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ABSTRACT

Enhanced accuracy and high-throughput capability in capturing genetic activities lead ChlIP-
sequencing technology to be applied prevalently in diverse study for tackling DNA-protein
interaction problems. Till now, such questions as deciding suitable ChIP-seq arguments and
comparing sample quality still haunt biologists. We propose the methods for answering such
questions as deciding optimal argument pairs in global alignment of ChIP sequencing data; then we
employ a modern signal processing approach to extract inherent genomic features from the global
alignments of transcriptional binding activities; together with pairwise comparison from intra- and
inter-sample perspectives; thus we can further determine alignment quality and decide the optimal
candidate for multi-source heterogeneous high-throughput sequences. The work provides a
practical approach to quantitatively compare the alignment quality for heterogeneous sequencing
data, especially in determining the efficiency of transcriptional binding from replicate samples, thus
it helps to exploit the potentiality of ChIP-seq for deep comprehension of inherent biological
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meanings from the high-throughput genomic sequences.

Introduction

Next generation sequencing (NGS) combined with
ChIP technology provides a genome-wide study
perspective for current biomedical research and clini-
cal diagnosis applications.'

Data quality and inherent characteristics of those
NGS sequencing profiles are directly related to the
reliability and authenticity of the analysis results. For
example, ChIP-seq data characterize alteration evi-
dence for transcription factor (TF) binding activities
in response to chemical or environmental stimuli, but
if the ChIP-seq data quality is below normal standard,
any follow-up analysis may lead to inaccurate TF
binding results, for example, inevitable loss of biologi-
cal meaningful sites.*

And secondly, mostly investigated items in ChIP-
seq peak-calling procedures are peak number, False
Discovery Rate (FDR) and corresponding bin size
selected in each analysis. Without exception such

arguments form impenetrable barriers for biologists
and bioinformaticians to select suitable pair conditions
for analyzing experimental results. And to our knowl-
edge, few literatures focus on such topics. Thus herein
we propose a flexible data feature detection algorithm
for solving such an argument-optimization problem in
peak-calling.

In breast cancer cell content, a specific estrogen
receptor o (ERw) is recognized as mediating genetic
regulation through diverse nuclear signaling pathways
and protein kinase cascades. Within those biological
pathways, ER binds to corresponding estrogen
response elements (ERE) at target genes’ regulatory
areas, and combines other components to control
downstream transcriptional processes.

Thus, elucidating innate regulatory mechanisms of
those specific ERs facilitates comprehensive under-
standing of ER-specific regulation in most breast can-
cer pathways and networks under investigation.
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Within analysis of the ERoe ChIP-seq data, we seek to
detect underlying genetic transcription factors from the
corresponding genome sequence, and also employ a fre-
quency-based signal processing method for extracting
inherent features from the ChIP-sequencing data
sources.

Results
Biological background and data source description

For our experiments of ChIP-seq data generation, the
tissue samples were collected from patients diagnosed
with breast cancer. Then the corresponding ChIP-seq
data were generated with Illumina NGS platform. We
collected MCF-7 ChIP-seq data with and without
estrogen (E2) treatment with replicate measurements,
respectively.

The NGS sequencing platform provides short read
length sequences of ~36 base pairs capable of captur-
ing ChIP-derived fragments. Then sequences are
mapped back to a corresponding reference genome,
where those frequently sequenced fragments will form
peaks at specific regions.

Through global computational analysis of those
identified peaks, it facilitates our further understand-
ing of underlying genetic regulatory activities.

Analysis methods and measures for ChlP-seq data

Normally for examining data quality, one needs to
analyze peak numbers under specific argument con-
straints. And we attempt to acquire optimal peak
numbers by constraining specific arguments, which
might be formalized as a class of optimal track analy-
sis, illustrated as follows,

argmaxP;oi € N
i (1)
st.ifi<x, bi =B, pi<3$

where P; denotes a set of optimal peak numbers under
corresponding argument constraints, f; stands for
argument FDR, b; for bin size and p; for p-value
threshold, x, B and § represent the presupposed argu-
ment values, respectively.

Herein we define a track rate function (TR) to charac-
terize underlying data features from diverse argument
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pair sets (peak number and FDR), depicted as follows,

ATS; 25 S0)
= =N ,IEN
STS: — SN S(k)

TR, = (2)
where ATS represents actual track scoring function,
STS represents the shortest track scoring function, and
S(-) denotes corresponding score value for each track
step, respectively.

Through the above optimal track estimation, we
extract underlying genomic features in those ChIP-seq
data, as shown in the below section. Moreover, we
detect transcription factors binding sites; then through
a frequency power spectrum method we attempt to
acquire related genomic characteristics.

For a finite random variable sequence, its power
spectrum is normally estimated from its autocorrela-
tion sequence by use of discrete-time Fourier trans-
form (DTFT), denoted as,®®

1 ;
P@)=7— 3 Culme ™ (3)

where C,, denotes autocorrelation sequence of a
discrete signal x,,, defined as,

E[(X; — 1) (X; — )]
O',‘O'j

Cxx(i7j) = (4)

where 1 and o stand for mean and variance, respec-
tively. In our study, for consideration of the investi-
gated data characteristics, we use 128 sampling points
to calculate discrete Fourier transform, with the
related sampling frequency 1 KHz.

For two ChIP-seq samples, C; and C,, to compare
their alignment feature or data quality, supposing
each sample has L homogeneous subfeatures quanti-
fied as CFy; and CF; (i, j < L), respectively; we define
a new pairwise sample ratio (SR) function as below,

CFy; ..
L LeN 5
Csz/ (i,j,L € N) (5)

L
SR(C1,Co) =)

ij=l

where the higher the SR rate is, the more peaks ChIP-
seq sample C, has, and vice versa; the ideal condition
is that both C; and C, contains equal peak count with
respect to each bin size, then the SR rate equals 1.
Thus we can quantitatively compare the underlying
genomic subfeatures using multi-scale SR function.
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Each subfeature CF represents the local genomic prop-
erty, and the SR function can characterize the global
feature distribution with respect to diverse bin size or
other argument of interest.

Analysis and results
Optimal track analysis with arguments’ constraints

For the ChIP-seq dataset, we detect several optimal
argument pairs for peak number and FDR with the
corresponding argument constraints of bin size and p-
value threshold.”'*> Normally, we seek to acquire the
highest peak numbers under specific argument con-
straints following an optimal track set. The algorith-
mic pseudo-code for detecting an optimal track set is
illustrated in Table 1.

With the algorithmic analysis on ERe ChIP-seq
data at the time point 4 hours, thus we get the optimal
tracking result in Fig. 1, where black solid dot denotes
a starting track point, arrows for intermediate points,
and black solid square for the track end.

Based on the totally 153 pairs, there are 7 interme-
diate points, one start and one end, respectively, with
incremental step 0.0044. From Fig. 1, the maximum
peak number is 15,597 with its FDR at 21.498%; and
contrarily, the minimum peak number is 508 with its
corresponding FDR to 0%.

Figure 1 also indicates that under condition of cur-
rent arguments, the most suitable peak number exists
when bin size is selected as 100, no matter which FDR
constraint is chosen in the follow-up peak-calling
procedures.

According to the predefined track rate in Eq. 2,
MCEF-7 ChIP-seq data’s track rate values are 0.6117
for peak number and 0.39 for FDR, with its interval
number N = (r, — 7,,)/§ = 50. Figure 2 illustrates the

Table 1. Algorithmic pseudo-code for detecting an optimal track
set from ChIP-seq data.

Input:

7. maximum FDR value;

7,: minimum FDR value;

8: incremental step;

Output:

optimal track set: P.

Begin:

index <,

while index < 7, do

1. search a maximum peak number candidate,
s.t. index and other arguments;
2.index < index + §;

3. return index's information to P.
End

track rate distribution with respect to an interval num-
ber. As depicted, when interval number exceeds 40,
both track rates will eventually stabilize to equilib-
rium, respectively. The equilibrium denotes the esti-
mated optimal status for the peak number and FDR.

Furthermore, for further analyzing NGS sequences,
we seek to detect underlying sequence-based tran-
scription factors, which actually facilitate understand-
ing diverse biological regulatory mechanisms.

Frequency-based genomic feature extraction
from ChiP-seq

The basic idea for identifying transcription factor
binding sites from genome-wide NGS sequences by
use of the position weight matrix concept has been
presented in the references."*'” Using the position
weight matrix, we have identified 487 transcription
factor binding sites from MCF-7 ChIP-seq data at the
time point 4 hours. Although all of those candidates
need further experimental validation, from the
computational perspective we can detect their corre-
sponding frequency spectrum of peak number and
identify the inherent genomic features.

Here we use the sample rate of 1,000 Hz, chop the
signal into overlapping slice at every 5 ms, window
each slice with the size of 40 ms, then apply a Fourier
Transform to determine the frequency components at
each slice. For standardized comparison, we shrink
the frequency within the magnitude (0, 500] Hz, and
normalize the spectrum within [—40, —3] dB for all
the genomic data spectrums.

Figure 3 illustrates the corresponding spectrum dis-
tributions for the identified peak number candidates
for the original and randomized cases, respectively.
We can easily find that in the original power spectrum
distribution there exists regular frequency spectrum
regions at 100, 200, 300 and 400 Hz (left panel), i.e.
the spectrum has periodic signs of wave-like fluctua-
tions; while for the randomized spectrum on the right
panel, we cannot find such regular frequency area.
These features are also indicative of the corresponding
occurrence of transcription factors candidates in bind-
ing activities.

Together we analyze the relationship between those
TF candidates’ calculated average scores and corre-
sponding frequency of their occurrence, as shown in
Fig. 4. We find that the calculated average scores for
those TF candidates mostly remain around 0.965. And
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Figure 1. (Case: GSE35109): the distributions of peak number (upper panel) and corresponding False Discovery Rate (FDR, in percentage,
lower panel) subject to 2 argument constraints, namely bin size (vertical axis) and p-value threshold (horizontal axis) for both panels.

the most part of TF’s frequency of occurrence is lower
than 0.01. Thus it provides clues for further study and
validation for those candidates by use of other statisti-
cal and computational methods, for example, integra-

with  additional profiling, PCR
histone other

tive analysis

information, modification, and

epigenetic level information.

Validation of the proposed method with public
ChIP-seq data

To validate the proposed method with the other public
data, in the following we refer to the other public
ChIP-seq data sets by Welboren et al.'® and Hurtado
et al.,'”'® respectively.

Welboren et al. used non-sequential ChIP-seq data
to map ERa-binding sites and profiled changes in

—@— T.R. for peak number|
=== T R. for FOR

0 10 20 30 40 50
Interval number: N

Figure 2. The track rate (T.R.) distribution plot for peak number
(dark blue) and FDR (green) with respect to interval number N.
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Figure 3. (Case: GSE35109): The peak number spectrum distribution based on their statistical occurrences. The sampling frequency is
1 KHz in Fourier analysis for both cases. Within the original spectrum distribution (left panel) there exists regular frequency spectrum
regions along the 500 Hz range; while for the randomized case, there does not exist such regular sign.

RNA polymerase II (RNAPII) occupancy in MCEF-7
cells in response to estradiol (E2), tamoxifen or
fulvestrant.

We interrogate the ChIP-seq data by E2 treatment,
and the supplemental Fig. S1.1 (A) illustrates the sta-
tistical distribution of peak number and correspond-
ing FDR from totally 153 pairs. Through the global
comparison, we can easily determine the optimal peak
number and statistically meaningful FDR. And inter-
estingly, we find there also exists the regular frequency
spectrum pattern after normalization; but there is no
regular sign for the randomized case on the right panel
(supplemental Fig. S1.1 (B)).

Similarly, after a systematic investigation on the
recent work by Hurtado, et al.,'”'® we identify 153 pairs
of peak number and corresponding FDR subject to
diverse argument constrains (bin size and p-value
threshold). The supplemental Fig. S1.2 (A) depicts the
global statistical distribution of the detected 153 pairs.
Furthermore, similar as the above 2 cases, we also find
the regular spectrum pattern along the frequency axis of
500 Hz range on the left subplot, but not in the random-
ized case on the right panel (supplemental Fig. S1.2 (B)).

Feature extraction within single and multiple ChIP-
seq samples

We firstly interrogate the feature from single ChIP-seq
sample. Generally we perform the association analysis

between signal reads number and peak number with
respect to bin size, together with that between FDR
and peak number.

Figure 5 illustrates the association analysis results.
The left panel shows that peak number is approximately
proportional to the square of signal reads number, espe-
cially for the case of steep slope with bin size = 100. The
result shows that peak number amplification ratio

0.01 0.02 0.03 0.04
Frequency distribution

I

Figure 4. The statistical distribution for the identified transcrip-
tion factor candidates’ average score information. The horizontal
axis denotes frequency range distribution of their occurrence,
with maximum 0.04; and the vertical axis illustrates the TF candi-
dates’ average score distribution, with range between 0 and 1.
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Figure 5. Association analysis on aligned peak, signal reads and FDR within single ChIP-seq sample (Case: GSE35109). Left panel
illustrates the peak number is approximately proportional to the square of signal reads number, with the fitted quadratic equation on
the top left; right panel indicates the association between FDR and peak number with respect to bin size.

decreases when the bin size increases. The fitted qua-
dratic equation is given on the top left.

We find the same regular ratio decreases with the
increase of bin size for the case of FDR and peak num-
ber, see the right panel of Fig. 5. Peak number changes
dramatically with respect to FDR when its bin size is
set at 100; on the contrary is the case with its bin size
at 500. Other analyses between noise level and thresh-
olds are given in the supplemental file.

We further perform the analyses on multiple ChIP-
seq datasets in order to compare the sample differen-
ces and investigate the quality issues among replicates.
We investigate the 3 public ChIP-seq data
ERR022052, SRR015350 and SRR399019, and com-
pare the peak number grouped within each bin size.

Based on Eq. 5, we can further interrogate the
underlying association properties between those
ChIP-seq samples. Figure 6 illustrates the analysis
results between the samples, ERR022052 and
SRR015350, with respect to the 9 conditions of bin
size. We can find that basically peak number in
ERR022052 is comparatively less than that in
SRR015350, with the SR value ranging from 0.8310
(bin size, 500) to 0.8512 (bin size, 400); meanwhile
their correlation coefficient, CC, is comparatively
high, ranging from 0.9766 (bin size, 150) to 0.9986
(bin size, 450 and 500). Such results indicate that the
peak aligned for sample ERR022052 is comparatively

higher than that in sample SRR015350 at each bin
size; and the aligned peak differences for the 2 samples
are from 14.88% to 16.9%, with averaged 15.78%.

Other pairwise analyses between ERR022052,
SRR015350 and SRR399019 are given in the supple-
mental Section 3.

Discussion

Within the work, we have analyzed transcription fac-
tor binding and its relevant regulatory characteristics
through extracting underlying genomic data features.
We utilized high-throughput ChIP-seq profiling tech-
nology to generate the NGS sequences from MCF-7
cell line, and also validated the prosed method with
public ChIP-seq data.

With globally determining an optimal peak number
set under relative argument constraints, we discovered
the inherent genomic features, thus we can quantita-
tively compare and determine their qualities from
diverse data sources, which guarantees the statistical
confidence level of further analysis for genomic
sequences, especially in the downstream interrogation
of biologically meaningful results.

Through exhaustion searching for all possible peak
number candidates subject to argument pairs, our
method proposes an applicable approach for facilitat-
ing global investigation of underlying biological
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Figure 6. The association analysis between the ChIP-seq samples, ERR022052 (E-MTAB-223) and SRR015350 (GSE14664), with respect to
bin size, with the corresponding Pearson correlation coefficient (CC) and comparative sample rate (SR) are given on the top left.

mechanisms and providing clues for experimental
validation.

Furthermore, we extracted genomic signal features
by use of a spectrum-based method. We identified sta-
tistical characteristics from aligned peak number can-
didates by use of the frequency distribution of
genome-wide occurrence, and we found that there
existed regular regions of high frequency spectrum,
which is indicative of the existence of high occurrence
of specific transcription factors candidates, but not in
the randomized study cases.

We further proposed a statistical measure in quan-
titative comparison of peak-related differences within
a single sample or among multiple samples, e.g.
aligned peak count, signal reads and FDR, etc., thus it
provides a practical approach for biologists in their
NGS experiment and analysis.

Lastly we validated such conclusions with 2 recent
public ChIP-seq data sets, and the analysis results are

basically in accordance with the results from our own
data.

Besides flexibility and enhanced accuracy in high-
throughput genomic sequencing, NGS technology
demands comprehensive analysis of genomic features
from the generated sequences to exploit its potentiali-
ties. Thus, as to future directions, we will further com-
bine those findings with other information through
integrative analysis of the underlying transcription reg-
ulatory characteristics, thus it will put forward biologi-
cal meaningful and clinically applicable conclusions.

Availability

The ChIP-seq data interrogated in this work are
deposited at NCBI GEO with the accession: GSE35109
and GSE14664; and EMBL-EBI with accession:
E-MTAB-223.
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