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Modulation of the cell cycle also contributes to che-
motherapy resistance. The cyclin-dependent kinases 
(cdks), the essential engines of the cell cycle, are 
therefore rational therapeutic targets. Over the last 
several years, a new class of anticancer therapy has 
been developed and extensively tested: inhibitors 
of cdks.

These drugs have been tested as single agents 
with modest results. However, in combination with 
traditional cytotoxic chemotherapy, they have the 
potential to overcome drug resistance and to improve 
cytotoxic efficacy.

2.	 THE CELL CYCLE AND ITS REGULATION

The cell cycle governs the transition from quiescence 
(G0) to proliferation while ensuring the fidelity of 
the genetic transcript. The phases associated with 
dna synthesis (S phase) and mitosis (M phase) are 
separated by the gaps G1 and G2. The cdks join with 
regulatory proteins called cyclins to drive the cell 
through the cycle.

Inhibitory proteins [cdk inhibitors (cdkis)] block 
specific interactions. The Ink4 (inhibitor of cdk4) 
class of cdkis (p16Ink4a, p15Ink4b, p18Ink4c, and p19Ink4) 
bind and inhibit cyclin D–associated kinases (cdk2, 
-4, and -6), and the kinase inhibitor protein (Kip) 
group of cdkis (p21Waf1, p27Kip1, and p57Kip2) block 
the cyclin E/cdk2 and cyclin A/cdk2 complexes 1.

The pattern of cyclin expression defines the cell’s 
progression through the cycle  2,3. At least 9 cdks 
(cdk1–cdk9) and many cyclins (cyclin A–cyclin T) 
are known. The cdk/cyclin complexes are activated 
by specific phosphorylation of the cdk by cdk7/cy-
clin H, also called cdk-activating kinase 4. Specific 
complexes regulate each step of the cycle. Cyclins 
D1–D3/cdk2, -4, and -6 drive progression through 
G1; cyclin E/cdk2 controls entry into S phase; cy-
clin A/cdk2 controls S-phase progression; cyclin A/
cdk1 (also known as cdc2) controls G2; and cdk1/
cyclin B facilitates mitosis.

Entry into the cell cycle (G1) is governed by 
the restriction point, beyond which progression 
through the cycle is independent of stimuli such as 
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1.	 INTRODUCTION

With advancing understanding of oncogenesis and 
apoptosis comes an appreciation of the role cell-
cycle regulation plays in malignant transformation. 
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mitogens  5. Mitogens signal through the Ras/Raf/
mapk pathway leading to cyclin D production. The 
retinoblastoma tumour suppressor gene product 
(Rb) governs the G1/S transition. In its active 
state, Rb is hypophosphorylated and inhibits the 
transcription factors E2F–DP (E2F-1, -2, and -3). 
Rb is in turn phosphorylated by cyclin  D/cdk4/6 
and cyclin E/cdk2, modulating its activity 6. When 
partially phosphorylated, Rb remains bound to E2F-
DP, but the transcription factor can still transcribe 
some genes such as cyclin E. Cyclin E then binds 
to cdk2, and the complex hyperphosphorylates Rb, 
releasing the E2F–DP complex and fully activating 
the E2F transcription factors. S-Phase proteins are 
then transcribed 7.

Early in S phase, cyclins D and E are degraded 8. 
Cyclin A/cdk2 governs S-phase progression and the 
production of proteins involved in dna synthesis 9,10. 
Cyclin A/cdk2 also inactivates E2F 11–14.

In late S  phase and throughout G2, levels of 
cyclins A and B rise. Cyclin B/cdc2 (cdk1) regulates 
the S-phase checkpoint. This replication checkpoint 
monitors progression through S phase and moderates 
dna synthesis 15,16. It is regulated by the atm (ataxia te-
langiectasia mutated) and atr (atm and Rad3-related) 
kinases and Chk1 and Chk2, which prevent cell-cycle 
progression in the event of dna damage 17,18. These 
pathways permit a cell to enter mitosis only after 
successful completion of S phase.

Mitosis is regulated by the anaphase-promoting 
complex/cyclosome and by degradation of cyclin B 10. 
The assembly of a bipolar spindle by the centrosome 
is monitored by a checkpoint that senses microtubule 
defects or aberrant kinetochore attachment 19–21. Cen-
trosome maturation, regulated by kinases including 

Polo kinase and Aurora kinase, begins with centriole 
duplication, which occurs in G1 and is triggered by 
cyclin E/cdk2 and cyclin D/cdk2 activity. Elongation 
of the centriole occurs throughout S phase so that by 
prophase, the cell has two pairs of centrioles 22. Aurora 
kinase regulates spindle pole structure and duplica-
tion and separation of the centriole  23,24. Survivin, 
regulated by cyclin  B1/cdc2, regulates the mitotic 
spindle and cell viability 25–27.

3.	 THE CELL CYCLE AS A TARGET FOR 
CANCER THERAPEUTICS

The cdks are rational targets for cancer therapy. Their 
expression is often perturbed in malignancy, and 
their inhibition can induce apoptosis. Most tumour-
suppressor genes and oncogenes are part of pathways 
that control cellular functions, including cell-cycle 
entry and exit 28,29. Checkpoint integrity is often lost 
as a result of inactivation of cdkis or of overexpression 
of cyclins. For example, loss of p16 function is as-
sociated with melanoma, lung, breast, and colorectal 
tumours 30. Overexpression of cyclin D1 is associated 
with breast cancer 31,32. Thus, targeting cdks could 
restore cell-cycle checkpoints and may slow growth 
or induce apoptosis 33. Figure 1 shows the site of ac-
tion of cdkis in clinical development.

Inhibitors of cdk also inhibit transcription. A key 
enzyme in the transcription machinery, rna poly-
merase ii, is phosphorylated by several cdks 34,35. The 
most important regulator is cdk9/cyclin T. Inhibition 
of cdk9/cyclin T by a cdki such as flavopiridol (dis-
cussed in the next subsection) leads to inhibition of 
rna polymerase ii and a decrease in the anti-apoptotic 
protein Mcl-1 36. Apoptosis is induced.

figure 1 Example of inhibitors that, in early clinical trials, are targeting cyclin-dependent kinases (cdks) acting in or outside 
of the cell cycle.
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3.1	 Flavopiridol

Flavopiridol is a pan–cdk inhibitor that blocks cdk2, 
-4, and -6 at nanomolar concentrations. In vitro, it 
causes cell-cycle arrest both at the G1/S transition 
and at the G2/M transition.

Several phase i and phase ii studies of flavopiridol 
have been reported in a variety of solid tumours and 
hematologic malignancies. A phase i study in chronic 
lymphocytic leukemia (cll) noted some encouraging 
responses. Flavopiridol was administered weekly for 
4 of 6 weeks in 52 patients with refractory cll. The 
patients were treated with a 30–40 mg/m2 loading 
dose followed by 30–50 mg/m2 over 4 hours. The 
dose-limiting toxicity (dlt) was hyperacute tumour 
lysis syndrome. Partial responses (prs) were achieved 
in 40% of patients, and those responses were du-
rable, with a median progression-free survival of 
12 months 37,38.

Phase ii studies of flavopiridol as a single agent 
have been completed in metastatic melanoma  39, 
endometrial adenocarcinoma  40, and multiple 
myeloma  41. No objective evidence of antitumour 
activity was observed in the 58 patients treated on 
those studies. Major toxicities were myelosuppres-
sion and diarrhea.

Flavopiridol holds more potential as an enhancer 
of the effects of cytotoxic chemotherapy. A major 
phase  i study that assessed the combination of fla-
vopiridol and irinotecan enrolled 45 patients. The 
identified maximum tolerated doses (mtds) were 
irinotecan 100 mg/m2 with flavopiridol 60 mg/m2 and 
irinotecan 125 mg/m2 with flavopiridol 50 mg/m2. 
Partial responses were observed in 3 patients 42.

Further laboratory work defined the mechanism 
of activity. By inhibiting cdk9, flavopiridol inhibited 
Rad51, a dna repair protein involved in homologous 
recombination. This protein sensitizes cells, in a 
p53-dependent manner, to induction of apoptosis by 
topoisomerase i poisons 43.

Other combinations of flavopiridol with chemo-
therapy have also shown modest activity. A phase  i 
study of flavopiridol with carboplatin and paclitaxel 
was performed in 18 patients with previously-untreat-
ed non-small-cell lung cancer (nsclc). Adverse events 
included nausea, asthenia, and diarrhea. The mtd of 
flavopiridol was 70 mg/m2 with paclitaxel 175 mg/m2 
and carboplatin auc (area under the curve) 5. Of 12 
evaluable patients, 8 achieved a pr 44.

Two phase i studies of flavopiridol in combination 
with docetaxel have been reported. In the first, 10 
patients were treated with flavopiridol and docetaxel 
given once every 21 days. The dlts were neutropenia 
and infection. The mtd was docetaxel 60 mg/m2 fol-
lowed 24 hours later by flavopiridol 50 mg/m2 over 
24 hours  45. In the second study, both drugs were 
administered weekly for 3 in 4 weeks in 27 patients 
with advanced solid tumours. The mtd was docetaxel 
35  mg/m2 followed 4  hours later by flavopiridol 

70 mg/m2. The best response was an extraordinary 
complete response in pancreatic cancer. Four prs were 
observed in various tumours 46.

A phase  i study of flavopiridol in combination 
with either cisplatin or carboplatin in 39 patients has 
been reported. The mtd was 60 mg/m2 cisplatin and 
100 mg/m2 flavopiridol over 24 hours. Carboplatin 
auc 2 with 100 mg/m2 flavopiridol over 24 hours was 
deemed intolerable because of significant toxicity, in-
cluding fatigue, nausea, diarrhea, and myelosuppres-
sion. The best response was stable disease (sd) 47.

In a phase  ii study, flavopiridol 50 mg/m2 over 
1 hour 3 times daily, in combination with cytarabine 
and mitoxantrone in 49 patients with poor-risk acute 
myelogenous leukemia (aml), showed encouraging 
activity. Tumour lysis occurred in more than half the 
patients. Complete responses were observed in 75% 
of patients who were either previously untreated or 
who had experienced early relapse 48.

In additional to the clinical activity in cll and 
aml already described, preclinical activity of fla-
vopiridol has also been observed in acute lympho-
blastic leukemia 49. A recently developed liposomal 
formulation of the drug ought to increase the drug’s 
half-life, its auc, and perhaps its efficacy 50.

3.2	 Indisulam

Indisulam (E7070) is a synthetic sulphonamide that 
targets the G1 phase of the cell cycle by depleting 
cyclin E, inducing p53 and p21, and inhibiting cdc2 
phosphorylation 51.

A phase ii study demonstrated in vivo pharmaco-
dynamic (pd) activity: post-treatment biopsies showed 
a decrease in Rb phosphorylation. The short duration 
of the pd effect led to the conclusion that continu-
ous dosing would likely be required. This finding 
highlighted the importance of the dose schedule in 
maintaining a cytostatic effect of drugs that target 
the cell cycle 52.

Other notable single-agent studies include a 
phase ii trial in malignant melanoma. The 28 patients 
enrolled were treated at a dose of 700 mg/m2 every 
3 weeks. No objective responses were observed, but 
minor responses and sd were seen 53.

In a phase  ii study in second-line therapy for 
nsclc, patients were randomized to receive indisulam 
every 3 weeks either as a single intravenous (IV) dose 
of 700 mg/m2 on day 1 or 130 mg/m2 IV on days 1–5. 
In the 44 patients treated, only minor responses 
were seen. However, evidence of pd targeting was 
observed: flow cytometric analysis of endobronchial 
and metastatic disease revealed a reduction in the 
fraction of cycling cells and an increase in apoptosis 
following indisulam as compared with pretreatment 
levels. Nevertheless, the drug was considered to have 
no significant single-agent activity 54.

Combination studies with chemotherapy have 
also been pursued. A phase i study of indisulam with 
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carboplatin found the mtd to be indisulam 500 mg/m2 
on day 1 with carboplatin auc 6 given every 4 weeks. 
Toxicities were thrombocytopenia and neutropenia, 
and significant myelosuppression prevented treatment 
on the originally-planned 3-week cycle. The best 
response was sd 55.

In a phase ii study of indisulam in combination 
with capecitabine, 35 patients were treated. The mtd 
for multiple treatment cycles was indisulam 500 mg/
m2 on day 1 and capecitabine 1250 mg/m2 twice daily 
on days 1–14 of each 21-day cycle. The best response 
was 2 prs. Toxicities included myelosuppression, 
stomatitis, and hand–foot syndrome 56.

3.3	 AZD5438

AZD5438 is a novel cyclin-dependent kinase inhibi-
tor with preclinical activity against a range of human 
tumour xenografts. In a phase i study in healthy vol-
unteers, the drug was found to have a relatively short 
half-life of 1–3 hours 57,58. Nevertheless, pd effects were 
demonstrated; the drug led to statistically significant 
reductions in the ratio phospho-pRb /total pRb detected 
at 1.5 hours post-dose, but the effect disappeared at 
6 hours post-dose. Thus, given the short half-life and 
close pharmacokinetic–pharmacodynamic relationship, 
a sustained-release formulation or multiple daily dos-
ing will be required for further drug development.

A second phase i study of AZD5438 in patients 
with advanced solid malignancies has recently been 
completed. Results have yet to be reported (search 
for “NCT00088790” at www.clinicaltrials.gov/ct2/
search).

3.4	 SNS-032 (BMS-387032)

SNS-032 is a potent and selective inhibitor of cdk2, 
-7, and -9. A phase i study of the drug in patients with 
metastatic solid tumours was recently published. The 
drug was administered as a weekly 1-hour infusion. 
Toxicities included fatigue and nausea. No dlt was 
observed. Some patients received an oral solution for 
one of the doses, and pharmacokinetic studies demon-
strated that oral administration may be feasible 59.

A second phase i study of SNS-032 in advanced 
B-cell lymphoid malignancies is ongoing (search 
for “NCT00446342” at www.clinicaltrials.gov/ct2/
search).

3.5	 Bryostatin-1

Bryostatin-1 is a macrocyclic lactone that modu-
lates the cell cycle, inducing p21 and inactivating 
cdk2 60. In a phase  i trial, the drug showed limited 
single-agent activity in melanoma, ovarian cancer, 
and non-Hodgkin lymphoma 61. Bryostatin has been 
evaluated in combination with chemotherapy in a 
number of phase i and phase ii studies.

A phase i trial of bryostatin and gemcitabine was 
conducted in 36 patients with advanced solid tumours. 
Gemcitabine was administered IV over 30 minutes 
and was followed by bryostatin IV over 24 hours on 
days 1, 8, and 15 of a 28-day cycle. Common toxici-
ties were anemia, neutropenia, and thrombocytopenia. 
The best response was sd in 8 patients. The recom-
mended phase ii dose was bryostatin 35 μg/m2 and 
gemcitabine 1000 mg/m2 62.

Another phase i study assessed bryostatin and flu-
darabine in patients with cll or indolent lymphoma. 
Fludarabine was given daily for 5 days, and a single 
dose of bryostatin was given by a 24-hour continu-
ous infusion either before or after the fludarabine. 
The study concluded that bryostatin can be adminis-
tered safely and tolerably with full-dose fludarabine 
(25 mg/m2 daily for 5 days). The recommended bry-
ostatin phase ii dose is 50 μg/m2 for both sequences. 
The combination showed moderate activity, and 
responses were seen in patients who had previously 
been treated with fludarabine 63.

A phase  ii study of bryostatin and paclitaxel 
was performed in patients with gastric or gastroe-
sophageal junction adenocarcinoma. Paclitaxel 
80  mg/m2 IV over 2 hours was given on day  1, 
with bryostatin 40 μg/m2 IV over 1 hour on day 2 
each week for 3 consecutive weeks in 4. There 
were 35 evaluable patients. The confirmed pr rate 
was 29%. Grade 3 cumulative myalgias occurred 
in 55% of patients 64.

Another phase  ii study assessed bryostatin and 
paclitaxel in advanced esophageal cancer. The initial 
dose was paclitaxel 90 mg/m2 on day 1 and bryostatin 
50 μg/m2 on day 2 weekly for 3 consecutive weeks 
in 4. In 22 evaluable patients, the pr rate was 27%. 
Grades 3 and 4 myalgias requiring dose reduction 
were seen in 50% of patients. The trial was closed 
early because of toxicity; thus, although antitumour 
activity was observed, further development will not 
be pursued 65.

3.6	 Seliciclib

The agent seliciclib [CYC202, (R)-roscovitine] is a 
potent oral inhibitor of cdk2/cyclin E, cdk1/cyclin B, 
cdk7/cyclin  H, and cdk9/cyclin  T1  66,67. Seliciclib 
suppresses genes that inhibit apoptosis and has 
single-agent in vitro activity against a range of tu-
mours 68–71. In vivo activity has also been reported 
for seliciclib against human colon and uterine cancer 
xenografts 72.

A phase  i study of seliciclib in 22 patients has 
been completed in Europe 73. The mtd was 800 mg 
twice daily given for 7 in every 21 days. Common 
side effects were nausea, lethargy, and anorexia. The 
dlts were hypokalemia, rash, and fatigue. No objec-
tive responses were reported, but disease stabilization 
occurred in 8 patients and lasted 18 weeks in a patient 
with ovarian cancer.
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A phase i study of seliciclib in combination with 
cisplatin and gemcitabine was performed in the first-
line treatment of 27 patients with nsclc. Seliciclib 
was administered for 4 in every 7 days. The dlts 
consisted of liver enzyme elevation, nausea, vomiting, 
and transient hypokalemia. The mtd was seliciclib 
800 mg twice daily with gemcitabine 1000 mg/m2 and 
cisplatin 75 mg/m2. Among 14 evaluable patients, 
6 prs were observed 74.

A phase ii study of seliciclib as a single agent in 
patients with previously-treated nsclc has been 
closed. No data have yet been reported (search for 
“NCT00372073” at www.clinicaltrials.gov/ct2/search).

3.7	 PD 0332991

PD 0332991, a pyrido[2,3-δ]pyrimidine-7-one, is 
a selective inhibitor of cdk4 and cdk6  75. In low 
micromolar concentrations in in vitro and xenograft 
models, it inhibited a panel of Rb-positive solid tu-
mour cell lines 76,77. The drug was also tested in vitro 
against mantle cell lymphoma (mcl) 78. Translocation-
mediated constitutive expression of cyclin  D, the 
partner of cdk4 and -6, is typical of mcl. As predicted, 
cells are sensitive to PD 0332991 at low-nanomolar 
concentrations.

A phase  i clinical trial with PD 0332991 in pa-
tients with Rb-positive advanced solid tumours was 
performed. The principal and dose-limiting toxicity of 
PD 0332991 is myelosuppression. The mtd is 125 mg 
daily for 21 in every 28 days. On a shorter schedule, 
slightly higher doses were tolerated 79.

A trial of PD 0332991 in mcl is ongoing (search 
for “NCT00420056” at www.clinicaltrials.gov/ct2/
search), as are combination studies with letrozole for 
breast cancer (search for “NCT00721409”) and with 
bortezomib and dexamethasone for multiple myeloma 
(search for “NCT00555906”).

3.8	 SCH 727965

SCH 727965 is a novel pyrazolo[1,5-α]pyrimidine 
that potently and selectively inhibits cdk1, cdk2, 
cdk5, and cdk9. It induces apoptosis in tumour cell 
lines and growth inhibition or regression in xenograft 
models. A phase i study is underway with interim re-
sults in 23 patients reported. The drug is administered 
by 2-hour IV infusion once every 21 days. The most 
common and dose-limiting toxicity is neutropenia. No 
objective responses were observed. The drug was safe 
and well tolerated below the maximum administered 
dose of 58 mg/m2 80.

A randomized phase  i i study comparing 
SCH 727965 with erlotinib in patients with nsclc and 
comparing SCH 727965 with capecitabine in patients 
with advanced breast cancer is underway (search 
for “NCT00732810” at www.clinicaltrials.gov/ct2/
search). A second phase ii study in acute leukemia is 
planned (search for “NCT00798213”).

4.	 CONCLUSIONS

Phase i studies have demonstrated that cdkis can be 
safely administered to patients with advanced cancer. 
Doses with demonstrable pd effects can be achieved. 
Single-agent activity in solid tumours has, in general, 
been disappointing. However, in hematologic malig-
nancies, which may be more sensitive to blockade of 
cell cycling and induction of apoptosis, encouraging 
activity has been observed. Examples include fla-
vopiridol as a single agent in cll or in combination 
with cytarabine and anthracycline in aml. The cdkis 
may also contribute to overcoming drug resistance, as 
in the case of flavopiridol combined with fludarabine 
in fludarabine-refractory cll.

Activity of these agents in solid tumours has been 
more modest, and the evidence argues that combina-
tion studies with other agents should be pursued, but 
expectations for response should be modest. Drugs 
that arrest the cell cycle may, at best, result in sta-
bilization of disease. Nevertheless, the preclinical 
evidence of induction of apoptosis suggests that cell-
cycle inhibitors, if given on the right schedule with 
the right combination of drugs, may cause tumours 
to regress.
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