeparTrio cohort (n = 840). In both cohorts,
the percentage of intratumor lymphocytes was a significant independent predictor of pCR (p = 0.012
and p = 0.001, respectively) [38]. They further validated this association in a cohort of 3771 patients,
1366 Luminal-HER2−, 1379 HER2+, and 906 TN, from six randomized trials organized by the German
Breast Cancer Group [39]. They identified the following tumor infiltrating lymphocytes (TILs)
thresholds for an association with pCR in all BC subtypes (p < 0.0001): low (0–10%), intermediate
(11–59%) and high TILs (>59%). According to their results, TN is the BC subtype with the higher
chance of benefiting from the presence of TILs (31% vs. 59% of pCR). In view of the proven BC
immunogenicity and the benefit of immune influence on the response to NAC, they suggest that BC
might be targetable by immune-modulating therapies [39]. In line with this, in a recent study (2019),
Cerbelli et al. showed the potential of CD37 expression and TILs to predict response to NAC in a TN
cohort (n = 61). Both the presence of TILs and CD37 expression were associated with a better pCR rate
(p = 0.037, univariate; p = 0.011 and p = 0.014, univariate and multivariate, respectively) [40]. Taking
into consideration not only these associations of tumor microenvironment-specific features with pCR,
but also the groundbreaking therapies based on reactivation of tumor immune suppression in the
exhausted inflamed tumor scenario, we anticipate that tumor-associated lymphocytes will be key for
the assessment of response to neoadjuvant therapeutic approaches.

2.2. Molecular Determinants of pCR

While pCR has been extensively interrogated for its association with improved treatment outcome
in patients treated with NAC and surgery, there are only a few studies that have explored the molecular
determinants of pCR. In them, some predictive molecular factors of pCR have been reported, of which
the most relevant are summarized in this section.

2.2.1. PAM50 Intrinsic Subtypes

Among the pCR predictors that are currently in use, PAM50-defined molecular subtypes stand
out as valuable tools to stratify patients based on expected pCR achievement. The refined molecular
stratification that intrinsic subtypes provide incorporates the tumor biological scenario that can be
associated with the NAC response.

The PAM50 gene expression signature establishes four different intrinsic subtypes: luminal A,
luminal B, HER2-enriched, and basal-like. Importantly, intrinsic subtype was outlined as the only
significant predictor of pCR against the different clinicopathological parameters, both in univariate
(p = 0.007) and multivariate analyses (p = 0.031), defining those patient subgroups that are most likely
to benefit from an adjuvant chemotherapy regimen [34].

Studies evaluating the predictive capacity of PAM50 subtypes have proliferated over the last
decade, confirming its prominent position among the pCR predictors (Table 2).

Table 2. Studies evaluating PAM50 as a predictive tool for pCR.

Study Pre-NAC Cohort Treatment before Surgery pCR-Achievement Association after
Treatment

Prat et al., 2014 [41]
n = 195

NAC-CMF+/−Trastuzumab
HER2-enriched tumors obtain the highest
pCR rate when treated with Trastuzumab

(OR = 5.11, p < 0.009)
(HER2+ cohort,

NOAH trail)

Prat et al., 2014 [42] n = 1055
NAC

Mostly Basal-like subtype. High expression
of proliferation signature and low expression

of Luminal A signature show significant
association to high rate of pCR (p < 0.005 and

p < 0.023, respectively)(TN cohort)
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Table 2. Cont.

Study Pre-NAC Cohort Treatment before Surgery pCR-Achievement Association after
Treatment

Prat et al., 2015 [28] n = 957
NAC

In the multivariate analysis, Luminal B,
HER2-enriched and Basal-like intrinsic

subtypes are related to pCR achievement
(p < 0.001, p < 0.001 and
p < 0.001, respectively)(All subtypes)

Prat et al., 2016 [43] n = 195
NAC

Luminal A tumors predict low pCR rates
compared to the other subtypes (OR 0.341,

p < 0.037)(All subtypes)

Dieci et al., 2016 [25]
n = 121

NAC+/−Trastuzumab+/−Lapatinib

Luminal A subtype presents the lowest pCR
rate, while the highest rate is observed in

patients with HER2-enriched subtype
(p < 0.026).

(HER2+ cohort,
CherLOB trial)

Carey et al., 2016 [23]
n = 305

Paclitaxel+Trastuzumab+/−Lapatinib
Luminal A is associated with the lowest ratio
of pCR (34%) and HER2-enriched achieves

the best rate (70%) (p < 0.001)
(HER2+ cohort,

CALGB 40,601 study)

Llombart-Cussac et al.,
2017 [44]

n = 151
Trastuzumab + Lapatinib

HER2-enriched tumors correlate with high
pCR rates compared to HER2− tumors.

(p < 0.0004)
(HER2+ cohort,
PAMELA trial)

Swain et al., 2018 [27] n = 397
NAC+Trastuzumab+Pertuzumab

HER2-enriched tumors achieve the highest
pCR rate (around 75%)(HER2+ cohort,

BERENICE trial)

Diaz Redondo et al.,
2019 [32]

n = 259 NAC+Trastuzumab+/−Pertuzumab
Luminal subtypes (A + B) and

HER2-enriched are related to high pCR
(p < 0.008 and p < 0.004).(HER2+ cohort)

Ohara et al., 2019 [34] n = 124
NAC

PAM50 signature predicts pCR achievement
(univariate p < 0.007; multivariate p < 0.031)(ER+ Cohort)

Gluz et al., 2020 [20]
n = 642

nab-Paclitaxel+Carboplatin or
nab-Paclitaxel+Gemcitabine

Basal-like subtype defines patients that more
likely achieve pCR than other subtypes

(p < 0.015)
(TN cohort,

WSG-ADAPT-TN trial)

The added value of PAM50 subtyping in the prediction of pCR is most relevant
for the discrimination of those HER2+ tumors that are susceptible to benefit from NAC.
In 2014, in a continuation of the NOAH study, with 114 HER2+ BC patients treated with
NAC-cyclophosphamide/methotrexate/fluorouracil (CMF)+Trastuzumab, Prat et al. (2014) determined
that patients with the HER2-enriched intrinsic subtype presented a comparatively higher ratio of pCR
(Odds Ratio (OR) = 5.11, p < 0.009) [41]. This was also determined in another study that included the
four IHC subtypes (n = 957), distributed as follows: 53.4% ER+, 46.6% PR+, 10% HER2+, and 36.6% TN.
Here, the intrinsic subtype classification showed that, again, HER2-enriched subtype was associated
with a high pCR rate (37%), as well as basal-like (38%), and, to a lower extent, luminal B subtype (16%)
(p < 0.001, p < 0.001, and p < 0.001, respectively) [28].

Consistent with this and reinforcing the specificity of the HER2-enriched subtype for pCR
prediction even among HER2+ tumors, in 2016, Dieci et al. identified the HER2-enriched subtype
as the one with the highest rate of pCR, as opposed to luminal A, which showed the lower pCR
rate (p < 0.026). The selected HER2+ patients (n = 121) were treated with NAC + Trastuzumab,
NAC + Lapatinib or NAC, and presented the following distribution of intrinsic subtypes: 26.7%
HER2-enriched, 25.6% luminal A, 16.3% luminal B, 14% basal-like, and 17.4% normal-like [25].
Another study from 2015 where the PAM50 predictive power has been tested in a HER2+ cohort,
treated in NAC with Paclitaxel-Trastuzumab ± Lapatinib without anthracyclines, was undertaken
by Carey et al. In 305 patients, the pCR rate was different across the intrinsic subtypes. Luminal A
showed the lowest ratio (34%) and HER2-enriched achieved the highest (70%). However, no changes
were observed between dual and single therapy [23]. Interestingly, the HER2-enriched subtype
and subsequent treatment with HER2 blockade therapy (Lapatinib and Trastuzumab) but not with
NAC, has been also associated with a higher pCR rate than the non-HER2-enriched subtypes:
41% of HER2-enriched patients achieved pCR versus 10% of non-HER2-enriched patients (OR 6.2,
p = 0.0004) [44]. In the BERENICE trial, the response to Pertuzumab, Trastuzumab, and common
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neoadjuvant anthracycline-taxane regimens for HER2+ BC tumors was evaluated; the highest pCR
rate was achieved again in HER2-enriched PAM50 subtype tumors, further consolidating the notion
of the increased clinical benefit of the addition of Pertuzumab to NAC + Trastuzumab in HER2+ BC
treatment [27].

Finally, in a recent study, Diaz-Redondo et al. evaluated the PAM50 signature as a predictor of pCR
in a HER2+ cohort treated with NAC-Trastuzumab (Group A), or with NAC-Trastuzumab + Pertuzumab
(B) cohort (n = 259). Group A (NAC-Trastuzumab) included more tumors of the HER2-enriched subtype,
and 39% of the patients achieved pCR; on the other hand, Group B (NAC-Trastuzumab + Pertuzumab)
was enriched in basal-like tumors, and had a pCR rate of 61%. The luminal subtypes were similarly
distributed in both groups. In terms of pCR predictive potential of PAM50-defined molecular subtypes,
in both cohorts, and consistent with the previously mentioned studies, the intrinsic subtype was
correlated with pCR (p < 0.0001), independent of treatment, with HER2-enriched and basal-like being
the most pCR favorable subtypes, and luminal A the subtype associated with the lowest pCR rate.
Interestingly, the classic classification of BC by IHC had a lower predictive potential than intrinsic
subtypes (IHC-luminal subtype, p = 0.03 and IHQ-HER2+ subtype, p = 0.06). Again, the clinical benefit
of dual anti-HER2 therapy is exemplified by the differences in pCR achievement between Group A and
B when the intrinsic subtype is considered; whereas luminal PAM50 subtypes and the HER2-enriched
subtype present higher pCR rates in Cohort B (41% vs. 11.4%, p < 0.01, and 73.5% vs. 50%, p < 0.01,
respectively), the rate of pCR is not significantly different in basal-like subtypes (53.3% vs. 50%),
consistent with the absence of HER2 targets in basal-like tumors [32].

Apart from discriminating pCR-relevant subtypes within HER2+ BC, PAM50 signature is also
useful for separating potential responders to NAC among TN and ER+ patients. In a cohort of TN
patients (n = 1055) [42], this population was stratified according to the intrinsic subtypes, with basal-like
being the most frequent (55–81%, depending on the dataset). Within this subtype (n = 56), both the high
expression of the proliferation score or the low expression of the luminal A signature showed significant
associations with pCR (p < 0.005 and p < 0.023, respectively) [42]. Another study, derived from the
WSG-ADAPT-TN trial, was designed to identify predictive markers of pCR in a TN cohort treated with
different combinations, such as nab-Paclitaxel + Carboplatin or nab-Paclitaxel + Gemcitabine; basal-like
PAM50 was independently associated with pCR (p < 0.015, 38% basal-like vs. 20% non-basal-like) [20].

Regarding ER+ tumors, in 2016, Prat et al. showed that the luminal A subtype again predicts a low
rate of pCR in an ER+ cohort (n = 180) in comparison with the other subtypes (p < 0.037) [43]. Moreover,
a recent study based on ER+ tumors showed that luminal A is the intrinsic subtype associated with the
lowest pCR rate [34].

Based on these data, PAM50 subtypes are positioned as a useful tool for evaluating by pCR
achievement prediction, the response to NAC, and in the case of HER2+ BC, the response to
NAC+anti-HER2 target therapies, with the general consensus of HER2-enriched and basal-like
subtypes predicting higher pCR rates, and luminal A tumors predicting the lowest rates (Table 2).
Of note, intrinsic subtypes can further discriminate the good responders to anti-HER2 therapies within
HER2+patients.

2.2.2. Other Genomic, Transcriptomic, and Proteomic Signatures

State of the art analyses are starting to unveil the contribution of single gene genomic and
expression variants as candidate predictors of pCR. There have been many attempts to identify a gene
or molecular signature that could predict pCR, which are summarized in Table 3.
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Table 3. Genomic, transcriptomic, and proteomic predictors of pCR achievement.

Single Gene Variants and Molecular
Signature as Predictors of pCR pCR-Achievement Association after NAC (± antiHER2 Therapy) Cohort Pre-NAC Study

SPAG5 transcript and protein High levels of SPAG5 transcript and protein predict pCR (p < 0.024
and p < 0.001)

n = 508

Abdel-Fatah et al., 2016 [45]
(All subtypes, MD Anderson-NeoACT)

n = 200
(All subtypes, Nottingham-NeoACT)

MYC amplification MYC/CEP8 >2.2 predicts pCR AUC = 0.87 (p < 0.006) n = 51 Pereira et al., 2017 [46]
(All Subtypes)

TGFa protein Low TGFa protein levels are related with higher pCR rate (p < 0.045) n = 107 Bianchini et al., 2017 [47]
(HER2+ cohort, NeoSphere trial)

PIK3CA mutated state

PIK3CA mutated state is associated with reduction in the rate of pCR
in HER2+ tumors

n = 107 Bianchini et al., 2017 [47]
(HER2+ cohort, NeoSphere trial)

PI3KCA mutated state is associated with pCR in the three-condition
treatment combined; Lapatinib vs. Trastuzumab vs.

Lapatinib+Trastuzumab (OR = 0.42, p < 0.0185)

n = 203 Shi et al., 2017 [48]
(HER2+ cohort, neo-ALTTO trial)

PIK3CA mutated state correlates with lower pCR rates. 38.8% vs.
23% of pCR (p < 0.0001)

n = 851

Loibl et al., 2019 [49]
(All subtypes, GeparSepto trial)

PIK3CA mutated state is associated with low rate of pCR in HER2+
tumors (p < 0.006)

n = 295
(HER2+ cohort, GeparSepto trial)

ERBB2 gene

No observation or low level of ERBB2 amplification is related to less
pCR achievement (p < 0.048)

n = 48 Lesurf et al., 2017 [50]
(HER2+ cohort, Z1041 trial)

High expression of ERRB2 is predictive of pCR (p < 0.001) n = 254 Fumagalli et al., 2017 [51]
(HER2+ cohort, neo-ALTTO trial)

ERBB2 amplification is associated with high pCR rate (p < 0.0001) n = 851

Loibl et al., 2019 [49]
(All subtypes, GeparSepto trial)

ERBB2 amplification is associated with high pCR rate (p < 0.008) n = 295
(HER2+ cohort, GeparSepto trial)

TOP2A amplification TOP2A amplification correlates with a reduction in pCR rate
(multivariate p < 0.036)

n = 159 Loibl et al., 2019 [49]
(TN cohort, GeparSepto trial).

Two-gene epigenetic score signature High level of methylation in FER3L and TRIP10 genes predict pCR in
TN. (AUC 0.90)

n = 54 Pineda et al., 2019 [52]
(TN cohort)
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Table 3. Cont.

Single Gene Variants and Molecular
Signature as Predictors of pCR pCR-Achievement Association after NAC (± antiHER2 Therapy) Cohort Pre-NAC Study

TN subtypes

TN subtype is an independent predictor of pCR (p < 0.022) n = 146 Masuda et al., 2013 [53]
(TN cohort)

BL1 TN subtype shows the highest rate of pCR to NAC-Carboplatin
treatment (p < 0.002) while LAR TNBC subtype obtained the lowest

rate (p < 0.045)

n = 125 Santonja et al., 2018 [54]
(TN cohort)

IgG signature IgG immune-cell expression signature is associated with pCR
(OR = 1.54, 95% CI 1.16 to 2.05, p < 0.0024)

n = 265 Carey et al., 2016 [23]
(HER2+ cohort, CALGB 40,601 trial)

p53 mutation signature p53 mutation signature is related to pCR (OR = 2.06 95% CI 1.17 to
3.70, p < 0.0119)

n = 265 Carey et al., 2016 [23]
(HER2+ cohort, CALGB 40,601 trial)

HER2 Amplicon Genes High expression of HER2 amplicon genes is associated with pCR in
HER2+ Tumors (OR = 1.35, 95% CI 1.04 to 1.77, p < 0.0252)

n = 265 Carey et al., 2016 [23]
(HER2+ Cohort, CALGB 40,601 Trial)

TIL
TIL detection in the tumor stroma and intratumor is a predictive

factor of pCR (p < 0.001 and p < 0.001, respectively)
n = 121 Dieci et al. 2016 [25]

(HER2+ cohort, CherLOB trial)

PIK3CA network genes
Patients with a mutation in the PIK3CA network genes are less likely
to achieve pCR in the Trastuzumab arm (4% vs. 56%), OR = 0.035;

p < 0.001

n = 203 Shi et al., 2017 [48]
(HER2+ cohort, neo-ALTTO trial)

ERBB2/ESR1 signature The combination of high expression of ERBB2 and low expression of
ESR1 defines a group of patients with high rate of pCR (p < 0.001)

n = 254 Fumagalli et al., 2017 [51]
(HER2+ cohort, neo-ALTTO trial)

Regulation of RhoA activity pathway Mutation in RhoA pathway is related to a high rate of pCR to
Lapatinib treatment (OR = 14.8, p < 0.001)

n = 203 Shi et al., 2017 [48]
(HER2+ cohort, neo-ALTTO trial)

10-IntClust Classification IntClust subtypes are associated with pCR (multivariate p < 0.0015)
n = 100

Alba et al., 2018 [55](All subtypes, GEICAM/2006-03,
GEICAM/2006-14)

TRAR signature score Expression levels of a 41-gene signature predict pCR (AUC = 0.73) n = 226 Di Cosimo et al., 2019 [56]
(HER2+ cohort, neo-ALTTO trial)
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Single Gene Variants as Predictors of Pathological Complete Response

The majority of studies describe the association of molecular variations of key cancer genes
with pCR, such as MYC amplification in a cohort of 51 patients distributed in luminal A (22),
luminal B (14), HER2+ (8), and TN (7) BC subtypes, all of them treated with neoadjuvant
anthracycline-cyclophosphamide followed by taxanes. The MYC proto-oncogene amplification,
defined as a ratio of MYC signals to chromosome 8 signals (MYC/CEP 8) >2.2, was associated with
pCR in univariate logistic regression (p = 0.003). Moreover, the ROC curve assessing the sensitivity
and specificity of the correlation of MYC copy number and pCR, shows that the MYC/CEP 8 ratio
discriminates patients with pCR from those without pCR, with an area under the curve (AUC) of
87.8% (p = 0.006); this implies the high pCR predictive potential of MYC amplification in the context
of treatment with AC+T in NAC [46]. Another new relevant gene in cancer, SPAG5, is reported as a
transcript (in the MD Anderson-NeoACT trial cohort; n = 508), a protein (in the Nottingham-NeoACT
trial cohort; n = 200), and as an independent predictor of pCR in multivariate logistic regression
(p < 0.024 and p < 0.0010) [45].

A study derived from the GeparSepto trial, which screened a hotspot panel in 16 commonly
mutated genes in all breast cancer subtypes and Copy Number Alterations (CNAs) in 8 cancer-relevant
genes, concluded that the genes harboring the majority of genetic variants among the different subtypes
were TP53 and PIK3CA. On the other hand, genetic heterogeneity in different breast cancer subtypes
(Luminal/HER2− vs. HER2+ vs. TN) were related to differences in NAC response; TOP2A amplification
was associated with a decrease in pCR in the TN cohort (multivariate p < 0.006). Mutated PIK3CA was
associated with a reduced pCR (PIK3CAmut: 23% vs. PIK3CAwild-type 38.8%, p < 0.0001), particularly
in the HER2+ cohort (multivariate OR = 0.43, p < 0.006) [49]. Consistent with these findings, in a HER2+

cohort from the NeoSphere trial, it was observed that the mutation in exon 9 of PIK3CA produced a lack
of sensitivity to anti-HER2 therapies [47]. Hence, the mutated status of PIK3CA could be a prognostic
factor of treatment resistance with NAC and anti-HER2 therapies. This trial also showed the association
of low serum TGFα with high pCR rates (p = 0.04) [47]. Still, in the context of PI3KCA mutated status
as a predictive factor of pCR, 203 patients from neo-ALTTO trial were screened for different biomarkers
of pCR response to anti-HER2 therapy (Lapatinib vs. Trastuzumab vs. Lapatinib+Trastuzumab).
Strikingly, presenting only one PIK3CA mutation was associated with pCR (OR = 0.42, p < 0.0185) in
the combined analysis of the three treatment arms [48]. Another study that focused on HER2+ patients
(n = 254), derived from the neo-ALTTO trial, showed that four different variables were independent
predictors of pCR: ERBB2 gene expression levels, HER2-enriched intrinsic subtype, ESR1 mRNA levels,
and GGI were identified (p < 0.001, p < 0.001, p < 0.008, and p < 0.01, respectively) [51].

Molecular Signatures as Predictors of Pathological Complete Response

There have been many attempts to identify a molecular signature that could predict pCR. Some of
the first studies were from Hess et al. in 2006, who determined the DLDA-30 that predicted pCR after
NAC with high sensitivity in a cohort of 133 BC patients (accuracy of 0.76) [57] or from Liedtke et al.
in 2009, who identified a 97-gene measure of histological tumor grade, the GGI, which combined
the molecular readouts with clinical parameters and predicted pCR with an accuracy of 0.71 [58].
From these studies, a number of initiatives have explored pCR predictors, the most revealing of which
are described below (Table 3).

Integrative analysis of copy number and gene expression has also been performed in core biopsies
of BC, where gains in 1q (55%), 8q (40%), and 17q (40%) characterize the tumors with pCR after
NAC, while 11q11 (37%) was the most abundant gain in tumors from patients that did not achieve
pCR. With respect to gene expression variants associated with pCR, CXCL9, AREG, and B-MYB were
overexpressed, while ABCG2 was downregulated [59].

Regarding integrative analyses, IntClust classification, based on a combination of transcriptomics
and CNAs analysis, was proven useful and more informative than PAM50 for pCR prediction. In a
cohort of 871 patients, the IntClust 10 subtype was identified as the one associated with the highest
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pCR rate (37%), which surpassed the highest rate obtained using PAM50 classification (basal-like,
31%); similarly, the lowest pCR rate detection was performed more accurately with IntClust, as the
IntClust 2 subtype obtained a lowest pCR rate of 0%, compared with the lowest pCR rate by PAM50
Luminal A subtype being 6% [60]. This molecular signature was further simplified in a signature, solely
based on CNAs, that was able to predict pCR in 7544 breast tumors independent of the histological
grade, Ki67 expression or the immunohistochemical subtype (p < 0.0015) [47–49]. This refined IntClust
signature gives rise to 10 different clusters grouped by subtype prognosis. IntClust 1-2-6-9 are luminal
poor prognosis, IntClust 3-4-7-8 are luminal good prognosis, IntClust 10 is basal-like, and IntClust 5 is
HER2+ [55].

Other innovative approaches to generate good pCR predictors delineate the synergistic
contribution of multiple genes to the prediction of pCR. In this sense, in the neo-ALTTO trial,
a 41-gene expression signature called the Trastuzumab Risk model (TRAR) signature has been
identified as a predictor of response to anti-HER2 therapies in HER2-positive breast cancer patients.
TRAR signature score was associated with pCR (AUC = 0.73) when considering three different
treatments collectively: Trastuzumab, Lapatinib, and Trastuzumab plus Lapatinib; interestingly,
in the scenario of Lapatinib monotherapy, this gene signature increased the pCR prediction potential
(AUC = 0.76). Moreover, the combination of TRAR signature and the clinicopathological variables to
the prediction algorithm provided greater predictive capability than the one integrating PAM50
signatures and clinicopathological features (AUC = 0.78 vs. 0.74) [56]. Continuing with the
HER2+ BC scenario, Carey et al. determined that the high expression of HER2 amplicon genes
was associated with pCR in a multivariate analysis in HER2+ tumors with stage II and III under
Paclitaxel + Trastuzumab + Lapatinib treatment in a cohort of 305 patients (OR = 1.35, p < 0.0252).
The p53 mutation signature and IgG signature were also related to pCR (OR = 2.06, p < 0.0119 and
OR = 1.54, p < 0.0024, respectively) [23]. The evaluation of TILs in both cases, IT-TILs and Str-TILs in a
HER2+ cohort treated with NAC ± Trastuzumab ± Lapatinib, has been identified as a pCR predictive
factor with greater potential than PAM50 subtypes in a study derived from the CherLOB trial (IT-TILs
p > 0.001 and Str-TILs p < 0.001) [25].

In the abovementioned neo-ALTTO trial, of the 714 tested pathways, the mutational status of 33
was associated with response. Relevantly, most of the associated pathways included PI3KCA-related
ones, even though the gene was not preferentially mutated, but constituted a central node of a 459
gene network that defined Trastuzumab resistance. Patients with mutations in this network had low
pCR rates to Trastuzumab (4%) compared with cases with no mutation (56%), (OR = 0.035; p < 0.001).
Other pathways where its mutated status was related to pCR included the regulation of RhoA activity.
In the Lapatinib arm, mutations in this pathway were related to a high rate of pCR (OR = 14.8,
p < 0.001) [48]. Another study that focused on HER2+ patients (n = 254) derived from the neo-ALTTO
trial with 254 patients evidenced the association of ERRB2 gene expression with pCR. A number of
defined gene signatures were sequenced and used for categorizing the patients into three groups
based on the expression of ERBB2 and ESR1: high ERBB2 and low ESR1, high ERBB2 and high ESR1,
and low ERBB2. pCR rate-wise, these groups presented a progressive diminution of 47%, 32%, and 9%,
respectively (p < 0.001 for the pCR difference between the three groups) [51].

Other molecular signature that uses the best combination of genes to predict pCR constitutes
the first epigenetic signature of response to NAC. A whole-genome methylation study in TN breast
cancer patients identified the methylation status of nine genes (LOC641519, LEF1, HOXA5, EVC2, TLX3,
CDKL2, FERD3L, CHL1, TRIP10) as associated with response in a discovery cohort (n = 24). The final
signature derived from the analysis in the validation cohort (n = 30), was comprised of two genes
(FER3L and TRIP10), where high methylation predicts pCR status (RCB = 0) with an AUC of 0.90 [52].

Finally, the TN molecular classification of Lehmann et al. [61] has been proposed as an independent
predictor of pCR [53,54]. In an attempt to validate this finding, we undertook the characterization of a
cohort of 125 TN treated with NAC ± Carboplatin in terms of pCR predictors using this TN molecular
classification. We identified six molecular subtypes that included Basal-like 1 (BL1), Basal-like 2
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(BL2), Immunomodulatory (IM), Mesenchymal (M), Mesenchymal stem-like (MSL) and Luminal
androgen receptor (LAR) subtypes. The most proliferative subtype was BL1 (Ki67 > 50% of 88.2%
vs. 63.7%, p = 0.002), and, consistent with the predictive potential of Ki67, it was the subtype that
obtained the highest pCR, particularly when these patients were treated with NAC-Carboplatin (80%
vs. 23%, p = 0.027). The TN subtype with a lower pCR rate was LAR in all treatments (14.3% vs.
42.7%, p < 0.045). Those tumors identified as LAR corresponded with HER2-enriched and luminal
A intrinsic subtypes by PAM50, which is consistent with the low pCR rate, since anti-HER2 therapy
treatment was not used in this cohort [54]. In 2015, Burstein and collaborators used a thorough
molecular approach comprising RNA and DNA profiling analyses to propose a new TN classification
with increased prognostic potential. They defined four subtypes that partly overlap with Lehmann
subtypes: Basal-like Immunosuppressed Subtype. (BLIS), Androgen receptor (AR), LAR, Mesenchymal
subtypes (MES) and Basal-like immune activated subtype (BLIA). Relevant subtype-specific targets are
identified, such as MUC1 and AR in LAR subtypes, PDGF in MES subtypes, VTCN1 in BLIS subtype
or Stat transduction molecules and cytokines in the BLIA subtype, allowing for stratification based
on putative new therapeutic opportunities for the most aggressive BC. Apart from the comparatively
improved prognosis value, they define more extensive subtypes that are different in their immunogenic
features, BLIS and BLIA [62]. Given that pCR achievement has been correlated with the immunogenic
phenotype of the tumor microenvironment, Burstein molecular subtypes should be evaluated for
their ability to predict eventual responders to NAC in BC, and possibly outstand PAM50 or Lehmann
subtypes as pCR predictors.

3. Residual Disease

3.1. Residual Disease as a Prognostic Factor in NAC-Treated Breast Cancer Patients

As previously mentioned, the presence of tumor cells after NAC is a fundamental prognostic
factor. Several studies revealed that the degree of reduction in tumor burden after NAC is associated
with increased DFS and OS [6,7,10,12]. Here, we describe different residual disease biomarkers that are
used for the determination of post-NAC and surgery patient outcomes.

3.1.1. Post-Therapy Ki67

In 2009, Jones et al. were pioneers in determining the NAC outcome predictive potential of
the proliferation marker Ki67. In a matched cohort of 103 patients, they reached the conclusion
that post-chemotherapy Ki67 was a strong outcome predictor in patients without pCR (p < 0.001;
HR 1.6) [63]. This reduction in Ki67 after treatment with standard NAC has been significantly correlated
with better DFS and OS, particularly in the luminal B subgroup of BC. In addition, the multivariate
analysis showed that the lack of decrease in Ki67 during NAC significantly increased the hazard ratio
for recurrence and death by 3.39 and 7.03, respectively [37].

In GeparTrio, the largest study evaluating the prognostic value of post-NAC Ki67 index in breast
cancer, three groups of patients (1151 patients in total; 484 with pCR and 667 with RD) were established
based on Ki67: the low Ki67 group (0–15%), the medium Ki67 group (15.1–35%), and the high Ki67
group (>35.1%). The outcome of the low Ki67 group was comparable to the pCR group (p < 0.211 for
DFS and p < 0.779 for OS). The high Ki67 group had a higher risk for disease relapse (p < 0.0001) and
death (p < 0.0001) than the low and medium Ki67 groups [64,65].

3.1.2. Residual Cancer Burden Index

As mentioned before, failure to achieve pCR after NAC is related to worse prognosis [6,9–12].
For that reason, residual disease has been comprehensively characterized to be used for the stratification
of patients according to NAC outcome. The RCB index is a system that quantifies residual disease based
on six parameters: two dimensions of the post-treatment breast tumor bed, its cellularity, the percentage
of carcinoma in situ, the number of metastatic nodes, and the diameter of the largest nodal metastatic
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lesion. The application of this index leads to the assignment of four different groups based on the
outcome: RCB-0 (pCR), RCB-I (minimal RD), RCB-II (moderate RD), and RCB-III (extensive RD).
Symmans et al. (2007) applied this system in a cohort of 382 patients with different treatments and
demonstrated that the RBC index was an independent predictor of Distant relapse-free Survival (DRFS),
in addition to being reproducible and cost-effective. RCB-0 and RCB-I had similar DRFS (5.4% and
2.4%, respectively), while RCB-III was associated with the longest DRFS (53.6%) [5]. In a recent study,
each class of RCB index was thoroughly characterized in a cohort of 399 HER2− patients. In HR+

patients, those with RCB-III were mostly PAM50 luminal A subtype in comparison with patients with
RCB-II and RCB-0/I (p < 0.01) [66]. Consistent with the fact that ER+ and PR+ BC are less likely to
achieve pCR, they observed that the corresponding receptor coding genes (ESR1 for ER and PGR for
PR) were overexpressed in RCB-II and RCB-III patients and not in pCR status or RCB-0/I (p = 0.00053
and 0.0061, respectively); on the other hand, the expression level of MKI67 was lower in RCB-III
than in RCB-0/I and RCB-II (p = 0.0029). Finally, in TN subtypes, probably related to the intrinsically
unfavorable prognosis of the subtype, RCB-III class was associated with a higher clinical stage and
ratio of lymph node-positive than RCB-0/I and RCB-II (p < 0.01); also, ESR1 expression levels were
significantly increased in RCB-III tumors with respect to RCB-I and RCB-II tumors (p = 0.041) [66].

While RCB can indeed mirror specific PAM50 BC subtypes in terms of response to NAC, other
tumor characteristics are independently associated with outcome after NAC and should, therefore,
be considered transversally to RCB when characterizing post-NAC tumors. For example, in a cohort
of 109 TN patients with RD, multivariate analysis indicated that both CD4+ stromal TILs levels and
RCB index have independent prognostic value for Distant recurrence-free interval (DRFI) (CD4+ TIL:
HR 2.88, p < 0.007 and RCB index: HR 12.04, p < 0.0001). High numbers of CD4+ TIL had a benefit
on survival across the different classes of RCB RCB-II and RCB-III (p < 0.05 for RCB-II, and p < 0.05
for RCB-III [67]). However, this is in contrast with a previous study, where TILs only had a positive
prognostic effect in RCB-II class tumors, achieving better Relapse-free survival (RFS) (p < 0.003) and
OS (p < 0.008) than RCB-III ones in a cohort of 375 TN patients [68].

3.1.3. Residual Proliferative Cancer Burden

Residual Proliferative Cancer Burden (RPCB) agglutinates the relative events rates for post-therapy
Ki67 and RCB. The prognostic value of RPCB has been shown to be much higher than that of either
Ki67 or RCB separately, where RPCB efficiently clustered the patients in groups per the RFS and OS
rates [64,69]. In a cohort of 220 patients (including both ER+ and ER−), the prognostic information
related to time to recurrence of combining Ki67, grade, and ER status to RCB was assessed and
quantified as PI. Post-NAC Ki67 was more informative than RCB (χ2 = 53.8 vs. χ2 = 38.1), although the
prognostic information was higher when these variables were taken together under RPCB (χ2 = 61.4,
p < 0.001). Importantly, the prognostic value differs between ER+ and ER− patients. All variables
were related to outcome in the ER− subgroup (p < 0.001), with the best prognostic variables being
RCB (χ2 = 35.9) and RPCB (χ2 = 35.6). The combination of variables which yielded better prognostic
potential was RCB+Ki67+grade+ER status (χ2 = 15.3). On the other hand, Ki67 and RCB did not have
prognostic potential in the ER+ patients, but only RPCB (χ2 = 13.3, p < 0.003) [69].

3.2. Dynamics of the Molecular Profile of Residual Disease after NAC Treatment and Impact in Outcome

In the post-NAC scenario, it is particularly important to identify the molecular alterations that
have been triggered by the treatment and are related to the acquired chemoresistance mechanism.
The predominant hypothesis so far is the treatment-induced selection of resistant cancel cell clones,
but it is imperative to characterize the tumor molecular dynamics upon treatment to fully determine
the NAC-induced resistance beyond the basal predictors of pCR. This would allow the design of more
specific treatments with better clinical outcomes [3].
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Between 16% and 30% of patients treated with NAC, including those HER2+ that receive
NAC-Trastuzumab, undergo changes to biomarker status, such as HR and HER2 status, during
treatment, as detected by pre- and post-NAC determinations [3,70].

In addition, these variations are treatment-dependent; for example, 43% of HER2+ patients
undergo a loss of HER2 during treatment with NAC-Trastuzumab, versus 9.5% of patients treated only
with NAC [3]. The loss of HER2+ status after treatment with anti-HER2 agents could arise from the
eradication of HER2+ clones, with the residual disease stemming from pre-existing HER2− populations
being attributed high intratumor heterogeneity [3]. Consistently, some studies by Guarneri et al.
in 2013 and Mittendorf et al. in 2009 show that the loss of HER2 positivity after NAC correlated with
worse DFS (p < 0.063) and worse RFS (p < 0.041) compared with HER2+ stable patients [3,71,72].

Regarding HR receptors, loss occurs more frequently than gain [70], although gain is associated
with a better outcome when compared to the loss or the absence of variation (p = 0.039 for DFS; p = 0.045
for OS). The multivariate analysis revealed that post-NAC HR status was an independent predictor of
DFS (p = 0.0078) [73]. In view of this, the post-NAC determination of HR and HER2 status, in patients
not expressing them in the pre-NAC primary tumor, should be prioritized [3].

In addition to this prognostic potential of HR dynamics, testing pre- and post-NAC ER, PR,
and HER2 is also useful for the identification of actionable variations; indeed, 20% of patients treated
with NAC or NAC-Trastuzumab had a clinically actionable change [70].

NAC not only affects the loss or gain of individual receptors, but also induces shifts in PAM50
subtypes. In a cohort of 21 patients (9 Basal-like and 12 non-Basal-like), 62% underwent PAM50 subtype
changes after NAC [74]. The most common evolution is towards the normal-like subtype, which could
partly be explained by the stromal contamination concomitant to the reduction in tumor cellularity
in residual disease [74]. Other studies that are part of clinical trials or that study larger cohorts have
reported that the most common transitions in subtypes are luminal B to luminal A [75,76], which is
consistent with the preferential elimination of the most proliferative cells by NAC [76]. This hypothesis
can find further support in a study where 22.5% of patients evaluated with the gene expression-based
assay, Mammaprint, undergo a subtype transition after NAC, primarily from luminal B and HER2 to
luminal A. In addition, 76.2% of the transitioned patients switched their Mammaprint risk classification
from high risk to low risk, while only 4.8% switched from low risk to high risk and the other 19% did not
change [77]. Considering the frequent NAC-induced dynamics of some of the major determinants of
pCR, the longitudinal evaluation of such biomarkers during treatment can be considered fundamental
for the appropriate management of the neoadjuvant treatment and the ulterior interventions of the
residual disease [3].

3.3. Genomic and Transcriptomic Profile of Residual Disease

A myriad of studies has evaluated transcriptomic or targeted gene expression patterns in search
of predictive markers of clinical outcome after residual disease. Klintman et al. conducted a gene
expression study that included the quantification of 24 genes representing key biologic processes
related to cancer in 56 pre- and post-NAC paired biopsies, and a total of 126 residual tumors, of which
66% were ER+, 52% PR+, 12% HER2+, 62% ER+/HER2−, and 26% ER−/HER2− [78]. Regarding
the post-NAC variations identified in 56 paired biopsies (36 were ER+/HER2− and 13 ER−/HER2−),
proliferation genes (MKI67, TOP2A, AURKA, PLAU, STAT1) and the stem cell markers CD44 and
STAT3 were significantly downregulated; on the other hand, the EMT genes SNAI1, SNAI2, SOX9,
and TWIST; the apoptosis genes PAWR and Bcl2; the Ras–ERK-associated DUSP4 gene; the cell
metabolism-related genes ACACB and LDHB; ALDH1A1; the stromal genes DCN and SPARC were
all significantly upregulated [78]. This targeted study of the gene expression variant during NAC
grouped the tumors with residual disease into four main clusters, which could be representative of the
post-NAC scenario. One of them was mainly HR− and HER2−, with high residual Ki67 and MIK67,
AURKA, and TOP2A overexpression. The other three clusters were mainly HR+, with low residual
Ki67, and generally with the reverse expression pattern; indeed, these tumors were characterized
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by high levels of ESR1 and genes closely related to ESR1 [78]. In an attempt to determine the inter-
and intra-heterogeneity at the epigenetic level, in a recent study (2019), Luo et al. determined that
NAC treatment induced alterations of the methylation profile that persisted in the post-NAC scenario.
Beyond the inter-patient heterogeneity, four genes related with stem cell quiescence (ALDH1L1, HOPX,
WNT5A, and SOX9) were hypomethylated after NAC in all patients. This opens a new avenue in the
search for alternative post-NAC adjuvant therapeutic approaches [79].

Residual Disease Genomic Alterations in Triple Negative Breast Cancer

Only a few studies have addressed the delineation of genomic alterations in the RD of TN
patients. For the subtype with highest rates of pCR achievement, when these patients present with RD,
the scenario relates more to metastatic recurrence and poorer outcome than the other subtypes that
do not tend to achieve pCR. On the other hand, the majority of cells in RD have actionable genetic
alterations [80], which is encouraging in the search for new alternatives with targeted therapies and
allows for the calculation of more accurate prognosis predictions.

Among the genetic mutations associated with TN RD identified in 2014 by Balko et al. using
TCGA data [81], alterations in TP53 were the most common (89%), followed by MCL1 (54%) and MYC
(35%) gene amplifications. MCL1 amplifications were more frequent in triple negative residual disease
than in basal-like primary tumors: 54% in post-NAC vs. 19% in basal-like primary tumors (p = 0.0006),
indicating that MCL1 may play a role in de novo or acquired drug resistance [80].

Cell cycle, PI3K/mTOR, GFR, Ras/MAPK, and DNA repair pathways were also altered after NAC
(truncations, loss or mutations of BRCA1, BRCA2, or mutations in ATM). Interestingly, the presence of
potentially targetable alterations, such as PTEN alterations, and JAK2, CDK6, CCND1, CCND2, CCND3,
and IGF1R amplifications, indicates that the molecular analysis of TN not achieving pCR to NAC is
potentially useful for the identification of therapeutic alternatives [80]. Indeed, the modifications in
DNA repair pathways, which included alterations in BRCA1/2, are the base for clinical trials such as
ECOG-ACRIN EA1131 or CREATE-X [82].

In the analysis of 75 TN RD arising from a phase II trial (BRE09-146), it was observed that the
most abundant mutations were also in TP53 (88%), followed by PIK3CA mutations (11%). Regarding
the CNA profile of RD, they identified gains in MCL1, MYC, and GATA3, and losses in BRCA2,
FLT3 and RB1, with the most frequently amplified gene being MYC (24% of cases) and the most
frequently depleted gene BRCA2 (68% of cases) [83]. In addition, the analysis of 18 matched pre-NAC
vs. post-NAC matched samples showed a mutational homogeneity between both scenarios, given that
13 out of the 18 matched samples had identical mutational profiles. However, this is not the case for the
CNA behavior. The NAC modulated the CNA pattern with chaotic acquisition of copy gains and losses,
including amplifications in known genes, such as MCL1, MYC, KRAS, BCL9, EGFR, CDKN2A, BIRC2,
and BIRC3, found in the post-NAC scenario compared with the one before treatment [83]. In this study,
among the molecular perturbations induced by NAC that predicted recurrence, the loss of TP53 was
associated with a significant DFS and OS decrease (p < 0.02 and p < 0.03, respectively), highlighting
the importance of the loss of locus 17p for TN aggressiveness. Interestingly, TP53 mutations and
MYC signaling upregulation also tend to be concomitant (p < 0.05), and related to MYC amplification,
although only TP53 mutations correlate with worse DFS and OS (p < 0.007 and p < 0.007, respectively).
Finally, the copy gain of regions in close proximity of SMAD4 (chromosome 18q) is also associated with
poor DFS (p < 0.01) [83]. Another comprehensive study by Balko et al. reported the characterization of
the gene expression and genetic variants associated with the residual disease phenotype in the TN
subtype after NAC using a panel of 450 transcripts that include the signatures of PAM50, MEK and
TGFß activation, and post-NAC Ki67 index related genes [80]. The tested expression variants allow the
generation of two tumor categories; one includes tumors with higher differentiation, high Ki67, and low
TGFß and MEK activity, while the second agglutinates those tumors enriched in genes related to
invasive pathways and poor differentiation. Consistent with the stem-like phenotype typically induced
by the latter and already related to residual disease [83], this group is characterized by enhanced MEK
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and TGFß activation, together with the deletion of DUSP4 [80,84–86]. In line with this, additional
studies focused on the TN subtype reported the reduction in DUSP4 expression in RD as related to
poor RFS (p < 0.0004) [84].

Another study evaluating gene expression variants in TN residual disease reports a 7-gene
prognostic signature of chemoresistance to NAC [87]. The expression of AR, GATA3, ESR2, GBX2,
KRT16, MMP28, and WNT11 in residual disease establishes a risk prediction for a three-year RFS,
with 76.9% in the low risk patient category (those with “luminal-like” genes as AR or GATA3) presenting
survival versus 25% of the patients included in the high risk group (those tumors characterized by
expression of cancer stem cell markers as KRT16, WNT11, or MMP28). Favorable prognosis was
observed in patients presenting high expression of “luminal like” genes (AR, GATA3) and decreased
survival was observed in patients expressing cancer stem cell-like (WNT11) or EMT-associated genes
(MMP28) [87]. The status AKT1low of quiescent cancer cells (QCCs) has been related with chemotherapy
resistance and progression-inducing epigenetic plasticity in experimental models [88,89]. Kabraji et al.
(2017) studied the presence of these cells before NAC, after NAC (RD), and in nodal and distant
metastasis in a TN cohort. In patients not responding to NAC, AKT1low QCCs were identified in every
one of the tested scenarios, strengthening the status AKT1low as a NAC resistance biomarker [90].
Other reported signatures identified through a multivariable study with TN patients treated with NAC
include the expression levels of ACACB, CD3D, MKI67, and TOP2A genes, which adds prognostic
value to the ER−, PR−, and HER2− status [78]. The identification of TOP2A amplification before NAC
in primary tumors as a negative predictor of pCR in a multivariate analysis [49] reinforces the role of
TOP2A as a chemoresistant gene.

A more ambitious study that analyzed the expression levels of 449 genes related to TN outcome
aggressiveness, in a cohort of 82 residual disease TN patients after NAC, defined a 3-gene signature
(CCL5, DDIT4, and POLR1C) that was identified as an independent prognostic factor for DRFS in a
multivariate analysis. In their cohort, two subgroups (high and low risk) can be discriminated based on
the differential DRFS (p < 0.002) [91]. CCL5 overexpression was related to good prognosis (p < 0.0012),
while DDIT4 overexpression was associated with poor prognosis (p < 0.00034) in their individual
impact evaluation regarding RFS [91].

Finally, as stated previously, the PAM50 expression signature is also the object of modification
under NAC. Interestingly, in a series of 21 pre-NAC and post-NAC BC compared by PAM50 subtype
using Affymetrix HG-U133A gene chips, the majority of the transitions, departing from any subtype,
implied a shift towards normal-like subtype, which may reflect an infiltration of normal tissue within
the tumor niche [74].

3.4. Towards Preventing and Overcoming NAC Treatment Resistance in Breast Cancer

Due to the high impact pCR achievement has in BC outcome, especially in aggressive subtypes
such as TN and HER2, the search for alternatives or combination NAC therapies to prevent residual
disease is a priority in the field. As discussed before, in the HER2+ disease, combination with anti-HER2
agents such as Trastuzumab, Pertuzumab, or Lapatinib is known to improve the pCR rate (OR 5.11,
p < 0.009) [41]. TN disease poses though an increased difficulty in this regard, since identifying a
targetable characteristic is a priori challenging. In addition, the important molecular heterogeneity
that features this BC subtype represents an additional obstacle [53,61,62]. Notwithstanding that, a few
alterations have been identified as putative targets to prevent resistance to NAC in TN cases. The most
important molecular alterations are the germline BRCA 1/2 mutations, or the BRCAness phenotype,
that lead to a deficiency in the DNA damage repair machinery, mainly in double strand breaks (DSBs).
This deficiency can be utilized in favor of treatment by the addition of platinum salts (Carboplatin)
to NAC, since they distort the double helix of DNA inducing single-strand breaks (SSBs) and DSBs,
which the tumor cells are not able to repair. This strategy was indeed associated with an improvement
in the pCR rate in the CALG 40,603 trial, of 41% vs. 54% (OR 1.71; p = 0.0029) [92]. Another cellular
mechanism of response to DNA damage that can be targeted to increase the response to NAC is the
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binding of Poly ADP-ribose polymerase (PARP) to SSBs in the DNA repairing process. The use of
PARP inhibitors (PARPi) in BC with BRCA1/2 mutations induces cell death and prevents SSBs repairs.
In the I-SPY 2 trial, they evaluated the combination of PARPi plus Carboplatin followed by NAC and
only NAC in the other arm of the study in TN breast cancers. As a result, 25% more pCR was achieved
with the PARPi and Carboplatin combination (51 vs. 26%), with a concomitant increase in hematologic
toxicity [93]. Other approaches that are gaining more relevancy add Immune Checkpoint Inhibition
to NAC. ICI based on the inhibition of programmed death-1 (PD-1) receptor or programmed death
ligand-1 (PD-L1) aims at restoring the antitumor effects of T cells. TN breast cancer is the BC subtype
exhibiting more expression of PD-L1 [72]. In the KEYNOTE-522 trial, the addition of Pembrolizumab
(PD-1 inhibitor) induced an increase in pCR rate in TN patients (64.8% vs. 51.2%) [94].

In those cases where NAC is not completely effective, residual disease constitutes a different
scenario to study new therapeutic approaches. There are ongoing clinical trials in post-NAC disease
trying to identify the best treatment according to the breast cancer subtype. The majority of these
studies focus on TN BC due to the lack of targets, although ongoing clinical trials such as PENELOPE-B
(NCT01864746) or KATHERINE (NCT01772472) explore new approaches for HR+/HER2− and HER2+

BC, respectively. In the PENELOPE-B trial, the CDK 4/6 inhibitor, Palbociclib, is added to standard
endocrine treatment in post-NAC disease in hormone positive BC and in the KATHERINE trial,
the combination of Emtansine and Trastuzumab is used as post adjuvant treatment in HER2+ BC.
Strategic ongoing clinical trials are the CREATE-X trial, where TN residual disease is treated with
Capecitabine and this is translated in better DFS (74.1% vs. 67.6%, HR 0.70, p = 0.01) and five-year
OS (89.2% vs. 83.6%, HR 0.58, p = 0.01) [95]. Other ongoing clinical trials are the A-Brave trial,
which evaluates the use of anti-PDL1 in post NAC TN tumors, and the ECOG-ACRIN EA1131 study,
where anti-PDL1 is used as adjuvant treatment in Basal-like tumors refractory to platinum salts [82].

4. Conclusions

pCR determination in the context of breast cancer neoadjuvant treatment stands out as a useful
tool to evaluate new therapeutic approaches. Moreover, pCR prediction has been the focus of a variety
of works that aim at identifying decision-making algorithms that can improve the clinical management
of breast cancer patients at this stage.

So far, clinical tumor stage, tumor grade, IHC subtypes, or lymphocyte infiltration are the
clinicopathological features that are most commonly used to predict response to NAC, due partly
to their wide availability in clinical units. However, recent advances in the field of NAC response
prediction in breast cancer have unveiled the additional contribution of molecular signatures as pCR
predictors, such as PAM50, TRAR signature for HER+ tumors, or IntClust, which exceed the sensitivity
of the classical response markers in some cases.

In those cases of incomplete response, the characterization of RD acquires special importance for
determining clinical outcome and identifying new actionable targets, given the new tumor scenario
induced by NAC. Indeed, it is very relevant that the receptors that are intimately associated with the
definition of BC immunohistochemical subtypes (HR and HER2+) and, therefore, the disease prognosis,
undergo important rearrangements in their distributions under NAC, and that new tumor drivers
arise or are unmasked.

Most of the studies in this respect are devoted to characterizing RD in TN tumors, probably due
to their aggressive nature when pCR is not achieved, or because of the lack of specific pharmacological
targets. In these tumors, NAC is reported to induce a mostly stochastic CNA rearrangement, together
with stem-like phenotypes marked by MEK and TGFβ activation and DUSP4 deletion.

In view of the high relevance of the pCR predictors for identifying those breast cancer patients
who are susceptible to benefiting from NAC, as well as for designing the precise NAC composition,
in our opinion, it is of utmost importance to explore new pCR predictors of higher sensitivity and
specificity. In addition, expanding the molecular characterization of RD in all BC subtypes will be
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crucial for understanding the resistance mechanisms to NAC and for the discovery of new actionable
targets induced by the treatment.

5. Future Perspectives

The incorporation of NAC to the standard of care treatment to early and locally advanced breast
cancer has greatly benefited these patients in terms of survival and breast preservation. As for any
other novel pharmacological approach, the implementation of NAC has been paralleled by an intense
search for those factors influencing its impact on the course of the disease. In an important effort,
a myriad of studies has defined different predictors of the most informative prognosis factor, pCR,
and characterized the profile of residual disease. Interesting observations include gene expression
signatures, some of them subtype-defining, as well as other molecular variations and clinicopathological
features that are able to anticipate pCR and, in some cases, prognosis. In addition, a phenotype
evolution during treatment has been revealed with a transition towards a “normal-like” phenotype,
with losses of the essential breast cancer receptors, or towards the stemness or immune depleted
phenotypes as characteristic of those tumors that have not been eradicated by NAC. Despite this
significant progress, several concerns are yet to be addressed for an efficient implementation of NAC
in terms of predicting the clinical benefit and identifying successive treatments for the residual disease.
In both cases, the main pitfall is the important heterogeneity that characterizes this type of cancer;
more randomized clinical trials that consider the breast cancer subtypes individually and address
the intratumor heterogeneity should evaluate the determinants of pCR and the profile of residual
disease. These would generate invaluable input to refine the novel cDNA “mutations tracking”
approaches [96–98] that require knowledge of the specific predicted residual disease mutations with
prognostic potential to be interrogated during the course of NAC and after surgery, and those that
could be amenable as targets for ulterior treatments of the residual disease.

Moreover, some pre-clinical initiatives are also emerging to dissect the mechanisms of
chemoresistance that can contribute to the identification of additional targets. In this regard, a recent
study employed several systems that mimic in vivo TN BC chemoresistance, such as xenograft models,
three-dimensional cultures, and primary breast cancer organoids, to identify that Lysyl oxidase (LOX)
is a key inducer chemoresistance in TN BC. Indeed, higher LOX was associated with shorter survival
in chemotherapy-treated TN breast cancer patients’ organoids [99].

Beyond residual disease, the field is largely lacking deterministic factors of metastasis after NAC
and their inter-relation with specific profiles of the primary tumor and residual disease. Indeed,
a major concern beyond the detection and prediction of residual disease is the development of distant
metastatic disease, which is responsible for 90% of breast cancer-related deaths [100].

To date, a few research studies have established several candidate diagnostic biomarkers of breast
cancer metastasis; however, no single predictor of metastasis after residual disease has been identified
so far. Therefore, longitudinal studies with homogeneous cohorts controlled for pCR achievement
would be key for identification of the impact of NAC in the development of distant metastasis, and the
specific tumor evolution towards the most deleterious phenotype of this disease. Considering the
current outstanding amount of high throughput generated data related to NAC response, the rational
design of the future clinical trials, and the rapid transformation of the real-time non-invasive monitoring
technologies, we anticipate the transition in the field towards a more patient- and evolution-specific
implementation of NAC for breast cancer.
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Abbreviations

Abbreviation Meaning
ABCG2 ATP-binding cassette transporter G2
ACACB Acetyl-CoA carboxylase beta
Akt Protein kinase B
ALDH1A1 Aldehyde dehydrogenase 1 family member A1
AR Androgen receptor
AREG Amphiregulin
ATM Ataxia telangiectasia mutated
ATP Adenosine triphosphate
AUC Area under the curve
AURKA Aurora kinase A
B-MYB Myb-related protein B
BC Breast cancer
BCL2 B-cell lymphoma 2
BCL9 B-cell CLL/lymphoma 9
BIRC2 Baculoviral IAP repeat containing 2
BIRC3 Baculoviral IAP repeat containing 3
BL1 Basal-like 1
BL2 Basal-like 2
BLIA Basal-like immune activated subtype
BLIS Basal-like immunosuppressed subtype
BRCA1 Breast cancer gene 1
BRCA2 Breast cancer gene 2
CCL5 Chr. chemokine ligand 5
CCND1 Cyclin D1
CCND2 Cyclin D2
CCND3 Cyclin D3
CD20 Cluster of differentiation 20
CD3 Cluster of differentiation 3
CD37 Cluster of differentiation 37
CD3D Cluster of differentiation 3 delta subunit
CD4 Cluster of differentiation 4
CD44 Cluster of differentiation 44
CDK4 Cyclin-dependent kinase 4
CDK6 Cyclin-dependent kinase 6
CDKN2A Cyclin-dependent kinase inhibitor 2A
CEP cTerminally encoded peptide
CMF Cyclophosphamide/Methotrexate/Fluorouracil
CNAs Copy number alterations
cT-stage Clinical tumor stage
CXCL9 Chemokine (C-X-C motif) ligand 9
CXCR3 C-X-C motif chemokine receptor 3
DCN DECORIN
DDIT4 DNA-damage-inducible transcript 4
DFS Disease-free survival
DLDA-30 30 probe diagonal linear discriminant analysis
DRFI Distant recurrence-free interval
DRFS Distant relapse-free survival
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DSBs Double strand breaks
DUSP4 Dual specificity phosphatase 4
EFS Event-free survival
EGFR Epidermal growth factor receptor
EMT Epithelial-to-mesenchymal transition
ER Estrogen receptor
ERBB2 Erb-B2 Receptor Tyrosine Kinase 2
ERK Extracellular signal-regulated kinase
ESR1 Estrogen receptor alpha
ESR2 Estrogen receptor 2
FLT3 Fms-related receptor tyrosine kinase 3
FOXO3a Forkhead box O3
GATA3 GATA binding protein 3
GBX2 Gastrulation brain homeobox 2
GFR Growth factor receptor
GGI Genomic grade index
HER2 Human epidermal growth factor receptor type 2
HOPX HOP homeobox
HR Hormone receptor
ICI Immune checkpoint inhibition
IGF1R Insulin-like growth factor 1 receptor
IHC Immunohistochemistry
IM Immunomodulatory
IntClust Integrative cluster
IT-TIL Intratumor-tumor infiltrating lymphocytes
JAK2 Janus kinase 2
Ki67 Antigen Ki67
KRAS Kirsten rat sarcoma viral oncogene homolog
KRT16 Keratin 16
LABC Locally advanced breast cancer
LAR Luminal androgen receptor
LDHB Lactate dehydrogenase B
LOX Lysyl oxidase
M Mesenchymal
MAPK Mitogen-activated protein kinase
MCL1 Myeloid cell leukemia 1
MEK Mitogen-activated protein kinase kinase
MES Mesenchymal subtype
MKi67 Marker of proliferation Ki-67
MMP28 Matrix metallopeptidase 28
MSL Mesenchymal stem-like
mTOR Mechanistic target of rapamycin kinase
MUC1 Mucin 1, cell surface associated

MYC
Master regulator of cell cycle entry and proliferative
metabolism

NAC Neoadjuvant chemotherapy
OR Odds ratio
OS Overall survival
PAM50 Prediction analysis of microarray 50 subtypes
PARP Poly ADP-ribose polymerase
PARPi PARP inhibitor
PAWR Pro-apoptotic WT1 regulator
pCR Pathological complete response
PD-1 Programmed D-1
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PD-L1 Programmed D ligase-1
PDGF Platelet-derived growth factor
PI Prognostic index
PI3K Phosphatidylinositol 3-kinase
PI3KCA Phosphatidylinositol 3-kinase catalytic subunit alpha
PLAU Plasminogen activator, urokinase
POLR1C RNA polymerase I And III Subunit C
PR Progesterone receptor
PTEN Phosphatase and tensin homolog
QCCs Quiescent cancer cells
RB1 Retinoblastoma protein 1
RCB Residual cancer burden
RD Residual disease
RFS Relapse-free survival
RhoA Ras homolog family member A
RPCB Residual proliferative cancer burden
SMAD4 SMAD family member 4
SNAI1 Snail family transcriptional repressor 1
SNAI2 Snail family transcriptional repressor 2
SOX9 SRY-box transcription factor 9
SPAG5 Sperm-associated antigen 5
SPARC Secreted protein acidic and cysteine-rich
SSBs Single strand breaks
STAT Signal transducer and activator of transcription
STAT1 Signal transducer and activator of transcription 1
STAT3 Signal transducer and activator of transcription 3
Str-TIL Stromal-tumor infiltrating lymphocytes
TCGA The Cancer Genome Atlas
TGFa Transforming growth factor alpha
TGFb Transforming growth factor beta
TILs Tumor infiltrating lymphocytes
TN Triple negative
TOP2A Topoisomerase IIA
TP53 Tumor protein 53
TRAR Trastuzumab risk model signature
TWIST Twist basic helix-loop-helix transcription factor
VTCN1 V-set domain containing T cell activation inhibitor 1
WNT11 Wnt family member 11
WNT5A Wnt family member 5A
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