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Sickle cell disease (SCD) is a group of inherited blood disorders affecting

the β-globin gene, resulting in the polymerization of hemoglobin and

subsequent sickling of the red blood cell. Renal disease, the most common

complication in SCD, begins in childhood with glomerular hyperfiltration

and then progresses into albuminuria, a fast decline of glomerular filtration,

and renal failure in adults. This mini-review focuses on glomerular filtration

abnormalities and the mechanisms of hyperfiltration, explores genetic

modifiers and methods of estimating glomerular filtration rates, and examines

novel biomarkers of glomerular filtration in SCD.
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Introduction

Sickle cell disease (SCD) is caused by a single nucleotide mutation in the β-
globin gene resulting in the substitution of valine for glutamic acid leading to the
polymerization of hemoglobin and sickling of red blood cells (RBCs) under low oxygen
conditions. The pathophysiology of SCD is characterized by chronic hemolysis, vaso-
occlusion, and organ damage. SCD may occur as homozygous hemoglobin S (HbSS),
compound heterozygous inheritance of HbS with mutant hemoglobin C (HbSC),
or mutations that result in decreased or absent β-globin (hemoglobin β+ and β0
thalassemia). HbSS and HbSβ0 genotypes are clinically similar disorders associated
with severe anemia and disease complications, whereas HbSC and HbSβ+ thalassemia
are relatively less severe. SCD is widespread in the malaria-endemic belt: sub-Saharan
Africa; South America, the Caribbean, and Central America; Saudi Arabia; India; and
the Mediterranean countries (1). It is also common among individuals whose ancestors
came from these regions. Approximately 5% of the world’s population carries HbS
mutation (2). The World Health Organization estimates that 300,000 children are
born with SCD each year, 75% of whom are in sub-Saharan Africa, and this number
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could rise to 400,000 by 2050. In the USA, SCD affects
approximately 100,000 people, primarily of African descent
(3). Large-scale epidemiological studies demonstrated a strong
geographical link between the highest HbS allele frequencies and
high malaria endemicity on a global scale (1, 4–6).

Renal disease is one of the most common complications of
SCD (2, 7). Approximately 30% of SCD patients develop chronic
kidney disease (CKD), and 14–18% progress to end-stage kidney
disease (8–10). Sickle cell nephropathy (SCN) is a progressive
disease that begins in childhood as glomerular hyperfiltration
leading to albuminuria, loss of renal function, and renal failure
(11–15). Before the introduction of antibiotics prophylaxis in
the 1970s, the largest mortality in SCD occurred during the
first 5 years of life and was associated with bacterial infections
(16). In adult patients, stroke and renal failure are common
causes of death (16). Current improvements in patient care allow
SCD patients to survive relatively longer, leading to an increased
incidence of CKD and renal failure (17). Mortality due to renal
failure in adult SCD patients is about 10.5% (10).

Hyperfiltration in children and fast
decline of glomerular filtration in
adult sickle cell disease patients

Early studies demonstrated that glomerular changes in
SCD patients are characterized by high renal blood flow and
glomerular hyperfiltration and hypertrophy, starting in infancy
and declining to a normal range during the first two decades of
life (18–22). Glomerular hyperfiltration is defined as estimated
glomerular filtration rate (eGFR) above 130 ml/min/1.73 m2

for women and 140 ml/min/1.73 m2 for men. There is
no definition for hyperfiltration based on measured GFR
(mGFR). The assessment of mGFR in 176 SCD infants
demonstrated significantly higher values than in non-SCD
infants (125.2 ± 34.4 in SCD vs. 91.5 ± 17.8 ml/min/1.73 m2

in controls). Schwartz formula for eGFR produced even higher
values (184.4 ± 55.5 ml/min/1.73 m2) (22). Both measured
and estimated GFR indicates increased prevalence (25–43%)
of hyperfiltration in young SCD patients (12, 23–27), with the
highest occurrence found in HbSS patients (28, 29).

In young SCD adult patients, hyperfiltration is common,
particularly in early adulthood but declines into a normal
range. The decline into a normal range is faster in men than
women and represents a drop in renal function rather than an
improvement. Hyperfiltration assessed by mGFR occurred in
51% of adult SCD patients, and the prevalence of hyperfiltration
was higher in men (60%) than in women (42%) (28). We
recently reported a high prevalence of hyperfiltration in a
cohort of 51 adult SCD patients, with the highest occurrence in
HbSS 67% and HbSC 50% patients (30), This result concords
with a study of 193 SCD patients where the prevalence of
hyperfiltration was 61% (13).

Glomerular enlargement and congestion, mainly in the
juxtamedullary glomeruli, are more severe in children (31)
than in adults, in whom glomerular scarring and fibrosis
are developed (32). Hyperfiltration together with glomerular
hypertrophy can induce glomerulosclerosis, leading to the
reduction of GFR. GFR decline begins early and progresses more
rapidly in individuals with SCD compared with the general
population (33, 34).

A retrospective study over 4.01 years median follow-up
in 331 patients demonstrated an annual eGFR decline of
2.05 ml/min/1.73 m2 for severe genotypes (HbSS and HbSβ0)
and 1.16 ml/min/1.73 m2 for mild genotypes (HbSC and
HbSβ+) (14). A higher rate of the annual eGFR decline
(2.35 ml/min/1.73 m2) was observed by Xu et al. in 193 out
of 288 SCD patients over the course of 5-years follow-up; a
rate two-fold higher than in African American adults without
SCD (13). The sex-associated renal decline suggests a higher
and more common rate in men than women (13, 29). Even
more, Asnani et al. found in their cohort an annual rate for
mGFR decline in SCD patients to be even higher (3.2 ± 2.83
ml/min) (35).

The proportion of patients with fast eGFR decline was
similar between patients with hyperfiltration and normal
filtration, and eGFR values at baseline did not correlate with
the rate of decline (13). Thus, the decline in eGFR is likely
caused by intrinsic factors inducing the loss of renal function
and does not reflect the difference in baseline glomerular
filtration or improvement of hyperfiltration (13, 29). Because of
hyperfiltration and higher GFR in young patients with HbSS and
HbSβ0 genotypes, a longer time is needed to reach a GFR level of
less than 60 ml/min/1.73 m2 that defines stage 3 CKD, and severe
kidney injury may occur at higher GFR levels (14). Therefore,
the rate of GFR decline may be a better predictor of progressive
renal disease in SCD than the absolute value of eGFR.

Mechanism of hyperfiltration in
sickle cell disease

Hyperfiltration and renal injury in SCD result from a
cascade of events starting with chronic RBC sickling and
hemolysis, leading to increased blood viscosity, microvascular
obstruction, anemia, oxidative stress, and inflammation (36).
The most common histopathological change in the SCD
kidney is the dilation of glomerular and interstitial capillaries
filled with sickle RBCs (37). The mechanism leading to
hyperfiltration is associated with enhanced renal blood flow
(20, 25, 38, 39), reflecting an increased cardiac output
due to anemia and indicated by the positive correlation of
hyperfiltration with low hemoglobin levels (40, 41). SCD is
characterized by a paradoxical coexistence of hypoperfusion
in the microvasculature and a hyperperfusion observed
systemically. The kidney exemplifies this paradox with enhanced
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perfusion in the whole kidney and the glomeruli while the
vasa recta remain hypoperfused. The hypoxic, acidic, and
hyperosmolar environment of the renal medulla promotes
the sickling of RBCs and slow blood rheology. In the
vasa recta, slow blood rheology aggravates vaso-occlusion
and leads to ischemia that can advance to infarction. As a
compensatory mechanism, medullary prostaglandins and nitric
oxide are secreted, leading to an increased renal cortical
flow (42–44) (Figure 1). A screening of 14 HBSS patients
using inulin, paraaminohippuric acid, and dextran clearances
demonstrated increased renal perfusion and a 65% increase
in ultrafiltration coefficient (Kf) in SCD patients compared to
non-SCD controls (25). An elevated Kf suggests an increased
glomerular filtration area and supports glomerular enlargement
in SCD. Administration of prostaglandins synthesis inhibitor
indomethacin in SCD patients significantly reduced GFR
(45). Indomethacin inhibits cyclo-oxygenase (COX), which is
required for the synthesis of prostaglandins. However, non-
steroidal anti-inflammatory drugs (NSAIDs) are associated with
renal, gastrointestinal, and cardiovascular toxicity (46). In the
general population, NSAIDs were associated with CKD and
a rapid decline in GFR (47–49). In pediatric SCD cohorts,
NSAIDs increased the risk of micro-albuminuria and, in one
reported case, irreversible renal failure (50, 51). Thus, the use
of prostaglandins inhibitors to reduce GFR is more detrimental
than beneficial for SCD patients.

Additionally, intravascular hemolysis reduces NO
bioavailability through binding to plasma-free hemoglobin
and activation of arginase. Several studies demonstrated that
markers of chronic hemolysis, such as low total hemoglobin and
fetal hemoglobin levels, correlate with hyperfiltration (28, 52,
53). On the contrary, in a transgenic SCD mouse model, nitric
oxide synthase 2 (iNOS) induction was shown in the glomeruli
and distal nephron. Elevation of iNOS may reflect a feedback
mechanism activated by low NO, but it increases NO synthesis,
leading to vasodilation that contributes to hyperfiltration (54).

Sickle cell disease increases inflammation and oxidative
stress, which induce endothelial injury and glomerulopathy.
We and others demonstrated that in the mouse model,
SCD nephropathy is associated with glomerular endothelial
inflammation induced by activation of the endothelin and
RON kinase receptors (37, 55). Treatment with endothelin
receptor antagonist or RON kinase inhibitor significantly
ameliorated glomerular endothelial injury and hypertrophy.
Additionally, statin (atorvastatin) treatment improved urine
concentrating ability and glomerular filtration rate, decreased
endothelial activation markers, and ameliorated oxidation stress
(56). In a pilot study involving 13 SCD patients, treatment
with atorvastatin resulted in a small increase in eGFR (57).
The protective effects of statins may be due to their anti-
inflammatory and antioxidant function.

There is also some evidence that glomerular permeability
is increased in SCD, caused by a change in the glomerular

porosity: changes in the number of glomerular membrane pores,
the size, and the selectivity of the pores. Such findings may
suggest a unique, additional, non-hemodynamic-related cause
of hyperfiltration in SCD (39).

High plasma glucose and blood pressure (BP) levels
are associated with hyperfiltration in diabetic and obese
patients (58, 59). In contrast, SCD patients have normal
glucose regulation and low BP (25, 26, 38). The incidence
of hypertension in patients with HbSS is significantly lower
than in non-SCD African Americans in the USA (2–6% in
SCD vs. 28% in non-SCD). The slightly increase in BP values
considered normal in non-SCD individuals may be a risk factor
for cardiovascular complications in SCD patients (60). In the
general population, obesity is a risk factor for the progression
of renal disease. However, in SCD patients, a higher body mass
index is associated with decreased odds of rapid eGFR decline
(21, 61).

Genetic modifiers of renal disease
in sickle cell disease

Plasma level of fetal hemoglobin (HbF) is a best-
characterized modifier of SCD that negatively correlates with
the severity of complications. Low HbF levels are associated
with more hemolysis (62). Single nucleotide polymorphisms in
the promoters of gene encoding HbF, BCL11A, and HMIP-2
are strongly associated with increased HbF levels (63, 64).
Hydroxyurea treatment increases HbF levels (65, 66) and
is recommended for almost all patients with HbSS and
HbSβ0 disease starting in the first year of life. However,
high levels of endogenous HbF or hydroxyurea treatment do
not significantly improve GFR or reduce hyperfiltration (67).
Multiple genetic modifiers, including APOL1, HMOX1, MYH9,
HbA1, and HbA2 variants, are implicated in the development
and progression of SCN (33, 68–70). The results of these studies
are not consistent. Interestingly, data analysis of 326 SCA
patients from the Democratic Republic of Congo indicated that
APOL1 high-risk genotypes (G1/G1, G2/G2, and G1/G2) were
significantly associated with hyperfiltration, but HMOX1 GT-
dinucleotide long repeats were associated with lower eGFR (71).
In contrast, a cohort of 521 African American SCD patients only
demonstrated a weak correlation between MYH9 and APOL1
genotype and eGFR (72).

Estimated glomerular filtration
rate calculation methods

Currently, no consensus exists regarding the optimal eGFR
equation for SCD patients (73, 74). The evaluation of eGFR
with formulas based on the serum creatinine and/or cystatin
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FIGURE 1

Mechanism of SCD-induced glomerular hyperfiltration. The hypoxic, acidic, and hyperosmolar environment of the renal medulla promotes the
polymerization of HbS and the sickling of RBCs. Slow blood rheology in the vasa recta aggravates the vaso-occlusion and leads to ischemia that
can advance to infarction. As a compensatory mechanism, medullary prostaglandins and nitric oxide (NO) are secreted leading to an increased
renal cortical flow. It was suggested that prostaglandins are released by renal interstitial cells. Genetic modifiers such as APOL1, HMOX1, MYH9,
HbA1, and HbA2 and increased renal perfusion coupled with increased glomerular permeability and glomerular filtration surface area may
enhance glomerular hyperfiltration in SCD. Figure created with BioRender.com.

C concentration is unreliable for SCD patients because of
the increased glomerular filtration, lower muscle mass, and
increased tubular secretion of low molecular mass organic
molecules (25, 36, 75, 76). Plasma creatinine is affected by
physiological and analytical factors, and the extreme deviation
of eGFR from mGFR is frequent. Non-SCD African Americans
also have higher serum creatinine levels and urinary creatinine
excretion than the general population (74).

In children with SCD, Schwartz equation based on
height and serum creatinine is commonly used for eGFR
calculation. A study in 176 HbSS infants found no correlation
between mGFR and eGFR estimated by Swartz equation (22).
Additionally, Schwartz estimation is highly dependent on the
accuracy of the creatinine detection (77). A study in 79
SCD children demonstrated that eGFR calculation based on
creatinine detected by mass-spectrometry is better correlated
with mGFR (77).

Several equations for eGFR have been used for adult SCD
patients, including Cockcroft–Gault (CG), the Modification of

Diet in Renal Disease (MDRD), and Chronic Kidney Disease
Epidemiology-Collaboration (CKD-EPI) equations with and
without adjustment for race (73, 78–80). A study in 59 adult
SCD patients demonstrated that CG and MDRD formulas
overestimated creatinine clearance compared to mGFR (78).
Similar results were obtained in 48 adult HbSS patients,
where 66% of the cohort had hyperfiltration assessed by
mGFR compared to 72% using MDRD formula (28, 79).
The serum creatinine-based CKD-EPI equation performed
relatively well but produced a systematic bias of about
45 ml/min/1.73 m2 (79). The use of race for eGFR calculation
produces an additional bias because SCD predominantly affects
Africans and African Americans and, equations with adjustment
for the black race overestimate eGFR (73, 79). New eGFR
equations based on creatinine and cystatin C without race
have recently been developed (80). The new equations slightly
underestimate eGFR in African Americans and overestimate
it in the general population. The new creatinine-cystatin
C equations without race were more accurate than new
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creatinine equations, with smaller differences between race
groups (21, 80). Also, because the tubular secretion is the
predominant mode of creatinine excretion when the GFR
is less than 40 ml/min/1.73 m2, serum creatinine levels
will produce false values in assessing GFR in older SCD
patients with reduced metabolism and tubular dysfunction
(36, 76, 81, 82). Thus, the absolute values of eGFR have
limited efficacy for routine evaluation of GFR in SCD children
and adult patients.

Markers of renal function in sickle
cell disease

Glomerular hyperfiltration in SCD plays an essential role
in the progression of renal disease; however, to date, no
reliable biomarkers of hyperfiltration exist (78). Common
clinical markers of renal function, such as serum creatinine and
cystatin C are unreliable in estimating GFR in SCD. Reduced
production and increased clearance of plasma creatinine may
lead to falsely normal plasma creatinine levels and creatine
clearance, and delay the detection of kidney disease. Direct
measurement of GFR with the injection of substances that do
not undergo metabolism, tubular secretion, and absorption,
such as inulin, iohexol, iothalamate, and 51Cr-EDTA is
recommended; however, the method is difficult and rarely used
in the clinical setting. Recently, several potential biomarkers of
glomerular filtration were assessed.

Chronic sickling and hemolysis of RBCs induce multiple
mechanisms that cause kidney injury. Thus, hemolysis markers
such as hemoglobin (Hb), bilirubin, lactate dehydrogenase
(LDH) and reticulocyte, and RBCs Hb levels were explored.
Studies provided conflicting evidence of the correlation between
GFR and hemolysis: Some studies did not find a significant
relationship (62, 66, 83), but others showed a strong correlation
(13, 28, 83). In a large patient cohort study of 356 patients from
the University of Illinois Chicago and 439 patients from the
multi-center cohort, Saraf et al. demonstrated an association
of hemoglobinuria with progressively lower eGFR values (83).
Using a multiple logistic regression analysis in 280 adult
SCA patients, Haymann et al. found that hyperfiltration is
independently associated with lower HbF and total Hb levels
(28). In contrast, in the Kuwaiti SCD patients, Marouf et al. did
not find a correlation between eGFR and HbF concentration
(78). Higher platelet and reticulocyte counts, higher systolic
BP, lower Hb level, and body mass index were associated
with a rapid decline of GFR in the study of 288 adult SCD
patients (13). And, though BP levels in SCD are lower than
in a general population of African Americans, GFR does not
correlate with BP (84).

Metabolomics analysis identified two metabolites
(asymmetric dimethylarginine – ADMA and quinolinic
acid) associated with a rapid decline of GFR (13). ADMA is the

endogenous nitric oxide (NO) synthase inhibitor implicated
in the pathogenesis of endothelial dysfunction and CKD
progression (85). Quinolinic acid was previously associated
with incident CKD in the general population (86).

In our study, mass-spectrometry analysis of urine samples
collected from HbSS patients identified orosomucoid (ORM)
(87) and ceruloplasmin (CP) (88) which positively correlated
with hemoglobinuria, and kringle domain-containing protein
HGFL, which positively correlated with GFR (89). ORM is
a major acute-phase protein and increased ORM expression
and serum concentration is associated with tissue injury,
inflammation, infection, cancer, and diabetic and systemic
lupus erythematosus-associated renal disease (90, 91). CP is
a ferroxidase that plays a central role in iron homeostasis,
which is highly affected by SCD. Urinary CP was proposed as
a biomarker for early diagnosis of membranous nephropathy,
focal segmental glomerulosclerosis, lupus nephritis, and IgA
nephropathy (92, 93). Therefore, hemoglobinuria, CP, and ORM
reflect increased inflammation and iron metabolism in SCD
patients and positively correlate with stages of CKD. Plasma
and urine ORM inversely correlated with eGFR in HbSS and
HbSC patients (30). Despite considerable efforts in searching for
SCN-associated biomarkers, there remains a paucity of reliable
biomarkers of GFR in SCD.

Conclusion

In summary, SCN is a common cause of morbidity
and mortality in SCD patients (36, 94, 95). Despite severe
complications of SCD, it remains the most common inherited
hemoglobinopathy due to positive environmental selection.
The mechanism of renal disease in SCD is unique (39).
The higher GFR in patients with albuminuria is consistent
with the hypothesis that high glomerular flows cause renal
damage (38, 73). But not all hyperfiltrating SCD patients
develop albuminuria and renal disease, suggesting that other
mechanisms and genetic risk factors are involved in the
disease development and progression. More studies are needed
to identify novel mechanisms and consistent genetic factors
associated with SCN. Common clinical markers of renal
function, such as serum creatinine and cystatin C, are unreliable
because of increased GFR, low muscular mass, and increased
tubular secretion in SCD patients (28, 75). Although an accurate
measure of GFR is not necessary for most clinical purposes,
the consequences of eGFR overestimation are extremely
important in rapid progressors who may benefit from early
treatment. Thus, monitoring of eGFR during routine clinical
visits may reveal a fast decline of eGFR better than other
markers predicting the development of renal disease in SCD
patients (96).
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