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� Abstract: Background: Mixed solvents MD (MDmix) simulations have proved to be a useful and in-

creasingly accepted technique with several applications in structure-based drug discovery. One of the 

assumptions behind the methodology is the transferability of free energy values from the simulated 

cosolvent molecules to larger drug-like molecules. However, the binding free energy maps (ΔGbind) 

calculated for the different moieties of the cosolvent molecules (e.g. a hydroxyl map for the ethanol)

are largely influenced by the rest of the solvent molecule and do not reflect the intrinsic affinity of the 

moiety in question. As such, they are hardly transferable to different molecules.

Method: To achieve transferable energies, we present here a method for decomposing the molecular

binding free energy into accurate atomic contributions. 

Result: We demonstrate with two qualitative visual examples how the corrected energy maps better

match known binding hotspots and how they can reveal hidden hotspots with actual drug design po-

tential. 

Conclusion: Atomic decomposition of binding free energies derived from MDmix simulations pro-

vides transferable and quantitative binding free energy maps. 

Keywords: Mixed solvents, MD simulations, structure-based drug discovery, binding free energy, atomic contribution, 
MDmix. 

1. INTRODUCTION

Predicting the binding free energy (ΔGbind) of a drug
candidate (ligand) to its pharmacological target (receptor) is 
the holy grail of structure-based drug design. The ΔGbind of 
two molecules engaged in a non-covalent complex has a 
univocal relationship with the equilibrium constant (KA = 
1/KD = exp(-ΔGbind/RT)), which is the experimental observ-
able. Thus, computational chemistry methods strive to pre-
dict ΔGbind in the hope that one day it will be possible to 
design drugs on the computer. Traditional methods, such as 
MM-PBSA [1] or the scoring functions implemented in
docking software [2], aim to predict ΔGbind from the protein-
ligand interactions. However, such methods cannot properly
take into account the effect of the solvent and the configura-
tional diversity of the bound and unbound states (ensem-
bles). As a result, they often deliver mediocre results. Mo-
lecular dynamics (MD) simulations, combined with the im-
pressive software and hardware developments of the last
decades, have opened the possibility of observing binding
and unbinding events of a protein-ligand system and, thus, a
direct route to the calculation of the binding constant [3].
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When executed properly, this offers the most accurate re-
sults, well within the experimental error [4]. However, this 
is impractical for drug-like ligands because: i) many binding 
and unbinding events must be observed in order to attain 
statistically meaningful binding constants, and ii) potent 
ligands exhibit slow (dissociation) kinetics, resulting in 
binding half-lives longer than the simulation times currently 
amenable [5]. Solutions to this limitation have been pro-
posed [6-8], but calculating ΔGbind for a single molecule of 
interest is a major effort even in the best case. In order to 
exploit this powerful approximation in a practical way, we 
and others proposed the use of MD simulations with mixed 
aqueous/organic solvents (MDmix) [9, 10] due to their small 
size, organic solvents display, fast diffusion, and binding 
rates. Furthermore, they can be simulated at relatively high 
concentrations (1 % to 20 %), which facilitates rapid con-
vergence of the simulations. While the organic solvents per 
se are of no interest, the information they provide can be
very useful. Indeed, experimentally it has been observed 
that organic solvents can be used to detect binding hotspots, 
thus pinpointing the functional sites of proteins [11, 12]. 
MDmix-type methods have become very popular, with an 
expanding number of applications that range from the origi-
nal use in druggability prediction to receptor-based pharma-
cophore discovery, identification of displaceable water mol-
ecules, elucidation of cryptic pockets, or as a scoring func-
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tion for docking (for an extensive review, see reference 
[13]). However, all these applications rely on a crucial as-
sumption: the transferability of the ΔGbind obtained for the 
organic solvents to larger ligands. Group transferability has 
a long tradition in drug design. As a notable example, the 
Free-Wilson analysis relies on this particular assumption to 
derive quantitative structure-activity relationships (QSAR) 
[14]. But the ΔGbind values derived from MDmix simula-
tions reflect the contribution of the entire solvent molecule. 
In order to obtain quantitative values, it is necessary to parti-
tion this magnitude into group contributions that are more 
accurate and transferable. In this article, we outline a rigor-
ous partitioning method of our device [15], which we have 
been using very successfully for the discovery of allosteric 
pharmacological chaperones. First, we will outline the 
method. Then we will provide examples to illustrate its utili-
ty. 

2. METHODS 

 The first step in MDmix is to prepare a system of inter-
est (usually a biological macromolecule) for MD simulation 
in the usual way. Then the system is solvated using a pre-
equilibrated solvent box containing a mixture of water and 
the organic solvent that will be used as a probe (e.g., etha-
nol). Next, a sufficiently long MD trajectory is produced. 
This generally involves multiple independent replicas that 
will be analysed together. In the final step, the space around 
the system is partitioned into volume elements (voxels), and 
the ΔGbind of the solvent at each voxel is calculated from its 
observed density [16]. At the first order, the atomic contri-
bution to ΔGbind of atom i (ΔG

i
bind) is calculated using the 

expression: 

   ΔG
i
bind = -kBT ln(Ni/No)        (1) 

where kB is the Boltzmann constant, T is the temperature at 
which the simulation was run, Ni is the number of times that 
a particular group has fallen in a volume element, and No is 
the expected value if there were no contribution from the 
macromolecule. However, this assumes that each atom 
moves freely, which is clearly not the case for polyatomic 
molecules. 

 The MDmix method uses amphiphilic organic molecules 
to probe the interaction preferences of the biological mac-
romolecule of interest. The use of amphiphilic molecules 
(i.e., those containing a polar head combined with a hydro-
phobic tail) provides two important advantages. On the one 
hand, due to their polar head, they are more soluble than 
purely hydrophobic solvents and can be simulated at higher 
concentrations (thus ensuring faster convergence) without 
the need for artificial potentials that prevent phase separa-
tion [10]. More importantly, the polar groups of organic 
molecules (e.g., a hydroxyl) behave quite differently than a 
purely polar solvent (e.g., water). Thus, the use of am-
phiphilic organic molecules is necessary to reliably identify 
and quantify polar interactions [17]. The downside to this 
choice is that binding to the surface of the macromolecule is 
the result of the interactions formed by each of the groups 
(hydrophobic and hydrophilic), which can be quite distinct. 
Fig. (1) (top) illustrates three ideal cases with the same total 
(molecule-based) ΔGbind, but disparate group contributions. 
In the first case (Fig. 1A), both probe atoms make equally 

favourable contacts with the protein, and ΔGbind is evenly 
distributed amongst them. In the second case (Fig. 1B), only 
one group is making favourable contacts, while the other 
prefers to remain solvated, making no effective contribution 
to the total ΔGbind. The third case (Fig. 1C) represents an 
intermediate situation, where one group makes the most 
important interaction, while the second group explores sev-
eral energetically favourable positions. As shown, the group 
contributions (ΔG

i
bind) calculated using Equation 1 contain 

significant errors, because the observed densities for one 
atom are largely influenced by the interaction preferences of 
the other one (i.e., the assumption that the atoms move in-
dependently is not true). In order to obtain accurate and 
transferable group contributions, it becomes necessary to 
decouple the binding of the polar head from the binding of 
the hydrophobic tail. This can be done based on the relative 
densities of each group: those establishing stronger interac-
tions will exhibit larger densities compared to the others. 
Fig. (1) (bottom) shows that atomic contributions (ΔG

i
bind) 

calculated in this way also have an artefactual dependency 
on the size of the molecule: irrespective of the chemical 
character of the atoms, bigger molecules can attain larger 
total ΔGbind (absolute) values. This translates into larger 
observed densities of individual atoms, even if the atomic 
contributions (i.e., ligand efficiencies) are not better. The 
repartitioning scheme must be able to correct both of these 
situations, providing truly atom-specific contributions. As 
such, they should not surpass the experimentally-observed 
maximal atomic contributions, which rarely reach -1.0 
kcal/mol and have a physical limit at -1.5 kcal/mol [18]. 

 The decoupling procedure devised here is based on a 
comparison of the uncorrected atomic ΔG

i
bind values with 

the expected value considering the ΔGbind of the entire mol-
ecule (ΔG

M
bind). Firstly, we must calculate ΔG

i
bind and 

ΔG
M

bind using Equation 1. In the former case, we use the 
coordinates of the atomic nuclei to calculate densities and in 
the latter, the coordinates of the centre of mass (CoM) of the 
entire molecule. From ΔG

M
bind, we obtain the expected 

atomic contribution: 

   ΔG
i
0 = ΔG

M
bind * �

i
        (2) 

Where �
i
 is the fraction of ΔG

M
bind contributed by atom i in 

the ideal situation where all atoms of the molecule contrib-
ute equally to the binding. For instance, in a molecule 
formed by N identical atoms (e.g., benzene, N=6), each at-
om would have an � value of 1/N. For molecules with non-
identical atoms, several partitioning schemes are possible. 
For simplicity, let us assume that ΔGbind is proportional to 
the solvent accessible surface area (SASA). Then, we can 
define �

i
 as the SASA fraction of atom i in molecule M: 

� � � �
i
 = SASA

i
 /SASA

M
        (3) 

 Note that, for flexible molecules, the SASA values 
should be averaged over all three-dimensional confor-
mations (weighted by population). The corrected contribu-
tion of a particular atom can then be calculated as the uncor-
rected value minus the expected contribution of the rest of 
the molecule: 

  ΔG
i
corr = ΔG

i
bind – (ΔG

M
bind – ΔG

i
0)        (4) 

 Fig. (1) illustrates the impact of this correction in ideal-
ised systems. Since the CoM of the molecule can explore a 
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range of positions when atom i localizes in a particular 
voxel, it is necessary to re-analyse the simulation, identify-
ing the location of the CoM at each snapshot during the tra-
jectory. The reported ΔG

i
corr for a particular voxel is the 

average value across all snapshots in the simulation: 

� � � �ΔG
i
corr� = ∑ ΔG

i
corr / Ni        (5) 

Where the summation runs from 1 to Ni (i.e., the number of 
times that atom i has fallen into that voxel). In the next sec-
tion, we showcase two real case examples to demonstrate 
the power of the correction. 

3. RESULTS 

3.1. Example 1: Hsp90 

 Hsp90 is an oncology target that has become a testbed 
for structure-based drug design [19]. The primary interac-
tion point in the active site of Hsp90, used by almost all 
known ligands, is the side-chain of Asp93, which acts as a 
powerful hydrogen bond acceptor [20]. We ran an MD sim-
ulation of the N-terminal domain of Hsp90 in apo form (ini-
tial structure 2XDK) [21] in a mixture of 20 % v/v isopro-
panol/water mixture (equilibrated solvent box available for 
download at: http://mdmix.sourceforge.net). Then, the con-
tributions to binding free energy were calculated using Eq. 1 

on a cubic grid spanning the entire protein surface (grid 
spacing = 0.5Å in each dimension) for the methyl atoms 
(hydrophobic probe), the hydroxyl atom (polar probe), and 
the central atom (used as a proxy of the CoM). Fig. (2) 
shows the isocontour (surface encompassing voxels with 
equal values) of the hydrophobic probe at ΔGbind = -1.5 
kcal/mol (blue mesh). Note that this value is at the physical 
limit identified by Kuntz and Kollman [18], revealing that it 
is an overestimate caused by the use of a 4-atom molecule, 
as explained above. This visualization technique reveals five 
preferred binding sites (hot spots) for the hydrophobic 
probe. Four of them are in good agreement with the place-
ment of hydrophobic moieties by known ligands. But the 
one closer to Asp93 overlaps with the preferred positions of 
polar atoms and can be attributed to the tight binding be-
tween the polar probe and Asp93 (similar to the situation 
described in Fig. 1B). After correction (red surface isocon-
tour), this presumed binding hot spot disappears, confirming 
that it was largely caused by the interaction preferences of 
the polar head rather than intrinsic interaction preferences of 
the hydrophobic tails. Interestingly, the same correction 
expands the hydrophobic hot spot at the bottom of the im-
age, while the other three sites are not significantly affected 
by the correction. Note that the values depicted in this case 
(ΔGcorr = -0.7 kcal/mol) are in much better agreement with 

 

Fig. (1). Calculation of atomic contributions to ΔGbind on idealised systems. Top: Idealised 3-atom molecule bearing a hydrophobic head 

(atom A; blue; �
A
 = 0.35) and a polar tail (atom B; orange; �

B
 = 0.35). Total ΔG

M
bind (as calculated from the density of the CoM (marked as 

x)) is the same in all cases, but they differ on the relative atomic densities. The tables show the raw (ΔG
i
bind) and corrected (ΔG

i
corr) atomic 

contributions for a particular binding mode of the molecule (dark-shaded background). Bottom: Size dependency of ΔG
i
bind illustrated on an 

idealised site where benzene attains a total ΔG
M

bind = 6 kcal/mol, and all atoms contribute equally. Two molecular probes of the same charac-

ter but different sizes (benzene and ethane) afford very different ΔG
i
bind but identical ΔG

i
corr values. Protein surface is shown in ochre. The 

grid represents space discretization into volume elements (A higher resolution / colour version of this figure is available in the electronic copy of 
the article). 
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the expected atomic contribution for real ligands [18]. Thus, 
we conclude that the correction works as expected, eliminat-
ing artefacts due to the interdependence of the various atoms 
in a solvent molecule used as a probe and removing the size-
dependency of the uncorrected atomic contributions. In con-
sequence, the corrected free energy grids are much better 
suited to guide the rational design of ligands to macromo-
lecular targets, particularly when there is no previous infor-
mation about ligands. 

3.2. Example 2: Allosteric Site of GA1 

 Glutaric acidemia type I (also called glutaric aciduria 

type I, GA1) is a rare but serious inherited disorder in which 

the body is unable to process certain amino acids properly.  

 GA1 patients have inadequate levels of the mitochondri-

al enzyme glutaryl-CoA dehydrogenase (GCDH), which 

helps break down the amino acids lysine, hydroxylysine, 

and tryptophan. Excessive levels of these amino acids and 

their intermediate breakdown products in the blood, urine, 

and tissues can be toxic, causing severe health problems [22, 

23]. The clinical course of GA1 often features an episode of 

acute metabolic encephalopathy, which results in irreversi-

ble striatal injury. A burdensome dietary and pharmacologi-

cal treatment does not prevent devastating neurological 

complications in at least 15 % of the patients [22, 23]. 

GCDH deficiency often occurs due to mutation-induced 

protein misfolding [24]. Therefore, the rescue of the mis-

folded proteins by pharmacological chaperones is a promis-

ing novel therapeutic approach for GA1. 

 The structure of Human Glutaryl-CoA Dehydrogenase in 

complex with the cofactor FAD (PDB code 1SIQ) was used 

as a starting point for the simulation to generate the biologi-

cal (homotetramer) from the single-chain found in the 

asymmetric unit. FAD was kept in the MD simulation be-

cause the interest was to find allosteric ligands that would 

not compete with the substrate or the cofactor. In this case, 

we used ethanol as probe solvent, using a pre-equilibrated 

box of ethanol/water at 20 % (v/v), as described [17]. As 

shown in Fig. (3), a preferred binding site for ethanol was 

found near Thr65, but originally it appeared too small to 

offer significant binding opportunities for a drug-like ligand. 

After subsequent correction of the free energy values with 

the above-described procedure, three additional hydropho-

bic hot spots emerged. They were largely caused by a con-

formational change of the side-chains of Lys313 and 

Asn248, which opened up a large hydrophobic patch. This 

illustrates another advantage of MDmix as a binding-site 

mapper: as the protein is allowed a significant amount of 

conformational flexibility [16], the presence of hydrophobic 

probe solvents facilitates the opening of cryptic pockets [25-

29]. As the polar head of ethanol shows a scarce affinity for 

the emerged hydrophobic patch, in the absence of the cor-

rection, the apparent affinity of the methyl group was un-

derestimated. The centre of four binding hot spots was used 

to define pharmacophoric points (1 hydrogen bond acceptor, 

plus three hydrophobic groups) that were used as restraints 

in a docking-based virtual screening with the rDock pro-

gram [30]. 

 

 

Fig. (2). Contour plots showing the optimal interaction sites of a hydrophobic probe (methyl of isopropanol) in an uncorrected grid (blue 

mesh; ΔG
i
bind = -1.5 kcal/mol) and after correction (red transparent surface; ΔG

i
corr = -0.7 kcal/mol). The ligand (yellow sticks; PDB code 

2XDK) is displayed for reference purposes only. The protein is displayed in the grey cartoon (backbone) and lines (atoms), except for Asp93, 

shown in the sticks (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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CONCLUSION 

 Mixed solvent techniques have become quite popular 
[13, 31]. However, there is no consensus yet on the condi-
tions that should be used, including the type of solvents, 
concentrations, use of solvent-solvent repulsive potentials, 
protein conformational restraints, length of simulations, 
etcetera. Furthermore, the technique is fundamentally used 
in a qualitative way. This may be sufficient to elucidate 
binding sites (the main use reported so far) but falls short for 
more quantitative application. Here we have presented a 
method to decompose the binding free energy (a molecular 
property) into atomic contributions that are more accurate 
and transferable to larger ligands. An alternative approach to 
ensure transferability is to simulate a very large set of sol-
vent probes, each representing a chemical moiety present in 
typical drugs. This was recently demonstrated by Yanag-
isawa and co-workers using a set of 138 cosolvents [32]. 
Simulation of a much smaller set of cosolvents containing 
the essential atom types, followed by atomic partitioning of 
ΔGbind, is far more efficient [33, 34]. When using non-
corrected atomic contributions, cosolvent-based simulations 
can yield relative binding affinities as accurate as the free 
energy perturbation (FEP) methods, which are considered 
the gold standard in structure-based drug design [35]. The 
atomic repartition scheme presented here should bring about 
a further increase in accuracy [15]. Besides the theoretical 
background of the partitioning scheme, here, we have illus-
trated the improvement in the predictions with two visual 
examples. Future articles will disclose practical applications 
of the method and investigate the use of said atomic contri-

butions to predict (relative) binding free energies on conge-
neric series of ligands. 
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Fig. (3). Contour plots showing the optimal interaction sites of a hydrophobic probe (methyl of ethanol; green mesh) and a polar probe (hy-

droxyl of ethanol; red mesh), both at ΔGbind = -1.5 kcal/mol. They identify a preferred binding site for ethanol next to Thr65. However, the 

site appears to lack any additional binding hot spot, suggesting that it is too small to be druggable. After correction, the hot spots are main-

tained (red and green transparent surfaces; ΔGcorr = -1.0 kcal/mol), but three additional hydrophobic hot spots emerge, revealing that the 

binding site offers substantial binding opportunities to a drug-like ligand. The centre of the corrected hot spots used to define a pharmaco-

phore are shown as black dots. The ligand shown in yellow is an example virtual screening hit (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article). 
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