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Abstract: Combining the improved C0 plate element using high-order zigzag theories and the beam
element degenerated from the plate element, a type of analysis model for the sandwich lattice
composite panel was developed. Compared with the actual test results including the mid-span
deflections and the surface sheet normal stresses, the outstanding of that method was presented
through numeric calculation. The results showed that the model has great potential to become an
excellent and highly efficient analysis and design tool for sandwich lattice composite panel to avoid
the conventional three-dimension hybrid element model, which usually may lead to the complex
program establishment, and the coupling degrees of freedom among the different types of elements.

Keywords: sandwich panel; lattice composite panel; zigzag theory; finite element; stress continuity

1. Introduction

Composite materials and structures based on fiber-reinforced polymer (FRP) are
widely used in many areas, such as aerospace, transportation, and building due to their
excellent performance qualities of high strength, lightweight, anti-corrosion, easy design,
and multi-forms.

One of the abovementioned is the laminated sandwich plate (LSP), which is composed
of lamina face sheets stacked with each other and thick core materials, shows superior
mechanical properties, and is applied in engineering practices [1–4]. Face sheets are
mainly made of fiber materials such as glass fiber-reinforced polymer (GFRP), carbon
fiber-reinforced polymer (CFRP), and core materials that include polyvinyl chloride (PVC)
foam, polyurethane (PU) foam, balsa wood, and bamboo. Plenty of investigations have
been conducted on the mechanical properties of LSP such as flexure, pressure, fatigue,
delamination, etc. [5–11]. The research showed that the delamination usually occurred
at the bonding interface between face sheets and core materials due to poor constraint of
the foam core. Weiqing Liu, Hai Fang, et al. [12–15] presented a kind of sandwich-latticed
composite panel (SLCP) manufactured by vacuum-infusing resin process, as shown in
Figure 1. The lattice webs were added into the foam core to improve the peel resistance
between face sheet and core surface. However, the crisscross reinforced webs destroyed
the continuity of core and led to a complicated analysis model which cannot be modeled
as LSP simply. Therefore, this paper presented a type of analysis model to calculate SLCP
accurately and efficiently.

LSP can be calculated by several methods, including: (i) Equivalent modulus analy-
sis [16] based on the classical laminate theory, which is hard for the complicated SLCP due
to existing webs, which neglect many details of cores and webs and omit the transverse
shear stress. (ii) Three-dimension finite element method (FEM), which is usually considered
to be omnipotent for complex model construction. However, several issues may block
its convenient application, including huge programming workload, calculation efficiency,
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degree-of-freedom (DOF) coupling among the different types of elements, and inflexible
element displacement mode even if general commercial finite-element software is used.
(iii) Plate theory is another potential choice for the SLCP analysis, which simplifies the
LSP calculation. Various models have been proposed rested on the single-layer theory,
layer-wise theory, and zigzag theory respectively.
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Figure 1. Sandwich lattice composite panel reinforced with crisscross webs.

Kirchhoff’s classic laminate plate theory (CLT) [17] was the first comprehensive theory
developed for plates but it did not take the transverse shear strains into consideration. The
single-layer theory is also known as first-order shear deformation theory (FSDT) and the
disadvantage is lack of a shear correction factor to predict the actual parabolic variation of
shear stress and shear locking phenomenon for thin plates, which is still being investigated
now [18,19]. To overcome the shortcomings of FSDT, higher order shear deformation
theory (HSDT) [20,21] was proposed by Reddy, which is accurate and accounts for the
transverse shear deformation and the transverse shear traction-free conditions on the top
and the bottom surfaces of the plate without shear correction factor. However, the C1
continuity issue along the interelement boundary promotes the theory development to
some degree. The layer-wise theories were presented to surmount that issue. Discrete layer
theories were concerned and proposed by A.Toledano, H.Murakami [22], and Reddy [23],
which take unknown displacement components through all the layer interfaces. This
plate theory possesses good performance, but the numbers of unknowns increase rapidly
with the increase of layers that, in fact, lead to huge unaccepted calculations. So, zigzag
theories (ZZT, known as refined plate theories) were developed by H. Murakami [24], S.P.
Lee, et al. [25] for solving the aforementioned question though the unknowns at different
interfaces linking to those at the reference plan unknowns. Improved versions about these
theories have been suggested continuously. However, the zigzag theory still faced the
C1 continuity issue of the transverse displacement at the nodes by FEM. Combining the
benefits of the discrete layer wise and higher order zigzag theories (HOZT), sub-laminate
models and penalty stiffness multiplier were propounded to overcome C1 continuity
successively for LSP [26–30].

In fact, the improved C0 FE model could receive accurate results efficiently [31–34].
Chalak et al. [35–39] proposed an improved C0 finite element model for LSP analysis
with a soft, compressible core using HOZT. In this model, the in-plane displacement
fields as a combination of a linear zigzag function with different slopes at each layer and
cubically varying function over the entire thickness are assumed. The out-of-transverse
displacement within the core and the surface of face sheets is presumed to be quadratic and
constant. This model satisfies the transverse shear stress continuity conditions at the layer
interfaces and the conditions of zero transverse shear stress at the top and bottom of the
plate, and has made significant contributions: (i) overcoming the C1 continuity problem
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associated with HOZT to implement a C0 formulation, (ii) possessing great effects on the
core compressibility in the formulation, and (iii) eliminating the requirement of using a
penalty multiplier in the stiffness matrix formation. The model can also be applied for the
ordinary and medium-thick LSP.

In this paper, the improved C0 plate finite element with soft compressible core made
use of high-order zigzag theories and the beam element, which is the degeneration form of
the above plate element (IC0FEM-HOZT). This finite element was combined to calculate
the sandwich lattice composite panel under the out-of-transverse quasi-static loading.
Therefore, a type of high efficient analysis method was developed rather than the ordinary
three-dimension FEM composed of conventional shell or plate, beam, and solid elements.
Nine-nodes-isoparametric-quadratic plate element was used for the face sheets and core.
Three-nodes-isoparametric-quadratic beam element, regarded as a type of plate model
degeneration, was adopted for the lattice webs cutting apart the core. The spatial occupied
core areas by the web volumes can be subtracted by the same virtualized volume web with
the core material, or even omitted since the web is very thin and the elastic modulus is far
higher than that of the core material. The outstanding performance of that method was
presented through numeric calculation compared with the actual test results, including the
mid-span deflections and the surface feet normal stresses.

2. Mathematic Model
2.1. Model Displacements

The in-plane displacement fields [28] for the plate, shown in Figure 2, were chosen
as follows:

U = u0 + zθx +
nu−1

∑
i=1

(z− zu
i )H(z− zu

i )α
i
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nl−1
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(
z− zl

j

)
H
(
−z + zl

j

)
α

j
xl + βxz2 + ηxz3 (1)

V = v0 + zθy +
nu−1

∑
i=1

(z− zu
i )H(z− zu

i )α
i
yu +
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z− zl

j

)
H
(
−z + zl

j

)
α

j
yl + βyz2 + ηyz3 (2)

where u0 and v0 are on behalf of the in-plane displacements of any point at the midsurface,
θx and θy are the rotations of normal to the middle plane about the y- and x-axis respectively;
nu and nl are the number of upper and lower layers respectively; βx, βy, ηx, ηy are the higher

unknowns; αi
xu, αi

yu, α
j
xl , α

j
yl are the slopes of i th and j th layer corresponding to upper and

lower layers respectively, and H
(
z− zu

i
)

and H
(
−z + zl

j

)
are the unit step functions.
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The out-of-transverse displacement was assumed to vary quadratically through the
core thickness and be constant over the face sheets, which is expressed as Equation (3) and
shown in Figure 3:

W = l1wu + l2w0 + l3wl , or = wu, or = w0 (3)

where wu, w0, and wl are the values of the out-of-transverse displacement at the top
layer, middle layer, and bottom layer of the core respectively, and l1, l2, l3, are Lagrangian
interpolation functions in the thickness co-ordinate as defined in [35,36].
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2.2. Model of Constitutive Relations

The constitutive relationship of any kth orthotropic layer for plate or beam having any
fiber orientation with the respect to structural axes system (x-y-z or x-z) is depicted as

{σ} = [Q]k{ε} (4)

where {σ} and {ε} are the stress vector and the strain vector. [Q]k is the transformed
rigidity matrix of kth layer that can be evaluated with the material properties (E, elastic
modulus; v, poisson ratio; G, shear modulus) and fiber orientation of kth layer on mechanics
of composite structure.

The detailed Equation (4) for plate is:

σx
σy
σz
τxy
τxz
τyz


=



Q11 Q12 Q13 Q14 0 0
Q21 Q22 Q23 Q24 0 0
Q31 Q32 Q33 Q34 0 0
Q41 Q42 Q43 Q44 0 0

0 0 0 0 Q55 Q56
0 0 0 0 Q65 Q66


k



εx
εy
εz

γxy
γxz
γyz


The detailed Equation (4) for beam is:

σx
σz
τxz

 =

 Q11 Q13 0
Q31 Q33 0

0 0 Q55


k


εx
εz

γxz


On the conditions of zero transverse shear stress at the top and bottom surfaces of

the plate or beam, and the transverse shear stress continuity at the interfaces between the
layers with the condition, u = uu and v = vu at the top, and u = ul and v = vl at the
bottom of the plate, βx, ηx, βy, ηy, αi

xu, αi
xl , αi

yu, αi
yl , ∂wu/∂x, ∂wl/∂x, ∂wu/∂y, and ∂wl/∂y

can be expressed by the displacements u0, v0, θx, θy, uu, ul , vu, and vl as

{B} = [A]{α} (5)
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where for plate as

{B}plate =
{

βx ηx βy ηyα1
xuα2

xu · · · αnu−1
xu α1

xlα
2
xl · · · α

nl−1
xl α1

yuα2
yu · · · αnu−1

yu α1
ylα

2
yl · · · α

nl−1
yl (∂wu/∂x)(∂wu/∂y)(∂wl/∂x)(∂wl/∂y)

}T

{α}plate =
{

u0v0θxθyuuvuulvl
}T

For beam as

{B}beam =
{

βx ηx α1
xuα2

xu · · · αnu−1
xu α1

xlα
2
xl · · · α

nl−1
xl (∂wu/∂x)(∂wl/∂x)

}T
,

{α}beam =
{

u0θxuuul
}T

And elements of [A] are dependent on material properties. The last derivatives
entries of the vector {B} help overcome the problem of C1 continuity as mentioned before,
including last four items of the plate and last two items of the beam.

According to the above equations, the in-plane displacement fields for plate as given
in Equations (1) and (2) may be expressed as

For plate

U = b1u0 + b2v0 + b3θx + b4θy + b5uu + b6vu + b7ul + b8vl (6)

V = c1u0 + c2v0 + c3θx + c4θy + c5uu + c6vu + c7ul + c8vl (7)

For beam
U = b1u0 + b3θx + b5uu + b7ul (8)

where the coefficients bi and ci are functions of thickness coordinates, unit step functions,
and material properties as defined in [35,36]. Equations (6)–(8) do not contain any first-
order derivative terms of out-of-transverse displacements and avoid the requirements of
C1 continuity efficiently without new field variables [28] and penalty method [40,41].

The generalized displacement vector {δ} for the plate and beam model can be pre-
sented as

For plate {δ}plate =
{

u0v0w0θxθyuuvuwuulvlwl
}

For beam {δ}beam = {u0w0θxuuwuulwl}
With the linear constitutive relation and Equations (1)–(5), the strain field can be

expressed by unknowns from the structural deformations as
For plate

{
δ
}

plate =

{
∂U
∂x

∂V
∂y

∂W
∂z

(
∂U
∂x

+
∂V
∂y

)(
∂U
∂z

+
∂W
∂x

)(
∂V
∂z

+
∂W
∂x

)}T
(9)

where Equation (9) can be simplified as
{

δ
}

plate = [H]plate{δ},
For beam {

δ
}

beam =

{
∂U
∂x

∂W
∂z

(
∂U
∂z

+
∂W
∂x

)}T
(10)

where Equation (10) can be simplified as
{

δ
}

beam = [H]beam{δ},
Where for plate

{ε}plate =
{

u0v0w0θxθyuuvuwuulvlwl(∂u0/∂x)(∂u0/∂y)(∂v0/∂x)(∂v0/∂y)(∂w0/∂x)(∂w0/∂y)
(∂θx/∂x)(∂θx/∂y)

(
∂θy/∂x

)(
∂θy/∂y

)
(∂uu/∂x)(∂uu/∂y)(∂vu/∂x)(∂vu/∂y)

(∂wu/∂x)(∂wu/∂y)(∂ul/∂x)(∂ul/∂y)(∂vl/∂x)(∂vl/∂y)(∂wl/∂x)(∂wl/∂y)}T

For beam

{ε}beam = {u0w0θxuuwuulwl(∂u0/∂x)(∂w0/∂x)(∂θx/∂x)(∂uu/∂x)(∂wu/∂x)(∂ul/∂x)(∂wl/∂x)}T

And the elements of [H]plate and [H]beam are functions of z and unit-step functions, as
given in [35,36]
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The potential energy of the system can be expressed as

Πe = Us −West (11)

where Us is the strain energy and West is the work due to the elemental out-of-transverse
static load.

Equations (4), (9), and (10), Us can be presented by

Us =
1
2

n

∑
k=1

y
{ε}T [Q]k{ε}dxdydz =

1
2

x
{ε}T [D]plate{ε}dxdy+

1
2

∫
{ε}T [D]beam{ε}dx (12)

where for plate

[D]plate =
n

∑
k=1

∫
[H]

T

plate
[Q]plate,k[H]platedz (13)

For beam

[D]beam =
n

∑
k=1

∫
[H]

T

beam
[Q]beam,k[H]beamdz (14)

The work due to the elemental transverse static load P can be calculated by

West =
x

Pwdxdy (15)

To solve this problem, a nine-node quadratic element with 11 field variables (u0, v0, w0,
θx, θy, uu, vu, wu, ul , vl , wl) per node was employed for the plate. A three-node quadratic
element with seven field variables (u0, w0, θx, uu, wu, ul , wl) per node was employed for
the beam, which coordinates the plate element conveniently. The generalized displacement
vector at any point for any plate or beam can be expressed as

{δ}plate,or,beam =
n

∑
i=1

Ni{δ}i (16)

where {δ}plate =
{

u0, v0, w0, θx, θy, uu, vu, wu, ul , vl , wl
}T for plate, and {δ}beam = {u0, w0,

θx, uu, wu, ul , wl}T for beam. {δ}i is the displacement vector corresponding to node i of
plate or beam element; Ni is the shape function associated with node i and n is the number
of nodes per element, that is, nine for the plate or three for the beam.

With the help of Equation (16), the strain vector {ε} for the plate or beam can be
expressed in terms of the generalized displacement vector {δ}plate or {δ}beam as

{ε}plate = [B]plate{δ}plate (17)

{ε}beam = [B]beam{δ}beam (18)

where [B]plate or [B]beam are the strain-displacement matrices in the Cartesian coordinate
system.

The elemental potential energy as given in Equation (11) can be rewritten as

∏e = 1
2

s
{δ}T

plate[B]
T
plate[D]plate[B]plate{δ}platedxdy+ 1

2

∫
{δ}T

beam[B]
T
beam[D]beam[B]beam{δ}beamdx− 1

2

s
{δ}T

plate[B]
T [Nw]T Pdxdy

= 1
2 {δ}

T
plate[Ke]{δ}plate − 1

2 {δ}
T
plate{Pe}

(19)

where
[Ke] =

x
[B]Tplate[D]plate[B]platedxdy +

∫
[B]Tbeam[D]beam[B]beamdx (20)

{Pe} =
x

[Nw]T Pdxdy (21)

where [Nw]T is the shape function like matrix with non-zero terms associated only with
the corresponding out-of-transverse nodal displacements. Though the beam element node
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lacks partial field variables, the existing ones are all included in the plate-element-node
field variables and are easy to extend to the plate’s.

In accordance with Principle of Minimum Potential Energy, minimizing ∏e as given
in Equation (19) with respect to {δ}plate, the equilibrium equation is

[Ke]{δ}plate = {Pe} (22)

where [Ke] is the element stiffness matrix, and {Pe} is the nodal load vector.
The global stiffness matrix was formed by taking the contribution of all the plate

elements and beam elements. The formation of the global load vector for the whole SLCP
was just formed in consideration of the plate elements that contain the all-beam nodes.
Then, the global linear simultaneous equations were formed and solved for the SLCP
incorporating appropriate boundary conditions. In order to improve the displacements-
calculation efficiency by the FE model, the sparse-matrix technique was utilized to store the
global stiffness matrix. The stresses were calculated with the constitutive relationship by
using the condition of stress continuity as in Equation (5). Meanwhile, this model, combined
with the improved C0 Zigzag plate model and its degeneration beam model, naturally
circumvented the DOF coupling, made the beam and plate deformation compatible, and
simplified the programming process.

3. Comparison Cases

To verify the effectiveness of the aforementioned improved C0 finite element method
on the ground of HOZT (IC0FEM-HOZT), the corresponding test results were compared
here. Two cases about SLCP flexural experiments in the literature are presented as the
referenced examples in the following sections [14,15].

3.1. Case 1: Two-Way Simply Supported SLCP under the Concentrated Load
3.1.1. Specimen and Experiment Introduction

Five two-way reinforced SLCPs, composed of GFRP face sheets, GFRP webs, and rigid
polyurethane foam cores, by vacuum-assisted resin infusion process, were tested under
the concentrated load, which was loaded by the hydraulic actuator. The face sheet was
formed by 0◦/90◦GFRP clothes, and the web sheet consisted of −45◦/45◦GFRP clothes.
That length and width of all SLCP specimens were 1000 mm, while the effective support
spans were both 910 mm. The side length of the core and the lattice web spacing varied
from 75 mm, 125 mm, and 175 mm. The geometric details of SLCP specimens are described
in Table 1, and the material properties of SLCPs are listed in Table 2. The experimental
scheme is shown in Figure 4, where LVDT for the out-of-transverse deflection was set up
under the bottom of the SLCP, as shown in Figure 5.

Table 1. Details of the specimens.

Specimen
External Dimension/mm Core Dimension/mm Face

Sheet/mm
Web

Sheet/mm
Test Type

Length Width Supported
Span Length Width Height Nominal

Thickness
Nominal

Thickness

SX75-50

1000 1000 910

75 75

50

1.60 1.06

L-D, L-S

SX75-75 75 L-D, L-S

SX75-100 100 L-D

SX125-75 125 125 75 L-D, L-S

SX175-75 175 175 75 L-D

Nomenclature: L-D, load displacement; L-S, load stress.
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Table 2. Material properties.

Items Components Values

Elastic modulus,/MPa

Face sheet 20,950

Web sheet 6410

Polyurethane foam core 7.17

Shear modulus,/MPa

Face sheet 6714

Web sheet 5820

Polyurethane foam core 2.08

Passion ratio

Face sheet 0.15

Web sheet 0.15

Polyurethane foam core 0.3
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3.1.2. Results and Discussion

The out-of-transverse displacements and face-plate normal stresses of the flexural
experiment of SLCPs are discussed here. Figure 6 shows the test load-deflection curves
compared to the top, mid, and bottom surface out-of-plane vertical deflections by FEM.
Figure 7 shows the load-stress curves on the mid bottom surface. Table 3 lists the deflections
and surface normal stresses corresponding to the ultimate bearing capacity.
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Table 3. The mid deflection and normal stress under the ultimate bearing capacity.

Specimen
Ultimate
Bearing

Capacity/kN

Deflection/mm, δ
(Stress/MPa, σ) Error Ratio between Test and FEM/%

|(δFEM − δTest)/δFEM| × 100%
(|(σFEM − σTest)/σFEM| × 100%)

Test FEM

Bottom Top Mid Bottom

SX75-50 53.3 41.0
(153.0)

18.8
(-)

17.3
(-)

16.7
(166.6)

59.2
(8.9)

SX75-75 84.3 27.5
(108.1)

17.2
(-)

14.1
(-)

13.1
(131.5)

52.4
(21.6)

SX75-100 108.1 25.6 16.0 11.4 10.2 60.2

SX125-75 64.6 28.3
(161.7)

20.3
(-)

15.8
(-)

12.8
(130.6)

54.8
(19.2)

SX175-75 49.3 31.2 16.5 14.0 12.2 61.0

In accordance with Table 3, the bottom deflection errors between the test and FEM for
two-way simply supported SLCPs were within 52–61%. The bottom surface normal stress
errors were within 8–22%. However, Figure 6 presents that the test load-deflection curves
were evidently elastoplastic. During the elastic stage, the FEM load-deflection curves
including the top, mid surface, and bottom were very close to the tests’. Figure 7 presents
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that the test load-stress curves were weak nonlinear until the ultimate stage. During the
whole loading history, the FEM bottom stress curves became close to the tests’.

3.2. Case 2: Single-Way Simply Supported SLCPs under Uniformly Concentrated Load
3.2.1. Specimen and Experiment Introduction

Two unidirectional-web and six bidirectional-web reinforced SLCPs, manufactured
by vacuum-assisted resin infusion process as in Case 1, were tested under four-point
load action. The face sheet was formed by 0◦/90◦GFRP clothes, and the web sheet was
composed of −45◦/45◦GFRP clothes. That length of all SLCP specimens were 1000 mm,
while the effective support spans were both 800 mm, and the width was 300 mm. The
side length of the core and the lattice web spacing were 75 mm. The geometric details of
SLCP specimens are described in Table 4, and the material properties of SLCPs are listed
in Table 5. The experimental scheme is shown in Figure 8, where three LVDTs for the
out-of-transverse displacements were set up under the bottom of the SLCP and the top
specimen surface at support; the longitudinal and in-plane transverse normal stress on the
top and bottom surface center at the midspan.

Table 4. Details of specimens.

Specimen

External Dimension/mm Core Dimension/mm Face
Sheet/mm

Web
Sheet/mm Web Layer Number

Test Type
Length Width Supported

Span Length Width Height Nominal
Thickness

Single
Nominal

Thickness
Longitudinal Transverse

DX75G-2-2-75

1000 300 800 75 75

75

3.20 1.60

2 2 L-D, L-S

DX75G-3-3-100 100 3 3 L-D

SX75G-1-1-75 75 1 1 L-D, L-S

SX75G-2-2-75 75 2 2 L-D, L-S

SX75G-3-3-75 75 3 3 L-D

SX75G-1-1-100 100 1 1 L-D

SX75G-2-2-100 100 2 2 L-D

SX75G-3-3-100 100 3 3 L-D, L-S

Nomenclature: NX, reinforced by single-way webs with the longitudinal direction; SX, reinforced by two-way webs with the longitudinal
and transverse direction; G, glass fiber; L-D, load displacement; L-S, load stress.

Table 5. Material properties.

Items Components Values

Elastic modulus, /MPa

Face sheet 20,950

Web sheet 8841

Polyurethane foam core 6.96

Shear modulus, /MPa

Face sheet 6714

Web sheet 6230

Polyurethane foam core 2.34

Passion ratio

Face sheet 0.15

Web sheet 0.15

Polyurethane foam core 0.3

3.2.2. Results and Discussion

To verify the results with the aforementioned IC0FEM-HOZT, the corresponding
test results were compared. The out-of-transverse displacements and bilateral normal
stresses of the top and bottom midspan face sheets by the flexural experiment for the
single-way simply supported SLCPs are discussed here. Figure 9 shows the load-midspan
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out-of-transverse deflection curves. Figure 10 shows the load-bilateral stress curves on
the midspan top and bottom surfaces. Table 6 lists the deflections corresponding to the
ultimate bearing capacity. Table 6 lists the deflection corresponding to the ultimate bearing
capacity of the test. Table 7 lists that the bilateral midspan normal stresses on the top and
bottom surfaces under the ultimate bearing capacity.
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In accordance with Table 6, the bottom deflection errors between the test and FEM for
single-way simply supported SLCPs were within 1–31%. Based on Table 7, the longitudinal
normal stress errors on the top surface were within 11–35%; the transverse errors were
within 2–35% except for SXG-2-2-75, which cannot be estimated by the current error
method; the longitudinal normal stress errors at the bottom surface were within 14–50%;
the transverse errors were within 3–140%. Both the test load-midspan deflection curves
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and load-stress curves took on elastic, generally, according to Figures 9 and 10. During the
whole loading stage, the FEM results including on the top, at the midsurface, and at the
bottom were close to the tests’. However, the sudden change of test data at the ultimate
loading end showed the nonlinear effect evidently, which can lead to large errors on the
relative deflection and normal stress.

Table 6. The mid deflection under the ultimate bearing capacity.

Specimen
Ultimate Bearing

Capacity/kN

Deflection/mm, δ
Error ratio between Test and FEM/%

|(δFEM − δTest)/δFEM| × 100%Test FEM

Bottom Top Mid Bottom

DX75G-2-2-75 34.0 9.4 9.5 9.4 9.2 1.4
DX75G-3-2-100 36.0 6.7 5.5 5.4 5.3 21.4
SX75G-1-1-75 33.0 8.7 11.4 11.4 11.4 31.0
SX75G-2-2-75 35.0 8.5 9.6 9.6 9.6 12.5
SX75G-3-3-75 42.0 9.7 10.4 10.4 10.4 6.8
SX75G-1-1-100 42.0 6.5 8.0 8.0 8.1 24.8
SX75G-2-2-100 44.0 6.3 7.5 7.5 7.5 19.8
SX75G-3-3-100 50.0 8.3 7.5 7.5 7.5 9.7

Table 7. The bilateral midspan normal stress under the ultimate bearing capacity.

Specimen Ultimate Bearing
Capacity/kN

Stress/MPa, σ Error Ratio between Test and FEM/%
|(σFEM − σTest)/σFEM| × 100%

(|(σFEM − σTest)/σFEM| × 100%)Test FEM

Top Bottom Top Bottom Top Bottom

DX75G-2-2-75 34.0
−96.6
(28.6)

110.7
(−22.0)

−85.8
(27.9)

89.0
(−8.5)

11.2 19.6

(2.4) (138.6)

SX75G-1-1-75 33.0
−90.4
(13.2)

154.0
(−9.2)

−59.1
(13.9)

77.9
(−1.3)

34.6 49.4

(5.3) (85.9)

SX75G-2-2-75 35.0
−64.8
(0.0)

77.7
(−8.2)

−82.1
(9.0)

89.0
(−8.5)

26.7 14.5

(–) (3.7)

SX75G-3-3-100 50.0
−65.8
(13.9)

2.2
(48.7)

−87.2
(9.1)

91.9
(−7.0)

32.5 40.8

(34.5) (114.4)

Annotation: the stress data outside the parenthesis are on behalf of the longitudinal, and those inside denote the transverse.

4. Conclusions

In this study, nine-nodes-isoparametric-quadratic plate element and three-nodes-
isoparametric-quadratic beam element were combined to simulate the sandwich lattice
composite panel with the improved C0 finite element method with the soft compressible
core using high-order zigzag theories. The deflections and normal results of SLCPs under
the out-of-plane quasi-static loading with FEM were compared to those by the test.

As a whole, the combination method by the improved C0 finite plate element and the
beam element degenerated from the improved C0 finite plate element, based on high-order
zigzag theories, is a suitable method for the analysis of the sandwich lattice composite
panel. IC0FEM-HOZT can avoid the conventional three-dimension hybrid element model
composed by cube element, shell element, and beam, which usually may lead to a compli-
cated building program, and the coupling degrees of freedom among the different types of
elements. Though some deviation still exists between the calculation results by IC0FEM-
HOZT and those by test due to the multiple causes such as nonlinear, IC0FEM-HOZT has
great potential to become an excellent and highly efficient analysis and design tool for the
sandwich lattice composite panel, if appropriate modifications are adopted according to
the actual work.
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