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Evolutionary genetic studies have uncovered abundant evidence for genomic hotspots of phenotypic evolution, as well as biased

patterns of mutations at those loci. However, the theoretical basis for this concentration of particular types of mutations at partic-

ular loci remains largely unexplored. In addition, historical contingency is known to play a major role in evolutionary trajectories,

but has not been reconciled with the existence of such hotspots. For example, do the appearance of hotspots and the fixation

of different types of mutations at those loci depend on the starting state and/or on the nature and direction of selection? Here,

we use a computational approach to examine these questions, focusing the anthocyanin pigmentation pathway, which has been

extensively studied in the context of flower color transitions. We investigate two transitions that are common in nature, the tran-

sition from blue to purple pigmentation and from purple to red pigmentation. Both sets of simulated transitions occur with a small

number of mutations at just four loci and show strikingly similar peaked shapes of evolutionary trajectories, with the mutations

of the largest effect occurring early but not first. Nevertheless, the types of mutations (biochemical vs. regulatory) as well as their

direction and magnitude are contingent on the particular transition. These simulated color transitions largely mirror findings from

natural flower color transitions, which are known to occur via repeated changes at a few hotspot loci. Still, some types of mu-

tations observed in our simulated color evolution are rarely observed in nature, suggesting that pleiotropic effects further limit

the trajectories between color phenotypes. Overall, our results indicate that the branching structure of the pathway leads to a

predictable concentration of evolutionary change at the hotspot loci, but the types of mutations at these loci and their order is

contingent on the evolutionary context.

KEY WORDS: anthocyanin pathway, flavonoid, enzymes, evolutionary trajectories, pleiotropy, epistasis, simulations, complex

phenotypes, genetic hotspots, predictability of evolution.

Impact Summary
A major topic of interest in evolutionary biology is determin-

ing to what degree evolution is repeatable and predictable,

based on the characteristics of organisms and their environ-

ments. Numerous empirical studies have demonstrated that

in many phenotypes evolutionary changes are achieved time

and again using the same subset of genes in the underlying

genetic pathways that control organism characteristics. Vari-

ous hypotheses have been posed to explain this phenomenon.

For example, many genes need to maintain roles in multiple

functions, which can put strong constraints on which genes

can be successfully mutated. Alternatively, it is thought that

the structure of the genetic pathways themselves can restrict

possible evolutionary paths. Here we examine the interac-

tion between selection and pathway structure in a computa-

tional model of the anthocyanin biosynthetic pathway, which

produces colorful pigments responsible for flower coloration.

We simulate evolutionary transitions between different flower
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colors, analyze how the underlying pathway genes change,

and determine how these changes depend on the starting

and ending states. Our analyses demonstrate that the possible

genes that can be altered to shift flower color are determined

by a combination of the underlying pathway connections and

the specific flower color transition under selection. These re-

sults indicate that the evolution of flower color is repeatable

and predictable at the molecular level, given that sufficient in-

formation is known about the pathway structure and the direc-

tion of selection.

Evolutionary genetic hotspots are the repeated genetic loci

of evolution (Stern and Orgogozo 2008; Martin and Orgogozo

2013), appearing across a variety of biological systems. Promi-

nent examples include the roles of MC1R in animal melanism,

shavenbaby in loss of Drosophila trichomes, and several loci of

the anthocyanin biosynthesis pathway in floral coloration, all of

which have repeatedly experienced mutations underlying pheno-

typic transitions (Kopp 2009). The repeated involvement of ge-

netic hotspots has been used to argue for the predictability of

evolution at the molecular level (Stern and Orgogozo 2008; Stre-

isfeld et al. 2011). Although repeated events are simply a pat-

tern of historical changes, they suggest there is something about

hotspot loci that accounts for their over-representation. For ex-

ample, constraints imposed by the structure of pathways may re-

strict the accessible region of genotype-phenotype space, favor-

ing certain pathway targets and restricting the number of possible

evolutionary paths (Vitkup et al. 2006; Morrison and Badyaev

2016). Such effects have been observed at the scale of protein

evolution, where protein structure and function constrain the or-

der and identity of possible amino acid substitutions (Weinreich

et al. 2006; Bridgham et al. 2009; Franzosa and Xia 2009; Harms

and Thornton 2014). Although we expect similar contingency in

the evolution of organismal traits, with constraints on the order of

changes at individual loci and across loci involved in phenotypic

transitions (Edwards 2019), reconstructing such histories remains

significantly more challenging.

Despite the many cases of genomic hotspots underlying

phenotypic transitions (Martin and Orgogozo 2013), there are

still major gaps in our understanding. First, the appearance of

hotspots is likely closely tied to the structure of genetic path-

ways, but the precise relationship is not well defined. For ex-

ample, the emergence of a hotspot in a situation where only

one genetic mechanism exists is intuitively unsurprising (Shi and

Yokoyama 2003), whereas the presence of hotspots in phenotypes

that can be achieved via many possible mechanisms is more sur-

prising (Ng and Smith 2016a, 2016b; Ahnert 2017). Second, it

remains unclear whether the degree to which the concentration

of changes at hotspot loci is due to the intrinsic genetic archi-

tecture of the trait or to the external selective forces that mani-

fest as pleiotropic effects (Stern and Orgogozo 2008; Kopp 2009;

Streisfeld and Rausher 2011; Wessinger and Rausher 2012). Fi-

nally, little is known about the importance of mutational order

and the role of context dependence, as observed in protein evo-

lution (Bridgham et al. 2009; Salverda et al. 2011; Gong et al.

2013; Harms and Thornton 2014; Shah et al. 2015; Kent and

Green 2017; Starr et al. 2018). For instance, is the involvement

of particular loci or types of mutations contingent on the starting

state of the system (and thus on changes that occurred before)?

Answering these questions will be essential for understanding the

basis for repeated targeting of certain loci and the predictability of

evolution.

Here, we model the evolution of a pathway about which we

know a good deal from empirical work, allowing us to make di-

rect comparisons between model predictions and observations

from nature. The anthocyanin pathway, which is broadly con-

served across flowering plants (Campanella et al. 2014), pro-

duces an array of colorful pigments falling into three classes:

red pelargonidin-derived pigments, purple cyanidin-derived pig-

ments, and blue delphinidin-derived pigments (Fig. 1A). These

pigments are responsible for most of the diversity in coloration

across fruits and flowers; they are what make roses red and

blueberries blue (Winkel-Shirley 2001). Due to its deeply con-

served topology, the anthocyanin pathway has become a promi-

nent system for the study of genetic hotspots in phenotypic evo-

lution (Kopp 2009; Streisfeld and Rausher 2011; Wessinger and

Rausher 2012). The pathway is highly branched and reticulated,

with multiple instances of competition between enzymes for sub-

strates as well as competition between substrates for enzymes

(Fig. 1A).

Previously, we developed a biochemical model of the an-

thocyanin pathway, using a set of equations that describe flux

through each pathway reaction. We then used this model to simu-

late evolution of the pathway between a “naive” state, wherein all

enzyme concentrations and kinetic parameters started with identi-

cal values, and a “blue” phenotype where 90% of the total steady

state pathway production was comprised by delphinidin (Wheeler

and Smith 2019). Because of the structure of the pathway, where

red pigments require the fewest steps (Fig. 1A), the naive state

resulted in a phenotype of predominantly red pelargonidin pig-

mentation, and thus selection for blue pigmentation represents

a shift to the farthest extreme in pathway output. With this ex-

perimental design, we found that simulated evolution involved

the same genetic hotspots for color transitions as observed in

nature. The involvement of these loci appeared related to their

position in the pathway, which allows them to mediate internal

trade-offs between pathway products. This research, however, left

many open questions, such as the relative importance of the path-

way topology and the selection regime on evolutionary outcomes,
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Figure 1. Simulations of color evolution using an anthocyanin pathway model. (A) The anthocyanin pathway, a portion of the larger

flavonoid biosynthetic pathway (Winkel-Shirley 2001), is shown with substrates at nodes and enzymes along arrows. Flux moves from

PCoA at the top down through the branches of the pathway, terminating in the three types of pigments (pelargonidin (pel), cyanidin (cya),

and delphinidin (del)), aswell as the three flavonols kaempferol (kam), quercetin (que), andmyricetin (myr). B) The simulations beganwith

a naive state (all pathway parameters equal; see text) andmoved first to blue (90%delphinidin), then to purple (90% cyanidin), and finally

to red (90% pelargonidin). Substrates include: PCoA (P-Coumaroyl-CoA), cha (chalcone), nar (naringenin), DHK (dihydrokaempferol), DHQ

(dihydroquercetin), DHM (dihydromyricetin), LCD (leucopelargonidin), LCC (leucocyanidin), LCD (leucodelphinidin). Enzyme abbreviations

are: CHS (chalcone synthase), CHI (chalcone isomerase), F3H (flavanone-3-hydroxylase), F3’H (flavonol-3’-hydroxylase), F3’5’H (flavonoid-

3’5’-hydroxylase), DFR (dihyroflavonol-4-reductase), FLS (flavonol synthase), ANS (anthocyanidin synthase).

the predictability of mutation order and mutation type, and the

behavior of hotspot loci in more biologically realistic phenotypic

transitions.

In this paper, we use our model to simulate the sequential

evolution of two phenotypic transitions that are common in na-

ture: from blue delphinidin pigments to purple cyanidin pigments

and from that state to red pelargonidin pigments (Fig 1B). Con-

sidering the structure of the flavonoid pathway, these represent

stepwise shifts from three to two to one hydroxyl groups on the

flavonoid backbone, and phylogenetic modeling shows that these

stepwise transitions are the primary mode of evolutionary change

(Ng et al. 2018). Transitions from blue to purple and purple to red

have occurred in parallel in many clades and have been studied at

the genetic level in several species pairs (Wessinger and Rausher

2012). These analyses show that parallel evolution at the phe-

notypic level is commonly mirrored by parallelism in terms of

genetic changes, often involving mutations of large-effect (e.g.,

loss-of-function or down-regulation) at a small subset of path-

way loci. This repeated use of similar genetic changes has been

related to pleiotropy, with fixed mutations being those assumed to

carry fewer negative consequences (Streisfeld and Rausher 2011;

Wessinger and Rausher 2012). However, it is also possible that

the topology of the pathway creates internal constraints that bias

evolution toward the observed fixed mutations (Clotault et al.

2012a; Morrison and Badyaev 2017).

Taking a computational approach, we explore the range of

evolutionary trajectories connecting blue, purple, and red pheno-

types, and ask how the mutations fixed during these trajectories

compare to those observed in nature. In comparing these tran-

sitions, we also aim to address general questions about how se-

lected mutations are expected to differ based on the nature of the

selection on the pathway. These include (1) Does the location of

the phenotypic optimum in pigmentation-space affect the iden-

tities of hotspot loci? (2) Are the type, direction, and order of

mutations in evolutionary trajectories predictable based on path-

way topology and location of the optimum? (3) How does the

control of pathway dynamics shift to accommodate new pigment

phenotypes? By dissecting a large number of simulated evolu-

tionary trajectories for a sequential set of phenotypic transitions,

we are able to determine the importance of pathway structure, se-

lective context, and changes to the pathway dynamics in altering

the pigmentation phenotype. Our results identify the mechanisms

of pathway evolution, generate testable predictions for future em-

pirical studies, and provide a generally applicable framework for

the emergence and behavior of hotspot loci based on interactions

between pathway topology and selection.
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Methods
DESIGN OF THE KINETIC MODEL OF THE

ANTHOCYANIN PATHWAY

We constructed a kinetic model of the anthocyanin biosynthetic

pathway that is designed to capture the most salient pathway fea-

tures. The model consists of a set of differential equations (de-

scribed below; also detailed in the Supporting Information) that

capture the topology and dynamics of a simplified representa-

tion of the anthocyanin pathway. It includes the branches that

produce the anthocyanidin pigments (pelargonidin, cyanidin, and

delphinidin), as well as the competing set of branches that pro-

duce the flavonols (kaempferol, quercetin, and myricetin) from

shared precursor compounds (Fig. 1A; Fig. S1). We incorporated

several simplifying assumptions into the model, such as ignor-

ing the linked production of flavone compounds (Winkel-Shirley

2001) and the decision to exclude the overlap in activity between

the F3’H and F3’5’H enzymes, because this shared activity is

variable in nature (Kaltenbach et al. 1999; Seitz et al. 2007; Fal-

ginella et al. 2010).

To represent the pathway reactions, we used a generalized

Michaelis-Menten rate law formulation (Chou and Talaly 1977).

We specified irreversible rate laws for each enzymatic reaction in

the pathway model using the Tellurium library (Choi et al. 2018),

as previously described (see Supplemental text and (Wheeler and

Smith 2019)). Each enzyme rate law in the pathway has three dif-

ferent types of parameters: Kcat ; the catalytic turnover rate, Km;

the Michaelis constant (related to a dissociation constant), and

Et ; the enzyme concentration. This rate law formulation allows

us to incorporate substrate competition for enzymes with mul-

tiple substrates, such as DFR, by using unique Kcat and Km pa-

rameters for the different substrates (see Fig. 1A). We previously

determined that irreversible rate laws were a reasonable approxi-

mation for the behavior of the anthocyanin pathway (Wheeler and

Smith 2019) and a simple irreversible model has also been shown

to fit well to the kinetic results of in vivo experiments 2013. An

added advantage is that the irreversible model requires fewer pa-

rameters. To allow calculation of a steady state solution for the

system of equations that represent the pathway dynamics, we in-

stituted two boundary processes: (1) the incoming upstream con-

centration of PCoA (Fig. 1) is fixed at a constant value, (2) the

rate of transport of the products out of the pathway system is de-

termined by Ksink (a rate constant shared by all final products of

the pathway: pelargonidin, cyaninidin, delphinidin, kaempferol,

quercetin, and myricetin; see Fig. 1) multiplied by the product

concentration (see model specification in, e.g., Supporting Infor-

mation File “cyanidin-to-pelargonidin-simulations.py”).

DESIGN SCHEME FOR THE EVOLUTIONARY

SIMULATIONS

We simulated sequential phenotypic transitions (Fig. 1B) using

the evolutionary algorithm implemented in our python package

enzo (Wheeler and Smith 2019) (https://github.com/lcwheeler/

enzo). Briefly, our algorithm works by sampling numerical muta-

tions from a gamma distribution with α = 0.8 and β = 3, chosen

so that the mutation process samples both large negative and pos-

itive changes in addition to smaller-effect mutations. These muta-

tions are multiplicative shifts that can result in either an increase

or decrease to the value of a single Kcat , Km, or Et parameter. For

example, a large negative mutation that reduces the value of a

Kcat parameter to nearly zero will drastically reduce the activity

of the enzyme on that applicable substrate, which can be thought

of as a coding mutation resulting in a loss-of-function. Mean-

while, a large negative mutation that reduces an Et parameter to

near zero could be thought of as a regulatory loss-of-expression

mutation, which would affect all reactions catalyzed by the en-

zyme. Each iteration of the algorithm introduces a random mu-

tation to a randomly selected parameter and then re-calculates

the steady state concentration of all chemical species in the path-

way. Since the focus of this study is on shifts among pigments

(as opposed to changes in the amount of pigmentation), we dis-

carded mutations that altered total steady state production beyond

a 10% tolerance. This experimental design is in line with empir-

ical work, where species can shift between pigment types while

keeping the total anthocyanin levels relatively constant (Berardi

et al. 2016; Esfeld et al. 2018), resulting in flowers of differ-

ent hues but similar color intensity. Natural and engineered sys-

tems also provide evidence of trade-offs between anthocyanins

and flavonols, suggesting constraints on total flavonoid content

(Nielsen et al. 2002; Davies et al. 2003; Nakatsuka et al. 2007;

Yuan et al. 2016). For mutations falling within the tolerance,

a selection coefficient is calculated using the fitness function:

W = exp(−(rat iocurrent − rat ioopt )2), which depends on the dis-

tance of the steady state ratio of a target pigment to the sum of all

pigments (rat iocurrent ) from a pre-defined phenotypic optimum

(rat ioopt ) (Clark 1991; Wright and Rausher 2010; Rausher 2013;

Wheeler and Smith 2019). A fixation probability is calculated

based on a formula (1 − e−s) that is weighted by the selection

coefficient. The mutation is then either fixed or discarded prob-

abilistically. Neutral (s = 0) and deleterious (s < 0) mutations

are discarded for efficiency, because their fixation probabilities

are negligible. The algorithm performs a series of iterations un-

til either the optimum is reached within a defined tolerance (here

10%) or a pre-set maximum number of iterations (here 50,000)

is reached.
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Previously, we used this framework to study the transition

from a “naive” pathway model (all kinetic parameters of a cer-

tain type are initialized with equal numerical values) to a state

wherein 90% of the total steady state concentration of all chem-

ical species was composed of the blue delphinidin pigment (see

(Wheeler and Smith 2019)). Here, we focused on transitions be-

tween naturally occurring phenotypes (blue, purple and red flow-

ers) (Fig. 1B). The initial starting state was the original naive

pathway model mentioned above. We evolved the model from

the naive phenotype to a state wherein delphinidin composed

90% of the total anthocyanin concentration at steady state (the

“blue” phenotype), with a total of 10,000 unique simulated tra-

jectories. We then calculated the mean evolved value for each

model parameter and initialized a new starting state with these

values. We evolved this mean 90% delphinidin state (hereafter re-

ferred to as simply the delphinidin state) to a 90% cyanidin state

(corresponding to “purple”; hereafter referred to as simply the

cyanidin state) and finally repeated the procedure to simulate the

transition from cyanidin to 90% pelargonidin (corresponding to

“red”; hereafter referred to as the pelargonidin state). Organizing

the simulations around this stepwise sequence of transitions al-

lowed us to circumvent issues that arise from epistasis in the path-

way model, wherein different starting states can result in differ-

ences between trajectories that are difficult to interpret (Ng et al.

2018).

Finally, we implemented two additional simulation experi-

ments to examine the effect of the branched pathway structure

on the properties of evolutionary trajectories. First, we created

a simplified linear pathway model (the sub-pathway containing

only the steps leading to pelargonidin production, initialized with

the parameters from the naive model), and evolved this model to-

ward an optimum defined by a threefold increase in steady-state

pelargonidin concentration relative to the starting state. Second,

we imposed a constraint that the ratio of pelargonidin at steady

state to all other pathway substrates/products remain constant. To

examine the effect of the fitness function alone, we then applied

this same scenario to the (branched) naive anthocyanin pathway

model. We carried out 2,000 replicates of each of these simu-

lations. See Supporting Information Supplemental Methods for

details on the subsequent analyses of all simulations.

Results
EVOLUTION OF HOTSPOT ENZYMES IS DEPENDENT

ON THE PHENOTYPIC TRANSITION

Although the two trajectories were of similar length and over-

lapped in the loci targeted, we observed marked differences in

the type and frequency of mutations at pathway enzymes. The

median length for trajectories in both phenotypic transitions is

Figure 2. Hotspots vary depending on transition type with con-

sistent patterns of mutation. The delphinidin to cyanidin and

cyanidin to pelargonidin transitions are labeled (see Fig. 1B). (A)

Overall proportions of biochemical and regulatory mutations for

each hotspot locus in both phenotypic transitions, normalized by

the total number of each parameter type per enzyme (e.g., DFR

has three Kcat values and three KM values for a total of six “bio-

chemical” parameters). Stacked orange and blue boxes show the

proportion of biochemical (KMand Kcat ) and regulatory (Et ) muta-

tions (see legend). (B) Boxenplot (Hofmann et al. 2017) of normal-

ized directional shifts for the concentration parameter from each

of the four enzymes shown in panel (A). Box width is proportional

to the number of data points in the enclosed region. The mean of

each distribution is shown by horizontal red line. Directional shifts

are shown on a log scale. Distributions of directional shifts for the

KM, Kcat , and Et for all the enzymes in the pathway are shown in

Fig. S6.

four steps (see trajectory length distributions in Fig. S2). Roughly

99% of all fixed mutations in both transitions are spread across

four loci, F3’5’H, F3’H, DFR, and FLS (Fig. S3), which we

identified as pathway hotspots in our earlier study (Wheeler

and Smith 2019). However, the frequencies of fixation at these

hotspot enzymes depend on the phenotypic transition under se-

lection (Fig. 2A). The predominant switch is in the fixation fre-

quencies of mutations to F3’5’H and F3’H. In the transition from

blue delphinidin to purple cyanidin, mutations at F3’5’H are
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fixed much more frequently than those at F3’H. This pattern is

reversed in the transition from purple cyanidin to red pelargoni-

din, where fixed mutations to F3’5’H parameters are relatively

rare (Fig. 2A). In comparison, the fixation frequency of muta-

tions at DFR and FLS are quite similar in both transitions. These

results demonstrate the dependence of hotspot behavior on the

axis of variation under selection.

We found that there is an overall bias toward regulatory mu-

tations (enzyme concentration), compared with biochemical mu-

tations (changes to kinetic parameters), in both phenotypic tran-

sitions. Regulatory mutations represent > 50% of all fixations

at the four hotspot enzymes. Nonetheless, both biochemical and

regulatory mutations are highly represented in the trajectories

of both transitions (Fig. 2A). Changes in concentration of F3’H

and F3’5’H can easily drive shifts in the relative production of

downstream products due to their location at branch points that

commit flux toward one or another pigment branch (Fig. 1A).

However, the reason for the effects of regulatory changes at DFR

and FLS is less immediately obvious. We previously observed

that the naive pathway has an inherent bias toward pelargoni-

din/kaempferol production, due simply to the early partitioning

of flux down these committed branches. Thus, a shift in DFR con-

centration affects the steady state production along each branch

differently (Fig. S4). These differences can be accentuated or sup-

pressed by differential biochemical changes to DFR activity on

pigment precursors (see Supporting Information and Fig. S5 for

a detailed explanation of this general phenomenon). Likewise, the

ability of FLS to draw flux away from all anthocyanin pigment

branches allows it to redirect flux to tune the anthocyanin output

in a manner that is also dependent on the relative efficiency of the

competing reactions.

We found that the phenotypic transitions are characterized

by predictable sets of positive and negative mutations at hotspot

enzymes. Specifically, certain parameters at the hotspot loci are

shifted in a way that increases the activity of a particular reac-

tion, while others reduce the activity. The distributions of these

shifts for the Et concentration parameters are shown in Fig. 2B

(see Fig. S6 for the shift distributions of all Et , Kcat , and KM

parameters). As with the fixation frequencies at each enzyme,

these directional changes are also contingent on which pheno-

typic transition is being made (Fig. 2B, Fig. S6). The most strik-

ing example can be seen in the shift distributions for concen-

tration parameters of F3’H and F3’5’H in Fig. 2B. In the tran-

sition from the delphinidin to the cyanidin, fixed mutations to

F3’H Et are almost exclusively positive, typically representing

a several-fold increase in F3’H concentration. Meanwhile muta-

tions to F3’5’H concentration are negative, resulting in a several-

fold decrease. This pattern is exactly reversed in the transition

from cyanidin to pelargonidin (Fig. 2B). Combined with muta-

tions to Kcat and KM (Fig. S6), the changes in F3’H and F3’5’H

Figure 3. Largest fixed mutations occur at early (but not earli-

est) trajectory steps. Distributions of fixed selection coefficients

at each trajectory step over all 10,000 simulations per phenotypic

transition, shown as boxplots for (A) delphinidin to cyanidin and

(B) cyanidin to pelargonidin. The curves are peaked around the

second step, resembling a chemical activation barrier. Red lines in-

dicate median values.

concentration resulted in large shifts in the activity of these

enzymes.

TRAJECTORIES HAVE CONSISTENT STRUCTURE WITH

BIASED ORDER OF FIXED MUTATIONS

Looking across simulations, the curves for fixed mutations show

a skewed distribution, with the largest mutations occurring in the

early (but not earliest) steps (Fig. 3). There is a peak around the

second trajectory step representing the largest selection coeffi-

cients (Fig. 3). This is despite the aggregate distributions of selec-

tion coefficients for all fixed mutations, regardless of trajectory

step, following a roughly exponential distribution (see Fig. S7). It

is also worth noting that during early development of the model

we experimented with a uniform (rather than gamma) distribu-

tion for parameter mutation sizes, making very large effects on

enzyme activity as probable as very small effects. This markedly

different distribution did not qualitatively affect the stepwise dis-

tribution of fitness effects or the identities of common targets of

fixation, indicating that the shape of evolutionary trajectories is

not due to our choice for the form of the mutational spectrum.

We also confirmed that the peaked pattern in the stepwise distri-

butions was not an artifact of aggregating data from trajectories

by ranking the selection coefficients of fixed mutations in each

individual trajectory. In both the blue to purple and the purple to

red transitions, we observed that in > 50% of trajectories the se-

lection coefficient of the mutation fixed in the second step was

larger than that in the first step. This observation demonstrates

that typical trajectories exhibit a pattern similar to that shown by

the aggregated distribution curves in Fig. 3.

We hypothesized that the peaked shape of the selection co-

efficient curves could be due to the interplay between our chosen

fitness function and the complex interactions within the pathway.

These interactions could restrict the availability of largest-effect

mutations at the beginning of trajectories. As described in the
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Figure 4. Order of fixed mutations strongly influenced by sensitivity. For each transition (delphinidin to cyanidin in A and cyanidin

to pelargonidin in B), heatmaps show the distribution of fixation events across the trajectory steps for all parameters making up at

least 1% of all fixed mutations. Parameter names are listed in descending order of total number of fixation events (colored pink to

yellow). Boxes in the heatmap show the fixation events at each step in the trajectories across the 10,000 simulations; counts are nor-

malized on a MinMax (0,1) scale for comparison (see MinMax Normalized Count scale bar). Boxplots show the complete distributions

of “sensitivity” values (|s/�|; where s is the selection coefficient and � is the normalized directional mutation size: (mutant value−
previous value)/(previous value)) for allmutations for the given parameter (see Fig. S11 for more details on the sensitivity calculation).

Reactions involving the more frequently targeted/higher-sensitivity parameters (yellow) and less frequently targeted/lower-sensitivity

parameters (pink) are highlighted on the pathway diagrams at the top of figure. Parameter notation: Km = KM(e.g., Km_DFR_DHQ),

k = Kcat (e.g. k_DFR_DHQ), and Et = Et (e.g., DFRt), where both the enzyme and the substrate associated with the kinetic parameters is

indicated (e.g., k_DFR_DHQ). Parameters shared across transitions are connected by curved lines, where line style is matched for param-

eters of the same enzyme: DFR (dashed), F3’H (dotted), and FLS (solid). Parameters unique to each transition are written in gray.

Methods section, we tested this idea by employing two additional

simulation experiments. A simple linear pathway model (contain-

ing only the series of reactions leading to pelargonidin), evolved

under selection for increased absolute pelargonidin production

with fixed ratio of pelargonidin to the other species (see Meth-

ods), exhibited a roughly exponential distribution of selection

coefficients over trajectory steps (Fig. S8). This result suggests

that the branching structure of our main model could contribute

to the peaked stepwise distributions of selection coefficients dur-

ing adaptive walks. However, when we applied the same fitness

function to the naive pathway model (with the full branching

structure), we observed a similar exponential distribution of se-

lection coefficients (Fig. S9). This result indicates that the com-

bination of directional selection on target-pigment ratio and sta-

bilizing selection on total pathway production (see Methods) is

likely the main cause of the peaked shape of the adaptive walks.

It is worth noting that the fitness function used in these additional

simulations (see Methods) results in increased frequency of fixed

mutations at both upstream and downstream pathway enzymes

(Fig. S10). This observation is consistent with the imposed selec-

tion on overall increased concentration of an end-product (requir-

ing increased total pathway flux) rather than selection to maintain

the total flux of the starting state.

We next examined the series of mutations underlying the two

focal transitions. Despite relying on mutations at different param-

eters, both the blue to purple and purple to red transitions showed

a similar tight relationship between the sensitivity of the path-

way to particular mutations and the position of those mutations

in the trajectories. Specifically, mutations at enzyme parameters

with higher mean sensitivity (see Supplemental Methods) were

biased toward earlier fixation in trajectories, as can be seen by

the similarity in heat maps in Fig. 4. The result of higher sen-

sitivity is that, for those parameters, a small mutation to the pa-

rameter value can induce a bigger shift in pathway function on

average. Since there is a general trend for larger-effect mutations

to be fixed earlier in trajectories, these sensitivity differences
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manifest in certain parameters becoming concentrated among

early mutations while others are skewed toward the middle or

end of trajectories (Fig. 4). There is also a positive relationship

between sensitivity and total number of fixed mutations at a given

parameter (Fig. 4). We also noted that the parameters contribut-

ing to the cyanidin to pelargonidin transition are almost entirely

a subset of those that contribute to the delphinidin to cyanidin

transition, a pattern resulting from the effective clipping of the

delphinidin branch during the first simulated transition. Nonethe-

less, the order of mutations at those parameters differs markedly

between trajectories (dashed lines in Fig. 4), indicative of the cor-

responding differences in sensitivities. For example, the blue del-

phinidin state is highly sensitive to mutations in k_DFR_DHQ

(the Kcat for DFR on the DHQ precursor), making it an early

target, while the purple cyanidin state has little sensitivity to mu-

tations in that parameter, leaving them for later in the trajectories.

CONTROL OF PATHWAY DYNAMICS IS

RE-ARRANGED TO ACHIEVE SWITCHES BETWEEN

PIGMENT PHENOTYPES

The primary change to the pathway dynamics during each phe-

notypic transition is a re-arrangement of the underlying structure

of control that enzymes exert over steady state concentrations of

chemical species in the pathway (see Supplemental Methods).

The predominant shift in the pathway control structure is summa-

rized in Fig. 5A. The pathway is effectively linearized down the

path (series of reactions) leading to the target pigment, for exam-

ple, cyanidin or pelargonidin. This re-arrangement transforms the

path to the target pigment into a path of reduced resistance. These

shifts in pathway control are largely reproducible, falling within

a fairly narrow range across the majority of simulations (Fig. 5A,

Fig. S13).

The linearization effect is achieved by weakening the control

that the branching enzymes (such as F3’5’H and F3’H; see Fig.

S12) have over the target pigment, while strengthening the con-

trol they have over the off-target species. Particularly for the other

two non-target anthocyanin pigments, the branching enzyme con-

trol coefficients become more negative, which can be interpreted

as a stronger dampening of off-target pigment production (Fig.

S12). The net effect of these shifts is to grant the dominant con-

trol over flux down the target path (i.e., cyanidin or pelargonidin)

to CHS, the furthest upstream enzyme in the pathway, which is

itself negligible as a direct target of fixed mutations (Fig. 1A,

Fig. 5A, Fig. S12). The trajectories of the absolute value of the

ratio of the CHS concentration control coefficient for the target

pigment to the sum of all coefficients for that pigment are shown

in Fig. 5A. In both transitions this ratio converges to a stationary

value over the course of simulations, mirroring the trajectories

through pigment space shown in Fig. 5B.

Figure 5. Pathway flux dynamics are re-arranged to accommo-

date phenotypic transitions. Left column is delphinidin to cyanidin

transition, right column is cyanidin to pelargonidin transition (see

pathway diagrams at the top). (A) Trajectories through the con-

centration control coefficient (CC) space, depicting the absolute

value of the ratio of the CC of the CHS enzyme for each pigment to

the sum of all CC values for that species (|CCCHStarget/
∑
CCall enzymestarget |)

across all trajectory steps. The position of CHS in the pathway

is highlighted by the yellow boxes in the pathway diagrams at

the top, with the change in size denoting increased relative con-

trol over target pigment. The proportion of total control over

the target species possessed by CHS increases to saturation in

both cases. Inflection points of these curves align with inflec-

tion points of the pigment ratio curves in panel (B). The over-

shoot in the relative control of CHS over pelargonidin (red) dur-

ing the transition from cyanidin (purple) to pelargonidin is likely

due to the intrinsic bias of the pathway toward pelargonidin pro-

duction. Error bars are one standard deviation. (B) Mean trajec-

tories through pigment space (in relative amounts of each); the

relative amount of the target pigment is proportional to fitness in

our model. Colors follow above (del phinidin = blue, cyanidin =
purple, pelargonidin = red). Error bars are the standard deviation

of the mean.

The mean trajectories of the target pigment ratio (rela-

tive to the total anthocyanins produced at steady state) are the

phenotype-level manifestation of the underlying changes to the

pathway control structure. They follow a sigmoidal curve across

trajectory steps (Fig. 5B). Shifts in flux down the target branch

result in trade-offs with other branches that are particularly pro-

nounced between the current target species and the target species

from the previous transition in the sequence. This is due to the

constraint on the total amount of material produced by the path-

way, wherein as some pathway products increase, the material

that is allotted to others decreases. The state-dependency of these
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trade-offs demonstrates the emergence of epistasis from the sim-

ple kinetic model.

Discussion
COLOR TRANSITIONS OCCUR VIA CHANGES AT A

SUBSET OF PATHWAY LOCI

In simulations of pathway evolution, we largely recover the same

hotspot loci as seen in nature. For example, transitions from blue

delphinidin to red pelargonidin production in Iochroma and Pen-

stemon (Smith and Rausher 2011; Smith et al. 2013; Wessinger

and Rausher 2014, 2015), blue delphinidin to purple cyanidin in

Phlox (Hopkins and Rausher 2011), and purple cyanidin to red

pelargonidin in Ipomoea (Marais and Rausher 2010) were ac-

complished by mutations at F3’5’H, F3’H, and DFR. In fact,

these three loci, particularly F3’H and F3’5’H, are consistently

the targets of fixed mutations underlying color variation in nature

(reviewed in Wheeler and Smith 2019; see also Table S1). Our

simulations clearly demonstrate that the hotspot nature of these

enzymes is derived from their position in the pathway structure,

which imparts a relatively higher ability to control flux. In other

words, these are the loci that are able to perturb the pigmentation

phenotype sufficiently to be selected on. This observation is in

line with empirical findings in other metabolic pathways, such as

those responsible for carotenoid biosynthesis in plants, wherein

pathway position strongly affects the rate of fixed mutations at

pathway loci (Clotault et al. 2012b). The overall effect of this

narrowing of mutational targets is to impart some predictability

and repeatability to the evolution of the pathway, particularly at

the scale of which enzymes are likely to be involved. However,

the dependence of mutational effects on the selected phenotypic

transition demonstrates the need for knowledge of the precise

context in which the pathway is evolving in order to make ac-

curate predictions. For example, in cases of parallel evolution of

a new pigmentation phenotype from a known common ancestral

state, it will likely be possible to predict the targets and types of

mutations (Wessinger and Rausher 2012).

Further consistent with our simulated results, natural transi-

tions in anthocyanin pigmentation are often accomplished with a

small number of functional changes, although these may be com-

posed of several mutational steps at the genetic level. For exam-

ple, the blue-to-red transition in Iochroma was achieved by the

combined effect of three changes (deactivation of F3’5’H, down-

regulation of F3’h, and coding mutations in DFR) (Smith and

Rausher 2011), while the Phlox transition required two (coding

mutations at F3’5’h and a Myb transcription factor that regu-

lates F3’5’h expression). Meanwhile, the Penstemon transition

required only one change (deactivation of F3’5’H) as did the Ipo-

moea transition (down-regulation of F3’h) (Marais and Rausher

2010). The large-effect mutations at F3’5’H and F3’H in these

empirical cases were in line with the results of our model, where

we saw shifts of several-fold in the Kcat , Km, and Et parameters

that resulted in large changes to activity of these enzymes. Sim-

ilarly small numbers of fixed changes have also been observed

in a variety of other evolutionary transitions, such as changes

in floral morphology in Mimulus (Bradshaw et al. 1998), se-

lection for growth rate in Aspergillus nidulans (Schoustra et al.

2009), adaptation to nutrient-limitation in Saccharomyces cere-

visiae, and adaptive melanism in Chaetodipus mice (Nachman

et al. 2003; Steiner et al. 2007). This pattern reinforces the notion

that major transitions can have a relatively simple genetic basis

and can thus happen on short timescales given a sufficiently high

rate for the generation of genetic variation (Gervasi and Schiestl

2017).

One notable difference between the set of hotspot enzymes

so far known in nature and that of our simulations is the flavonol

synthase (FLS) enzyme, a common target of fixed mutations in

the pathway model. FLS is the enzyme responsible for the syn-

thesis of the flavonol compounds (kaempferol, quercetin, and

myricetin) from the DHK, DHQ, and DHM precursors that are

shared with the anthocyanin branches (Fig. 1). Flavonols play a

variety of critical biological roles including acting as sunscreen

compounds that shield tissues from UV radiation (Ryan et al.

1998, 2002a). Our modeling shows that mutations at FLS can al-

ter anthocyanin pigmentation by increasing activity on the shared

precursors and thus drawing flux away from the anthocyanin

branches. Changes in FLS concentration can yield differential

effects depending on the status of the other enzymes catalyzing

reactions that lead down any particular anthocyanin path. This re-

sult highlights the fact that, because of interactions among loci in

the pathway, even those enzymes not required for anthocyanin

biosynthesis can affect pigmentation. To our knowledge, only

one empirical study of flower color variation has identified FLS

as a target. In this case, differential regulation of FLS induces

flower color pattern variation by tuning anthocyanin concentra-

tion rather than causing a shift between pigments (Yuan et al.

2016). However, it is worth noting that many searches for color

loci have focused on candidate genes required for anthocyanin

biosynthesis, so FLS has not received much attention. Addition-

ally, FLS has been targeted to induce a switch between two an-

thocyanin pigments in genetically-engineered systems (Table S1)

(Nielsen et al. 2002; Nakatsuka et al. 2007). Based on our sim-

ulated results, FLS can therefore be thought of as a hotspot for

“missing mutations” that we may expect to observe often in na-

ture, but so far have only observed very rarely.

Another pathway enzyme that is rarely, if ever, involved in

color transitions in nature is ANS (Table S1). In contrast to FLS,

this observation is easily rationalized by our model. ANS has

very little differential control over flux down the anthocyanin

branches, because it is at the very end of the pathway (Fig. 1;
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Fig. S12). By the time precursors reach ANS, the bulk of rel-

ative flux partitioning down the pathway branches has already

been determined by the upstream F3’H, F3’5’H, and DFR; that

partitioning is then relatively insensitive to changes at ANS. Nev-

ertheless, ANS was a more common target of fixed mutations

when selecting on increased absolute concentration in the sim-

ple linear pathway control (see Methods; Fig. S10), consistent

with the ability of ANS to potentially act as a final “bottleneck”

for overall flux of pathway material toward anthocyanin produc-

tion. These observations are in line with the occasional involve-

ment of ANS as a target in transitions between pigmented and

un-pigmented phenotypes in flowers (Keiichi Shimizu 2011) and

fruits (Rafique et al. 2016).

RANGE OF TARGETS POINTS TO PLEIOTROPIC

EFFECTS OF BIOCHEMICAL MUTATIONS IN NATURE

While we largely recovered the same hotspot loci as those ob-

served in nature, the types of mutations in our simulations are

broader. Specifically, although regulatory mutations (represented

by enzyme concentration in our model) were preferred at all

four hotspot loci, we also observed a substantial fraction of fixed

biochemical mutations (those changing kinetic enzyme parame-

ters). This contrasts with what is so far known about pigmenta-

tion transitions in nature, wherein changes at some loci are pre-

dominantly regulatory while changes at others tend to be struc-

tural (Wessinger and Rausher 2012). F3’h, in particular, has been

primarily targeted by regulatory mutations in nature (Table S1),

although it has also occasionally been targeted by biochemical

activity-tuning modifications (Hoshino et al. 2003; Zufall and

Rausher 2003). In contrast, direct modifications of enzyme ac-

tivity (in particular the alteration of specificity for anthocyanidin

precursors) appear to be much more common than regulatory mu-

tations at DFR (Table S1). This may be due to the need for mod-

ifications that alter DFR activity to tune pathway flux after shifts

induced by regulatory mutations at branching enzymes, which

redirect flux down the target branch (Zufall and Rausher 2004;

Smith and Rausher 2011; Smith et al. 2013).

This discrepancy in the distribution of mutation types

between our model and empirical observations may be explained

by pleiotropic effects that occur in nature, particularly for mu-

tations that affect enzyme function. Most of the enzymes in the

anthocyanin pathway play multiple roles yet are encoded by

single-copy-number genes (Winkel-Shirley 2001). Therefore,

changes in the enzymatic activity at the protein level would

affect the enzymes in all tissues where they are expressed. If the

change in activity induced by the mutation is detrimental to other

functions when occurring in some tissues, this would impose a

constraint on the allowable mutations (Wagner and Zhang 2011).

In contrast, a tissue-specific regulatory mutation could avoid

this antagonistic pleiotropy by allowing activity in the off-target

tissue to remain unchanged (Streisfeld and Rausher 2011; Stre-

isfeld et al. 2011; Wessinger and Rausher 2012). As an example,

in the case of simulated transitions from cyanidin production

to pelargonidin production, we observe changes that worsen

effectiveness of F3’H on DHQ, the precursor for both leuco-

cyanidin and quercetin. This will have the side effect of lowering

quercetin production, and since quercetin is a more effective

sunscreen than the monohydroxylated kaempferol produced

from DHK (Ryan et al. 1998, 2002b), we would expect negative

fitness effects from these changes. Alternatively, expression of

F3’h is known to be under the control of different transcription

factors in different tissues (Streisfeld and Rausher 2009; Smith

and Rausher 2011), setting up the potential availability of tissue-

specific regulatory mutations that can alter the function while

avoiding antagonistic pleiotropy. In contrast to F3’h, F3’5’h is

thought to be a less pleiotropic gene overall, consistent with the

predominance of fixed loss-of-function mutations at this locus

(Wessinger and Rausher 2014, 2015) (Table S1).

Although we believe that pleiotropy explains many of the

differences between our model and nature, aspects of our simu-

lation design may also play a role. Our simulations treat the dis-

tribution of mutations equally for all genes and all regulatory and

biochemical parameters, because the natural distributions are not

known. Spontaneous color mutants in horticultural varieties pro-

vide a rough approximation of the mutation spectrum in terms of

the relative number of regulatory and structural mutations (Streis-

feld and Rausher 2011), but are too few to define distributions of

mutational effects. We also have detailed studies of the effects of

fixed genetic differences between populations and species (Table

S1), but these differences could result from a stepwise accumu-

lation of smaller mutations. Future versions of our model could

test the effects of mutational spectra that differ across pathway

enzymes, such as would occur in the case of multiple loci con-

trolled by a shared regulatory factor or constraints imposed by

biophysical limitations on enzyme activity. We predict that such

differences in the mutational spectrum would not qualitatively al-

ter the principal targets of evolution or the sign of mutations at

those enzymes, but would likely quantitatively change the rela-

tive proportions of fixed mutations at certain loci and the ratio of

fixed biochemical to regulatory mutations.

EVOLUTIONARY WALKS BETWEEN PHENOTYPES

AVOID LARGEST STEPS FIRST

Our simulations suggest that although color shifts can occur with

a few mutations, those with largest effect (in terms of selection

coefficient) do not tend to get fixed first. With a median of four

selected mutations to reach the target phenotype, the largest mu-

tations are typically fixed at the second step. We demonstrated

that this result is not driven by the overall distribution of selec-

tion coefficients for modeled mutations, which span a wide range
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of values and follow a roughly exponential distribution (Fig. S7).

Furthermore, the underlying distribution of parameter effect sizes

for the sampled mutations is constant across all steps of the tra-

jectories and the form of this distribution does not qualitatively

affect the results. Our finding that the largest steps are not fixed

first runs counter to some well-established theoretical results for

adaptive walks, which predict an exponential distribution of mu-

tation sizes over trajectory steps (Orr 1998; Rokyta et al. 2005;

Joyce et al. 2008; Orr 2002). However, it is worth noting that

these studies have several limitations including the assumption

that all the mutations are drawn from the same unchanging dis-

tribution of fitness effects and involve a single locus (Orr 1998;

Joyce et al. 2008). We suspect that the deviation of our model

from the theoretical prediction may be due in part to the violation

of the typical assumptions, in particular that the branched path-

way contains complex interactions between loci. As described in

the Results, evolution of a simplified linear pathway did in fact

yield a roughly exponential distribution of fixed selection coef-

ficients. However, it appears that the constraints imposed by the

fitness function used in our model (directional toward a specific

target-pigment ratio optimum and stabilizing on total steady state

concentration) had a larger effect on the distribution. We argue

that, under this fitness function, very large-effect mutations that

move the pathway phenotype in the correct direction are difficult

to achieve, and thus rare, at the beginning of trajectories. In con-

trast, it appears that moderately-sized mutations can disrupt the

system sufficiently to open up new possible paths for subsequent

mutations to facilitate further movement toward the optimum.

One of the key observations of this study is that the concept

of “large effect” versus “small effect” mutations is not fixed for a

change of a given size at a given parameter. The effect size of any

given parameter mutation on the pathway fitness is instead con-

tingent on the location of the phenotypic optimum and the dis-

tance of the pathway phenotype from the optimum at each step

of a trajectory. Thus, the distribution of mutational effects on fit-

ness shifts as the pathway evolves, rather than remaining static.

We suggest that these dynamics are likely to be common for phe-

notypes controlled by intertwined networks of genes or enzymes,

where epistasis is expected to be pervasive. Interestingly, a sim-

ilar adaptive curve to those observed in this study (sigmoidal in

the fitness space) emerges from a simple biophysical model of

transcription-factor network evolution (Lässig 2007) and peaked

distributions can also be observed in models of evolution with

shifting optima (Collins et al. 2007). Furthermore, under certain

extreme value domains fitness effects are expected to increase,

rather than decrease, over the course of adaptive walks (Seethara-

man and Jain 2014).

It is difficult to determine how well the observed order of ef-

fect sizes for fixed changes align with nature. Studies of the evo-

lution of polygenic phenotypes in plants that have been done, us-

ing approaches such as QTL mapping, yield all of the differences

between evolutionary end states, but the order in which they ac-

cumulated remains unknown (Bradshaw et al. 1998; Hodges et al.

2002). Furthermore, the effects of these mapped regions are likely

to be different in any extant proxy organism than they would have

been in the ancestral organism due to evolutionary separation

and the accompanying effects of genetic background (Leips and

Mackay 2000; Lunzer et al. 2010). Nonetheless, we do expect

mutations with a range of effects on the phenotype, some large

and some smaller. In fact, this has been observed in at least one

natural flower color transition; blue to red flowers in Iochroma

(where the change at F3’h has the largest effect, followed by that

at F3’5’h, and finally by the change at DFR) (Smith and Rausher

2011).

Conclusions
Here, we used a computational model of the anthocyanin pig-

mentation pathway to simulate evolution between a series of

floral pigmentation phenotypes. Assuming a similar mutational

process across all pathway enzymes, we found that the fixed

mutations in simulated evolutionary trajectories are contingent

on the current phenotype, the location of the optimum phenotype

in pigmentation space, and the structure of the pathway. Our

approach can be used as a general framework to study how the

topology of genetic pathways interacts with selection to deter-

mine evolutionary trajectories. We could also envision expansion

to a fully population genetic model in order to explore the effects

of population dynamics (e.g., bottlenecks) on the distribution

of selected mutations (Dittmar et al. 2016). One of the most

fruitful avenues for future work would be to construct a more

realistic model of the regulatory architecture, directly linking

the regulation of pathway enzymes through shared transcrip-

tional activators and repressors. This would allow the relative

importance of cis- and trans-regulatory mutations to be assessed,

along with their effects on the emergence of phenomena such as

antagonistic pleiotropy and sign epistasis.
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