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Loss of heterozygosity on 10q and mutational status of PTEN and
BMPR1A in colorectal primary tumours and metastases
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We investigated the possible role of chromosome 10q losses in colorectal cancer metastasis by carrying out an allelic imbalance study
on a series of microsatellite instability-negative (MSI�) primary tumours (n¼ 32) and metastases (n¼ 36) from 49 patients. Our
results demonstrate that 10q allelic losses are associated with a significant proportion (25%) of MSI� colorectal tumours, but are not
involved in the metastatic process. PTEN and BMPR1A, two genes located in the common deleted region, were screened for
mutations in samples with loss of heterozygosity. The absence or low frequency of mutations indicates that the inactivation of these
genes by deletion of one allele and mutation of the other one plays only a minor role in MSI� tumours.
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Colorectal carcinoma is one of the most common cancers in
Western countries. Most deaths related to colorectal cancer are
caused by metastasis. Little is known about the genetic alterations
associated with the metastatic phenotype. Deletions of the long
arm of chromosome 10 have been reported in many types of
tumour, including colorectal carcinomas (Frayling et al, 1997),
and are correlated with tumour progression and/or metastasis
formation in several of these cancers, such as glial tumours
(Balesaria et al, 1999), lung cancer (Petersen et al, 1998), head
and neck squamous cell carcinomas (Bockmuhl et al, 2002),
bladder (Cappellen et al, 1997), prostate (Komiya et al, 1996)
and breast carcinomas (Bose et al, 1998). Several putative
or known tumour-suppressor genes have been mapped to 10q,
including BMPR1A on 10q23.2 and PTEN/MMAC1/TEP1 on
10q23.3. Mutations in PTEN are associated with hereditary
cancer predisposition syndromes (Liaw et al, 1997; Marsh
et al, 1997) and, to a greater or lesser extent, with a wide
variety of sporadic cancers (Ali et al, 1999; Bonneau and Longy,
2000). With the exception of endometrial cancer (Mutter et al,
2000), alterations to PTEN in cancer are almost exclusively
detected in advanced stages of disease. Mutations in PTEN

have been studied only in primary colorectal tumours, and this
gene appears to be involved only in tumours with microsatellite
instability (MSIþ ) (Guanti et al, 2000; Shin et al, 2001; Zhou
et al, 2002). The presence of germ-line-inactivating mutations in
the BMPR1A gene has been found to be responsible for a
significant proportion of cases of juvenile polyposis syndrome,
an inherited hamartomatous polyposis syndrome with a risk of
colon cancer (Howe et al, 2001; Zhou et al, 2001). Although
BMPR1A was a good candidate for involvement in the pathogen-
esis of sporadic colon cancer, no mutations have yet been
identified in primary colorectal tumours displaying LOH at the
BMPR1A locus (Howe et al, 2001).

As losses on chromosome 10q have frequently been associated
with tumour progression, we carried out an allelic imbalance study
on a series of MSI� colorectal tumour samples consisting of 32
primary tumours at various stages and 36 distant metastases. In 19
cases, metastases and primary tumours were obtained from the
same patient. The involvement of two candidate genes located in
the minimal region of allelic deletion, PTEN and BMPR1A, was
assessed by mutational analysis.

MATERIALS AND METHODS

Patients and tissue samples

The primary colorectal carcinomas and metastases were obtained
from patients who underwent surgery at Ambroise Paré Hospital
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(Boulogne, France). In all cases, ethical approval and appropriate
consent were obtained. Detailed information on the clinical and
histological features is provided in Appendix A.

DNA extraction

Frozen or formalin-fixed paraffin-embedded tissues were serially
sectioned onto slides and tumour tissue was microdissected. DNA
was then extracted as described by Billerey et al (2001).
Constitutional DNA for each patient was obtained from blood
leukocytes, or from normal tissues (uninvolved colon mucosa or
liver) in the surgical specimens.

RNA extraction and reverse transcription

Total RNA was isolated from frozen tissues, using the guanidine
isothiocyanate/caesium chloride cushion method, and was used as
a template for first-strand cDNA synthesis by random priming, as
previously described (Diez de Medina et al, 1997).

Analysis of 10q microsatellite loci

Tumours with high microsatellite instability (H-MSI) (Boland et al,
1998) were excluded from the study. Allelic imbalance was
evaluated at 32 loci distributed along chromosome 10q. PCR
products were subjected to electrophoresis in a 6% acrylamide
sequencing gel under denaturing conditions. DNA was transferred
onto Hybond Nþ membranes (Amersham, Little Chalfont, UK).
PCR products were detected using a DIG 30 end-labelled specific
oligonucleotide primer or a (CA)14 repeat probe. For normal and
tumour tissue pairs for which allelic imbalance or retention of

heterozygosity was not clear, membranes were reprobed with a 32P
end-labelled probe. Signals were then quantified with a Storm 840
PhosphorImager (Molecular Dynamics, Sunnyvale, CA, USA). In
informative cases, allelic imbalance was considered to be present if
a difference of at least 40% was observed in allelic ratios between
tumoural and normal DNA from a given patient.

Mutational analysis by SSCP and heteroduplex analysis

SSCP (Single-Strand Confirmation Polymorphism) was used for
cDNA analysis, with overlapping primer pairs covering the entire
coding region of PTEN or BMPR1A. Heteroduplex analysis was
performed as a complementary mutation-screening method for
genomic DNA, using primer pairs covering all coding exons,
exon– intron junctions, and more than 50 bp of flanking intronic
sequences. The sequences of the primers used are available on
request.

Sequence analysis

Electrophoresis variants predicted by SSCP or heteroduplex
analysis were confirmed by direct sequencing, using the ABI
Prism Dye Terminator Sequencing Ready Reaction Kit (PE
Biosystems, Courtaboeuf, France), according to the manufacturer’s
instructions.

Statistical analysis

Two-tailed Fisher’s exact tests were used for statistical analyses.
Differences were considered significant if the two-tailed P-value
was o0.05.
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Figure 1 Deletion mapping of chromosome 10q. Allelic patterns of chromosome 10q for all tumour samples with LOH are shown. T: primary tumour; L:
liver metastasis. Plain ovals: no loss of heterozygosity in the tumour sample; black ovals: loss of heterozygosity in the tumour sample; striped ovals: not
informative (homozygosity in the normal sample); blank space: not done. Names of microsatellite markers studied, their positions on 10q and their genetic
distance to the top of the chromosome are indicated on the left. The minimal region of loss and the location of the BMPR1A and PTEN genes are shown on
the right.
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RESULTS

Identification of the region of allelic loss on chromosome
10q

In all, 11 out of 49 patients (22.4%) presented losses on 10q
(Figure 1). Out of the 15 tumour specimens (eight primary
tumours and seven metastases) with loss of heterozygosity (LOH)
from these 11 patients, 12 displayed losses of all or most of
chromosome 10q. The three remaining samples displayed similar
partial losses of chromosome 10q. The tumour and the metastasis
from case #26 defined a minimal region of allelic deletion flanked
proximally by D10S532, and distally by D10S192. This 19-
centimorgan minimal region corresponds to the cytogenetic
location 10q23–q24 and includes the two tumour-suppressor
genes PTEN and BMPR1A.

Allelic losses in primary tumours and distant metastases

Two of the 13 colorectal carcinomas that did not develop
metastases more than 5 years after primary tumour resection
(cases #3 and 13), six of the 19 primary tumours that did develop
synchronous or metachronous metastases (cases #17, 21, 26, 29, 30
and 31) and seven of the 36 metastases analysed (cases #26, 29, 30,
31, 47, 48 and 49) displayed chromosome 10q losses (Figure 1).
The percentages of chromosome 10q loss did not differ
significantly in these three groups (P40.3).

Loss of heterozygosity analysis in the 19 pairs of primary
colorectal carcinomas and corresponding metastases available
revealed losses in six cases (cases #17, 21, 26, 29, 30 and 31).
Concordant patterns of loss were observed in four pairs (cases #26,
29, 30 and 31). Two pairs (cases #17 and 21) showed LOH in the
primary tumour, and retention of heterozygosity in the metastatic
tumour. No losses were seen in the metastasis only (Table 1).

Mutation screening of PTEN and BMPR1A

Samples with LOH on 10q were analysed for PTEN and BMPR1A
mutations at DNA and transcript levels. Several extra bands were
detected by SSCP analysis of exon 5 in the cDNA of the primary
tumour and liver metastasis of case #26 (Figure 2A). Sequencing of
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Figure 2 PTEN mutation in the primary tumour and liver metastasis of case 26. (A) Abnormal bands were detected by SSCP analysis of cDNA from the
primary tumour (T) and liver metastasis (M) using primers in exon 5 (sense) and exon 6 (antisense). These bands were not present in normal colon cDNA
from the same patient (N). (B) Sequencing analysis of the two main abnormal bands (T2) and (T3) present in the primary tumour. Sequence of the normal
cDNA from the same patient (N). (C) Sequencing of the genomic DNA of the primary tumour (T) and corresponding normal tissue (N). Tumour DNA
harboured a G to T point mutation. (D) The various alternatively spliced forms deduced from the cDNA and genomic sequences presented in (B) and (C)
are shown. The T2 allele carrying a G/T transversion in exon 5 presented the same splice form as the normal allele. T3 showed a 21 bp deletion at the 30 end
of exon 5. The new consensus donor splice site created by the mutation is underlined. (E) RT–PCR analysis of the primary tumour (T), liver metastasis (M)
and corresponding normal tissue using the same primers as in (A). Lane 1: pBR322 DNA-MSPI digest.

Table 1 LOH in primary tumour and corresponding metastasis pairs

Case
LOH in the

primary tumour
LOH in the

corresponding metastasis

26 + +
29 + +
30 + +
31 + +
17 + �
21 + �
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one of these abnormal bands (T2) revealed a G-T transversion in
exon 5, and sequencing of another such band (T3) revealed a 21 bp
deletion of the 30 end of exon 5 (Figure 2B). Analysis of normal
tissue from the patient showed only the normal sequence,
demonstrating that these variants occurred somatically. The
sequencing of genomic DNA showed that the primary tumour
and metastasis of this case harboured the G to T point mutation in
exon 5 (Figure 2C). This mutation, at the third base of codon 159,
is expected to cause an arginine-to-serine substitution in the
tyrosine phosphatase domain, and creates a new donor-splice site
(GTAAGG-GTAAGT). Several aberrant transcripts were gener-
ated by alternative splicing involving this new donor site, as shown
in Figure 2D and E. None of the samples investigated by SSCP
analysis or HDA showed evidence of BMPR1A mutations.

DISCUSSION

Of the 49 cases included in this study (22.4%), 11 presented allelic
losses on 10q, indicating that structural alterations of chromosome
10q occur relatively frequently in colorectal carcinogenesis. The
percentage of 10q loss did not differ significantly between the
group of primary tumours without metastasis within 5 years, the
group of primary tumours that did develop synchronous or
metachronous metastasis and the group of distant metastases.
Although the number of primary tumours without metastasis at 5
years in our study was small, our findings suggest that LOH on
chromosome 10q is probably not an important event in metastasis
formation. This hypothesis is supported by the finding that two
primary tumours exhibited chromosome 10 losses with no deletion
in the corresponding metastases, and that no losses were observed
in metastases alone. Our results also suggest that chromosome 10q
loss is a relatively late event in the history of the primary tumour.

The 19 cM minimal region of deletion defined here is included
within the very large region (10p13– 10q24) previously reported by
Frayling et al (1997). It contains two suppressor genes, PTEN and
BMPR1A. The frequency of LOH (22.4%) that we found at these
loci was similar to those (18–24%) reported in previous studies
(Howe et al, 2001; Zhou et al, 2002).

We identified no BMPR1A mutations in tumour samples
showing LOH on chromosome 10q. One single PTEN mutation
was found, located in exon 5, a hotspot for mutation. This
mutation, described here for the first time, has two consequences:
it leads to the replacement of a highly conserved residue in the
phosphatase domain and generates a new donor splice site. The
identification of only one tumour with a PTEN mutation in our
series of MSI� tumours, consistent with the recent results of Zhou
et al (2002), indicates that the inactivation of PTEN by mutation is
a rare event in MSI� colorectal tumours and is essentially
restricted to the MSIþ pathway (Guanti et al, 2000; Shin et al,
2001; Zhou et al, 2002).

Metastasis is the major complication in cancer progression.
Very few studies have examined chromosomal alterations in
colorectal metastases. We show here that neither losses on
chromosome 10q nor PTEN and BMPR1A mutations seem to play
a role in the metastasic process.
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Appendix A

Detailed information on the clinical and histological features is
summarised in Table A1.

Table A1 Clinical and pathological features

Case Sex Age (years) Primary tumour site TNM stage Metastasis site Synchronous/metachronousa

1 F 63 Right colon T1N0M0
2 M 83 Right colon T3N0M0
3 F 51 Transverse colon T3N0M0
4 F 57 Sigmoid colon T3N0M0
5 M 72 Sigmoid colon T3N0M0
6 M 61 Sigmoid colon T3N0M0
7 F 61 Right colon T3N1M0
8 F 54 Right colon T3N1M0
9 M 61 Descending colon T3N1M0
10 F 54 Rectum T3N1M0
11 F 46 Rectum T3N2M0
12 M 83 Right colon T3N2M0
13 F 39 Rectum T3N2M0
14 M 66 Sigmoid colon T1N0M0 Liver M
15 M 78 Rectum T2N0M0 Liver M
16 F 78 Right colon T3N0M0 Liver M
17 F 66 Rectum T3N2M0 Liver M
18 F 44 Right colon T3N0M1 Liver S
19 F 68 Sigmoid colon T3N0M1 Liver S
20 M 63 Sigmoid colon T3N0M1 Liver S
21 F 46 Right colon T3N0M1 Ovary S
22 M 72 Sigmoid colon T3N0M1 Peritoneum S
23 F 70 Sigmoid colon T3N0M1 Peritoneum S
24 F 59 Rectum T2N1M1 Liver S
25 M 71 Right colon T3N1M1 Liver S
26 M 66 Sigmoid colon T3N1M1 Liver S
27 M 62 Descending colon T3N2M1 Liver S
28 M 78 Sigmoid colon T3N2M1 Liver S
29 F 79 Sigmoid colon T3N2M1 Liver S
30 M 64 Rectum T3N2M1 Liver S
31 F 61 Transverse colon T4N2M1 Liver S
32 F 39 Rectum T4N2M1 Liver S
33 F 73 Right colon TisN0M0 Liver M
34 M 39 Sigmoid colon T2N0M0 Liver M
35 F 53 Sigmoid colon T2N1M0 Liver M
36 F 69 Sigmoid colon T3N0M0 Liver M
37 M 48 Sigmoid colon T3N0M0 Liver M
38 M 70 Descending colon T3N1M0 Liver M
39 M 61 Descending colon T3N1M0 Liver M
40 F 54 Sigmoid colon T3N1M0 Liver M
41 M 61 Right colon T3N1M0 Liver M
42 M 57 Sigmoid colon T3N1M0 Liver M
43 M 61 Right colon T3N1M0 Liver M
44 F 55 Rectum T3N2M0 Liver M
45 F 69 Sigmoid colon T2N0M1 Liver S
46 M 51 Sigmoid colon T2N1M1 Liver S
47 F 74 Rectum T3N1M1 Liver S
48 M 60 Sigmoid colon T3N1M1 Liver S
49 F 76 Sigmoid colon T3N1M1 Liver S

The patients for whom no metastasis is indicated (cases 1–13) did not develop metastasis during the 5 or more years following the resection of the primary tumour.
Synchronous metastasesa are those detected at the time of primary tumour diagnosis. Primary tumours from cases 33 to 49 were not available for this study.
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