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Accepted: 24 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Nowadays, the anticipation of human mobility flow has important applications in many domains ranging from urban
planning to epidemiology. Because of the high predictability of human movements, numerous successful solutions to
perform such forecasting have been proposed. However, most focus on predicting human displacements on an intra-urban
spatial scale. This study proposes a predictor for nation-wide mobility that allows anticipating inter-urban displacements at
larger spatial granularity. For this goal, a Graph Neural Network (GNN) was used to consider the latent relationships among
large geographical regions. The solution has been evaluated with an open dataset including trips throughout the country of
Spain and the current weather conditions. The results indicate a high accuracy in predicting the number of trips for multiple
time horizons, and more important, they show that our proposal only needs a single model for processing all the mobility
areas in the dataset, whereas other techniques require a different model for each area under study.

Keywords Human mobility · Graph-based neural networks · Large-scale mobility · Human flow prediction ·
Mobile phone location data

1 Introduction

Since 2010, we have witnessed the dawn of personal
handheld devices that have completely transformed our
digital live. These devices have continuously been enriched
with potent positioning capabilities thanks to GPS, WiFi
and Bluetooth sensors. Therefore, users can now link their
digital life to actual real-world physical places.

This has generated an unprecedented amount of human
location data [1] and has promoted the development of the
mobility mining discipline as a prominent course of action
within the data science ecosystem [2]. In this context, one of
the major findings in this discipline is that human mobility
is highly predictable [3].Therefore, many techniques and
solutions have emerged for human mobility forecasting [4].
Moreover, the anticipation of human flow has important
applications in diverse domains like healthcare [5, 6], urban
services [7] and transportation management [8].
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These solutions often rely on human movement trajec-
tories on different spatial and temporal scales from a large
variety of sources like GPS traces [9], Call Detail Records
(CDRs) [10] or Online Social Media (OSM) posts [11]. To
analyze these sources, different techniques based on statis-
tical methods [12], machine learning algorithms [13] and,
more recently, deep learning [6] have been used.

However, two important limitations in the existing human-
mobility predictors are observed:

– First, most of the current solutions are geographi-
cally bound to urban settlements covering intra-urban
displacements (see Fig. 1). They provide predictions
only regarding the movement of people within such
constrained areas. However, there is a lack of propos-
als predicting respect to larger spatial scenarios, like
nation-wide or inter-urban human mobility. Thus, the
anticipation of large-scale crowd flows could be instru-
mental for developing, for example, effective lockdown
policies if a pandemic scenario occurs.

– Second, these solutions take, as a primary data
source, the raw spatiotemporal trajectories generated
by different moving objects like vehicles or crowds
of people. Nevertheless, in a real-world setting the
access to this raw data is usually restricted due to
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Fig. 1 Scales of human
mobility. The red arrows of the
leftmost figure represent the
intra-urban human flows among
different areas within a city A.
The rightmost figure depicts the
mobility flows defined at larger
scale among spatial regions
(R1, R2, R3) that include several
cities

several privacy and economic policies defined by
data providers and operators [14]. Furthermore, the
open data movement has promoted the release of an
increasing number of human-mobility datasets [15–17].
However, they are usually filtered and pre-processed
to complain with several restrictions as location data
is sensible in terms of privacy. Developing predictors
leveraging such coarse-grained mobility data is still
scarce in the mobility mining domain.

This study therefore proposes a novel mechanism for
human mobility forecasting on a nationwide scale. In brief,
the solution can anticipate the flows of people among
administrative areas defined on a large geographical scale.
Consequently, the solution operates at a spatial granularity
larger than existing solutions. Besides, it does not require
the collection of raw spatiotemporal trajectories, but aggre-
gated mobility data regarded as emissions of the geograph-
ical regions. As shown in the rightmost part of Fig. 1, the
solution aims to predict the flows of people among regions
R1, R2 and R3. Our proposal has been tested with a nation-
wide human mobility open dataset released by the Spanish
Ministry of Transportation based on the mobile phone loca-
tion data from several telephone operating carriers1.

Because the latent human flow connections among the
target areas can be regarded as a sparse graph, a compelling
alternative to forecast the mobility in these areas are Graph
Neural Networks (GNNs). These particular neural networks
have been successfully applied in many classification and
regression tasks in graph-based scenarios [18]. Thus, the
composition of an accurate GNN calls for the proper defi-
nition of the edges among the geographical areas acting as
nodes. Much effort has been put within the spatial analysis
field for the formal definition of techniques and mechanism

1https://www.mitma.es/ministerio/covid-19/
evolucion-movilidad-big-data/opendata-movilidad

to evaluate the latent correlations and relationships among
spatial areas [19]. Therefore, given the target spatial gran-
ularity of the proposal, we leveraged several techniques
and concepts from the spatial analysis field to define the
adjacency among areas (nodes) of the target graph.

The contributions of this study are two-fold, 1) the devel-
opment of a large-scale human mobility predictor based on
GNN, and 2) the usage of spatial analysis knowledge to
uncover connections among the target spatial areas to com-
pose the input graph.

The rest of the paper is structured as follows. Section 2
summarizes current approaches for human mobility predic-
tion. Section 3 is devoted to describing the human mobility
feed used in the study. Section 4 puts forward the pro-
posed forecasting mechanism. Section 5 discusses the major
results of the experiments. Finally, the main conclusions and
the future work are summed up in Section 6.

2 Related work

Many proposals for human mobility forecasting can be
found in the literature, which can be classified according
to their input data, applied methods, or prediction type (see
Table Table 1).

The applied methods can be categorized into parametric
and non-parametric approaches [20]. The former ones relate
to proposals that focus on generating a model based on a
palette of theoretical or physical foundations and tune its set
of parameters. Examples of these approaches are ARIMA
[21] and linear regression models [22]. Nonetheless, these
studies do not offer a reliable performance under abnormal
mobility situations due to, for example, hazardous weather
events. However, non-parametric methods can cope with
such type of scenarios [23]. In this scope, Deep Learning
(DL) algorithms have been widely used for such a forecast-
ing task as Table 1 shows.
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Table 1 Human mobility
prediction approaches Ref. Input Mobility data Method Prediction

Scale Type

[24] TFC, RSB ConvLSTM Intra-urban PT traffic

[25] TFC ConvLSTM Intra-urban Road traffic

[26] LBS LSTM Intra-urban Individual flows

[27] GPS traj. LSTM Intra-urban Pedestrian flows

[28] OSN, GPS traj. LSTM Intra-urban Individual flows

[29] GPS traj. LSTM Intra-urban Individual flows

[30] TFG, RSB LSTM Intra-urban Road traffic

[31] MPL, LBS, CDR GRU Intra-urban Individual flows

[32] GPS traj. GRU Intra-urban Individual flows

[33] ILD, GPS traj. ConvGRU Intra-urban Traffic speed

[34] ILD, GPS traj. GCN Intra-urban Road traffic

[35] ILD, GPS traj. GCN Intra-urban Road traffic

Our proposal MPL GCN Inter-urban Crowd flows

Acronyms, MPL - Mobile Phone Location data, GCN - Graph convolutional network, GRU - Gated
Recurrent Unit, LSTM - Long Short-Term Memory, ILD - Inductive Loop Detector, OSN - Online Social
Network, TFC - Taxi-based Floating Cars, RSB - Ride-Sharing Bikes, PT- Public Transport, LBS -
Location-based Service, CDR - Call Detail Record

From this table, different forms of Recurrent Neural
Networks (RNNs) have been one of the most applied DL
solutions. One clear example of this are Long Short-Term
Memory (LSTM) networks. Thus, the proposal Miyazawa
et al. [28] fused data from two mobility feeds, OSNs and
aggregated GPS trajectories, to provide predictions about
individual movements in the city of Tokyo. The authors
fed a LSTM network with the embeddings generated from
the spatiotemporal and textual data extracted from the OSN
and GPS traces. Likewise, Kong and Wu [26] made use
of a spatiotemporal LSTM model (ST- LSTM) to predict
the next area of interest visited by a particular user based
on his/her previous trace of visits to other city’s areas.
The proposal was successfully tested by using location data
extracted from a Location-Based Service (LBS) in Beijing.
Moreover, in a fine-grained spatial scale, an LSTM network
is composed by Zou et al. [27] to predict the collision-free
trajectories of a set of pedestrians. Another example is an
attention mechanism along with a bidirectional LSTM as
stated by Zhao et al. [29], to develop a user destination
prediction based on LBS data. The system relies on a
mapping process where the raw spatiotemporal trajectories
of the users are translated into grid-based tessellations of the
urban setting. Wang et al. [30] extended this bidirectional
LSTM model with an attention mechanism to forecast urban
traffic conditions in peak hours using external factors such
as weather conditions. The authors tested their proposal
using taxi and bike datasets from New York. All these
approaches are limited as they require the collection of
individual trajectories. In contrast, our approach focuses on

forecasting the flows of people that move from one spatial
region to another in an aggregated manner.

Convolutional LSTM (ConvLSTM) networks have been
also applied for human mobility prediction [24, 25].
Moreover, the work by He, Chow, and Zhang [24] defines
a grilled spatial tessellation of a city. A ConvLSTM
model was used to predict the incoming and outgoing
public transportation flows of each city on an hour-based
granularity. The model was tested using taxi and bike-
sharing mobility data from New York and Beijing. Yang et
al. [25] used a ConvLSTM for traffic condition estimation in
Beijing. Here, the proposed methodology first identifies the
critical road segments of a city with a correlation analysis.
Hence, it is possible to feed the ConvLSTM with only such
critical roads instead of the full network of roads of the
target city.

Another important type of RNN are Gated Recurrent
Unit (GRU) models. An interesting usage of this model
is put forward by Fan et al. [32], where an ensemble of
GRU models, each focusing on a particular target day, was
composed to detect both regular and abnormal citywide
mobility. Then, a predictor was built based on this ensemble
to predict the next locations of the monitored users. The
same model was applied by Feng et al. [31], where two
attention modules were tailored to the network to improve
the selection of the target historical trajectories to perform
the prediction. The mechanism was tested using different
location data at different granularities in three cities, New
York, Beijing, and Shanghai. Wang et al [30] proposed the
combination of a GRU with a CNN along with an attention
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mechanism to predict the traffic speed on certain roads of
Paris. This proposal can detect traffic trends depending on
the day of the week and without using past events.

Last, GNNs have been also proposed as enablers for
human mobility prediction. Hence, Zhao et al. [35] applied
a traffic graph-convolutional LSTM to predict the traffic
conditions of the cities of Shenzhen and Los Angeles with
two datasets from inductive loop detectors and aggregated
GPS trajectories to compose the latent input graphs.
Likewise, Cui, Henrickson, Ke, and Wang [34] used a
similar approach for the city of Seattle. Thus, authors
consider the free-flow traffic dependencies among road
networks to compose the graphs.

There are multiple proposals for human mobility predic-
tion based on DL algorithms. Such works rely on vastly
different data sources and operate for different types of city-
wide human mobility (e.g., individual vs. crowd). However,
our proposal focuses on providing a nationwide predictor
based on a GNN, a model not fully explored for human
mobility analysis. Thus, it is impossible to directly trans-
fer the models generated for an intra-urban scale to an
inter-urban scenario. The relationships among nodes in an
intra-urban graph differ from inter-urban. Whereas in city-
wide GNN proposals such links are modeled based on the
underlying road topology of the city [34, 35]. The geograph-
ical regions on a nationwide scale cannot be solely linked
themselves, based on such an infrastructure network, but it
is necessary to consider other spatial, temporal, and demo-
graphic factors that might govern the human flows among
such regions as it is discussed in Section 4.3.

3 Description of the humanmobility dataset

This study analyzes a nationwide human mobility dataset
released by the Spanish Ministry of Transportation (SMT)
in December 2020. This dataset covers a 9-month period
of mobility data in Spain from February 29th to November
30th, 2020, and it contains the number of trips among 3216
administrative areas (herein Mobility Areas, MA) per hour.
These areas are created ad hoc by the SMT and include
the entire country (peninsular and insular extension). A
single trip in the dataset is considered as the spatial
displacement of an individual at a distance above 500
meters. Consequently, this dataset can be regarded as a set
of tuples taking the form:

〈date, hour, morigin, mdest , ntrp〉
reporting that there were ntrp trips from the MA morigin to
the MA mdest during the indicated date and hour .

According to the official documents [36], these data have
been collected through CDRs from 13 million users of an

unspecified mobile phone carrier. Once anonymized, this
dataset was used to infer representative mobility statistics
on the nation-level of the population of Spain and made
publicly available as open data.

In its raw form, the dataset comprises 830,450,300 trips
between MAs. Figure 2 shows the spatial distribution of
the total number of outgoing trips per MA during the
entire period of the study, where each polygon represents
a particular area. It can be seen there is a strong spatial
aggregation among the MAs where areas with similar values
are spatially group together.

Furthermore, Fig. 3 depicts descriptive features of the
MAs. Thus, most areas emitted between 5 and 20 million
trips on average as Fig. 3a depicts. In terms of spatial
size, each area covered around 2.5 km2 (Fig. 3b) and
an average population of 14,428 people in most cases
(Fig. 3c). These are values larger than usual for regular
city neighborhoods. For example, New York City has 390
neighborhood tabulation areas (instead of 3216 as in this
study) whose average population was 45,322 in 20102.
Finally, Fig. 3d depicts the distribution of the number of
neighboring areas per MA based on the Queen contiguity
definition, MAs that share either a corner or an edge. The
irregular tessellation of the regions makes this contiguity
feature fluctuate to a great extent, unlike regular grid-
based spatial partitions where all the regions have the same
number of adjacent cells. Fig. 4 also shows almost 60% of
the outgoing trips of an MA go toward non-adjacent areas
whereas the other 40% end in the adjacent areas of the MA.

Furthermore, Fig. 5a confirms that there is a strong
positive correlation between the population of an area and
its sheer number of outgoing trips; thus, the larger the MA
population the larger its outgoing trips.

We also studied the distribution of the number of inter-
MA trips based on the distance between the origin and
destination MAs. Fig. 5b shows areas close to each other.
This distribution seems to follow a power-law distribution
widely discussed within the human-mobility mining disci-
pline [37]. Briefly, this distribution dictates that the magni-
tude of trips between two areas decreases in an exponential
proportion of their distance.

Concerning the connectivity level among MAs, Fig. 6
shows the number of origins and destinations per MA. Thus,
an MA is regarded as an origin of another MA if the former
emits trips toward the latter whereas a destination MA
receives trips from another MA. As it can be observed, the
mobility dataset exhibits a sparse connectivity among areas
since an MA is connected on average with other 328 MAs.
This only represents 10% of the total areas of the setting.

2https://data.cityofnewyork.us/City-Government/
New-York-City-Population-By-Neighborhood-Tabulatio/swpk-hqdp
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Fig. 2 Geographical distribution
of the sheer number of outgoing
trips of the Spanish MAs during
the entire period of study

Fig. 3 Descriptive parameters of the target MAs
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Fig. 4 Number of trips between adjacent and non-adjacent mobility
areas

Finally, Fig. 7 depicts the spatial autocorrelation of MAs
based on their spatial lag. For an MA mi , its spatial lag sli
is calculated as:

sli =
3215∑

j=0

wi,j × otj

where wi,j is the spatial weight of 〈mi, mj 〉 and otj is
number of outgoing trips of mj . Here, the spatial weights
are defined with the Queen adjacency described above, thus
wi,j = 1 if the area adjacent and wi,j = 0 otherwise

In Fig. 7, the spatial lag analysis confirms the high spatial
autocorrelation observed in Fig. 2. Note that the largest
values (depicted by a darkest color) occur in particular
regions of Spain. These regions spatially overlap with the
actual locations of the most important Spanish cities.

4 Prediction of human flows with GNNs

This section describes the proposed solution to predict the
human mobility flows among MAs based on GNNs.

4.1 Problem formulation

The prediction problem this work deals with can be formu-
lated as follows:

Given the set of MAs, M, and the sequence of outgoing
trips from each mi ∈ M during the last hprev hours, OT h

i =
〈ot ti , ot t−1

i ,. . . , ot
t−hprev

i 〉, Find a mapping function F ,

F(OT h
i ) → ott+T

i

where ott+T
i is the number of outgoing trips of each MA in

T hours ahead ∀mi ∈ M.

By solving this problem, authorities can anticipate the
nation’s short term global movement. This will have practi-
cal applications such as enabling adaptive prices of certain
public transport services or the adoption of spatially con-
strained lockdown actions in pandemic scenarios where
only certain sets of MAs are affected.

4.2 Suitability of a GNN-based approach

To solve the prediction problem described, we must con-
sider the features of the mobility dataset described in
section 3. Thus, two important patterns observed in such
mobility feed should be highlighted:

– MAs emit not only trips toward their adjacent areas.
As Fig. 4 depicts, most of the outgoing trips from
MAs go toward non-adjacent areas. Therefore, the
spatial closeness is not the unique factor that affects
the human mobility behavior of an area. Furthermore,
the number of adjacent areas highly varies among
MAs. Therefore, a solution relying on regular grid
convolution operators cannot capture such non-adjacent
and complex relationships among areas.

– However, the underlying graph of MAs that arises when
considering their trip connections is actually a sparse
model where an MA is connected, on average, to only
10% of the total areas of the setting (Fig. 6). These
sparse connections among MAs are meaningful and
thus seem a reasonable parameter to be included in the
model for human mobility forecasting.

Consequently, it seems a feasible approach to leverage
the classification and regression capabilities of a GNN
model to solve the target prediction problem for this
topological structure with irregular and sparse connections
among MAs.

4.3 Design of the GNN

This section describes the GNN model used for the
prediction problem. For clarity, Table 2 summarizes the key
acronyms and symbols used in this section.

To generate the GNN model, we firstly compose a graph
G = 〈M, E〉 where the nodes M are the MAs, |M| =
N = 3216 and the edges E represent the connections
among them. Such connections are defined by an adjacency
matrix A. Moreover, a set of feature matrices OT t∀t ∈ T
comprising the last hprev outgoing trips of the MAs at time
t is also generated.

The pipeline of the GNN used for the present setting
is depicted in Fig. 8. The model uses as an input the
matrices A and OT to perform the prediction task. Then,
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Fig. 5 Evolution of the number of outgoing trips based on different parameters. Each blue dot represents a particular pair of origin-destination
MAs

the spatial dependencies among MAs are modeled with a
set of graph-convolutional layers whereas the temporal ones
are processed by a stack of LSTM layers. Last, a Multilayer
Perceptron (MLP) processes the sequences from the LSTM
layers.

Moreover, each GCN layer defines a filter H in the
Fourier domain that acts on the first-order neighbors of each
node. This way, the output of the l-th graph-convolution
layer can be expressed as,

H(l) = ReLU(D̃− 1
2 ÂD̃− 1

2 H(l−1)θ (l−1)) (1)

Fig. 6 Box plots for the number of origins and destinations per MA

where Â is the adjacency matrix with self-connections that
is defined as A + IN , where IN is the identity matrix; D̃ is
the degree matrix of the graph; H(l−1) is the output; θ(l−1)

the weights of the previous layer; and ReLU() stands for the
REctitifed Linear Unit function [38]. Thus, the input of the
first layer H(1) is the incoming matrix OT t .

The rationale of using a filter targeting only for the one-
hop neighbors of an MA is that the target mobility feed
only indicates the initial origin and final destination of a
trip without including its stopovers as it was pointed out
in Section 3. Consequently, the underlying relationships are
only defined among pairs of MAs.

Regarding the LSTM layers, Fig. 9 depicts a general
schema of this type of cell. It is a foremost type of RNN cell
able to retain short-term along with long-term patterns in
time series. Moreover, h(t−1) indicates the short-term state

Fig. 7 Spatial auto-correlation of the MAs regarding their outgoing
number of trips
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Table 2 Acronyms of the model

Acronym Description

G Graph of MAs G = 〈M, E〉
M Set of target MAs

E Set of edges among MAs

N Number of MAs

T Time period under study

A ∈ R
N×N Adjacency matrix among MAs

IN ∈ R
N×N Identity matrix

Â ∈ R
N×N Adjacency matrix with self-connections

OT ∈ R
N×hprev Feature matrix with sequence of last hprev

outgoing trips per MA

D̃ ∈ R
N×N Degree matrix of G (D̃ = ∑

j Ãij )

at time instant t , OT t is the feature matrix of outgoing trips
at instant t and A is the adjacency matrix. Concerning the
cell outputs, y(t) ∈ R

N is the vector with the predicted
outgoing trips at instant t whereas c(t) is the long-term
state that traverses the network from left to right. Moreover,
GC represents the stack of graph-convolution layers, Lg ,
described before.

Focusing on the four inner gates of the cell that modulates
the outputs of the model, they can be formulated as follows:

f(t) = σ(Wf GCout
t + Uf h(t−1) + bf ) (2)

g(t) = tanh(Wg GCout
t + Ug h(t−1) + bg) (3)

i(t) = σ(Wi GCout
t + Ui h(t−1) + bi) (4)

o(t) = σ(Wo GCout
t + Uo h(t−1) + bo) (5)

where GCout
t are the features extracted from the graph

convolution layers, W{f,i,o,g} are the weight matrices for

Fig. 8 Pipeline of the used GNN with its general structure of layers

Fig. 9 Inner structure of the LSTM cells of the model. FC: Fully
Connected

these features, U{f,i,o,g} are the weight matrices for the
connections to the previous short-term state h(t − 1) and
b{f,i,o,g} are the bias terms of the four gates.

Finally, the outputs of the cell are computed as follows:

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t) (6)

y(t) = h(t) = o(t) ⊗ tanh(c(t)) (7)

where ⊗ is the element-wise multiplication operator. Note
that the outputs of the last LSTM layer feed an MLP with
Lmlp layers. Thus, the last layer of the MLP provides the

vector ôt
t+1
M ∈ R

N with the final outgoing trips prediction

ôt
t+1
i for each mi ∈ M. This vector is computed as follows

ôt
t+1
M = σ(WLmlp

X + bLmlp
) (8)

where X is the output of the previous layer Lmlp−1 whereas
WLmlp

and bLmlp
are the weight matrix and bias term of the

last MLP layer, respectively.
We should mention this model is slightly based on the

one proposed by Cui, Henrickson, Ke, and Wang [34].
However, our pipeline includes two major differences. First,
a dense layer is included on top of the model. This allows us
to achieve a better performance and a lower over fitting than
the original model. Second, the temporal dependencies are
captured with LSTM cells instead of GRU ones. Although
GRU cells are more computationally efficient, we have
chosen LSTM cells due to their capability to handle long-
distance dependencies.

4.4 Definition of the adjacencymatrix

One paramount input parameters of the proposed GNN
model is the adjacency matrix A, which indicates the latent
connections among MAs in the graph G. Unlike other
proposals that focus on the road traffic environment [34,
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35], in the present setting there is not a latent infrastructure
of streets or paths defining the links among nodes.

Therefore, a set of five alternative adjacency matrices
have been defined so as to establish the connections among
the areas. Each focuses on a particular spatial and mobility
feature of the setting. The matrices are:

– Distance-based matrix Ad . This is a straightforward
weighted adjacency matrix where each cell aij ∈ Ad

indicates the distance in kilometers between MAs mi

and mj .
– Queen-based matrix Aq . This adjacency matrix is based

on the Queen neighbourhood concept (see Section 3).
Thus, a cell aij ∈ Aq takes value 1 when MAs mi and
mj are Queen-based neighbors, 0 otherwise.

– Gravity-based matrix Agr . This adjacency matrix is
based on the gravity model for human mobility [39].
Briefly, this model establishes that the magnitude of
displacements MDa,b between two regions ra , rb can
be computed with the formula MDa,b = Pa×Pb

Dista,b
where

P{a,b} is the population of each region and Dista,b its
distance. This way, this weighted adjacency matrix is
populated with such a model so that a cell aij ∈ Agr is
set to MDi,j .

– Queen gravity-based matrix Aqgr . This matrix com-
bines the gravity model and the queen adjacency con-
cept. Therefore, a cell aij ∈ Aqgr takes 1 as value if mj

is a Queen neighbor of mi or it is one the top 100 MAs
with the largest magnitude of displacements with mi ,
0 otherwise. With this matrix, two MAs are adjacent if
they are geographically close (due to the Queen neigh-
borhood) or, theoretically, there must exist a large flow
of people moving between them (because of the gravity
model).

– Spatial-lag based matrix Asl . This last matrix is based
on the spatial lag concept described in Section 3.
Each cell aij ∈ Asl is defined as aij = |sli − slj |
where sl{i,j} is the spatial lag of each MA. Hence, this
matrix comprises the similarity among areas in terms of
outgoing trips of their neighbors.

Notably, all the matrices consider the spatial closeness
among areas at different degrees along with other external
factors such as their population or spatial lag. Moreover,
whereas Aq and Aqgr are unweighted adjacency matrices,
Ad , Agr and Asl are weighted. This allows testing the
model by considering different latent relationships among
areas.

5 Evaluation of themodel

This section evaluates the model described in Section 4
using the nation-wide mobility feed described in Section 3.

A comparison with other alternative approaches for nation-
wide human mobility prediction is also included as part of
the evaluation.

5.1 Dataset pre-processing

For this evaluation we have set hprev = 12 so that the
model will use the last 12 hourly outgoing trips of each mi

to forecast the number of these outgoing trips in T hours
time, ôt

t+T
i . Consequently, a set of 12 matrices OT t−j ∈

R
N×12∀j ∈ 〈0, .., 11〉∀t ∈ T have been composed. It

is worth mentioning that the whole 9-month time dataset
described in Section 3 has been used for the evaluation.

5.2 GNN configuration

Table 3 shows the key parameters of the GNN model
used in the evaluation. These values were obtained with a
grilled-search approach using a training rate (tr) of 0.9.

Five different GNN models were actually composed, each
with a particular adjacency matrix as defined in Section 4.4.
Nevertheless, all share the same configuration parameters
listed in Table 3. Therefore, it is possible to easily compare
the effect of each adjacency matrix on the accuracy of the
final model.

5.3 Baselinemethods

We have compared our approach with three baseline and
state-of-art models:

– Autoregressive Integrated Moving Average model
(ARIMA) [21]. This is a foremost predictor within the
time series analysis domain. In brief, it fits a regressive
model to a time series to predict new values.

– LSTM network. An RNN using LSTM cells has been
also developed as candidate predictor. As discussed

Table 3 Model parameters for the experiments

Parameter Value

Batch size 60

Learning factor 0,001

Optimizer Adam

Num. of GC layers (Lg) 2

GC activation function ReLU

Num. of LSTM layers 2

Num. of LSTM neurons 200

LSTM activation function Hyperbolic tangent

Num of MLP layers (Lmlp) 1

Num of MLP neurons 200

Num. of epochs 200
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in Section 2, this is a well-known method for human
mobility prediction at different domains.

– Finally, a naive method that just returns the last value
ot ti in each series as the predicted value ôt

t+T
i . This

type of straightforward mechanism is sometimes quite
difficult to outperform.

For clarity, Table 4 includes the key parameters of the
ARIMA and LSTM models listed above.

Notably, each of the three candidate models were indi-
vidually fit for each MA in the dataset. Therefore, 3216
models of each candidate were generated for the evaluation
performed in this work. In this manner we can compare our
solution—which comprises a single model covering all the
MAs in the dataset—with an ensemble of models targeting
each MA in an isolated manner.

5.4 Metrics

Three well-known metrics in the mobility forecasting
domain have been used to evaluate our approach and the
baseline methods:

– Mean Absolute Error (MAE): MAE= 1
N

×
N∑

i=1
|ot t+1

i −
ôt

t+1
i |

– Mean Squared Error (MSE): MSE= 1
N

×
N∑

i=1
(ot t+1

i −
ôt

t+1
i )2

– Root Mean Squared Error (RMSE): RMSE=
√

MSE

5.5 Results discussion

Table 5 comprises the evaluation results regarding three
metrics for different time dimensions (T ). First, it shows the
results of the different adjacency matrices for the proposed
GNN model.The highest accuracy for most of the prediction

Table 4 Parameters of the candidate models

Model Parameter Value

LSTM Batch size 32

Learning factor 0.001

Optimizer Adam

Num. of layers 2

Num of cells per layer 200

Activation function Hyperbolic tangent

Num. of epochs 20

ARIMA order of autoregressive model (p) 12

degree (d) 1

order of moving average model (r) 1

horizons is achieved by using the adjacency matrix based
on the gravity model (GNNgr ) with MAEs ranging from
136.877 to 156.773 for T up to 6h. However, the model
using the distance matrix achieves a worse result with MAE
around 200 in all the cases.

Furthermore, the GNN based on the gravity model
combined with the Queen neighborhood, GNNqgr , achieves
quite a similar result than the one with the spatial-lag
adjacency matrix (GNNsl) for short prediction horizons
(T = 1h). This might indicate that both models capture
different but inter-related connections among MAs. This
is plausible because both types of matrices consider at
different levels the amount of trips emitted by each MA and
their geographical connections with their neighborhoods.

Regarding the non-weighed adjacency matrices (GNNq

and GNNqgr ), Table 5 shows that enriching the Queen-
based neighborhood with relevant connections extracted
from the gravity model creates a more robust model. Hence,
the GNN based on this matrix (GNNqgr ) obtains better
results in the three metrics than the one solely based on
the Queen neighborhood (GNNq ) for all the evaluated
prediction horizons. Besides, it is worth mentioning that
the GNNqgr matrix achieved the highest accuracy for
T = 12h (MAE value of 159.373). This suggests that
the adjacency relationships and the most relevant gravity-
based connections included in this model (but not in the
GNNgr matrix) help to better capture long-term mobility
behaviours. This is reasonable because for such a long-term
prediction horizon most of the knowledge captured by the
models might correspond to regular commuting patterns.
Therefore, one can assume that most of such patterns
coocurr in spatially adjacent regions or between regions
with large populations.

Next, we compared the results of the GNN models with
the baseline methods. Table 5 shows that all the alternative
versions of the proposed GNN outperform the LSTM
and naı̈ve approaches. In contrast, some observe that the
ARIMA algorithm obtains the lowest error in the three
metrics. However, for ARIMA it is necessary to generate an
individual baseline model for each MA whereas the GNN
solution only involves a single model. Therefore, our GNN
model would involve a much simpler infrastructure in a
production setting than with using ARIMA.

Figure 10 shows the geographical distribution of the
MAE for each of the GNN and baseline methods. One
interesting finding when we observe this distribution, is
that the prediction capability of all the evaluated models
meaningfully varies depending on the particular area.
Moreover in detail, the highest accuracy (lighter colors in
the figure) is mostly achieved in the central regions of Spain,
whereas the lower one (darker colors) mostly occurs at in
the seaside coastal regions. Indeed, these These two types
of regions have very different population profiles. Whilst
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Table 5 Metric values of the candidate models for different time horizons (T )

Model T MAE MSE RMSE

GNNq (1) 1h 171.923 (±202.484) 120,676.856 (±629,199.550) 223.957 (±265.603)

GNNd (1) 215.477 (±266.398) 206,847.458 (±912,681.937) 287.782 (±352.239)

GNNgr (1) 136.877 (± 146.642) 76,152.625 (±409,849.719) 185.753(±204.116)

GNNqgr (1) 160.940 (±171.504) 102,270.633 (±479,770.322) 215.096 (±236.694)

GNNsl (1) 164.947 (±173.624) 99,771.510 (±481495.175) 215.585 (±230.896)

ARIMA (2844) 131.613 (± 189.702) 53,295.374 (±249,934.954) 174,313 (±245.913)

LSTM (2844) 287.582 (±249.103) 240,392.048 (±673,797.631) 364.926 (±327.504)

Naive 445.657 (±573.288) 844,369.636 (±3,552,303.321) 564.808 (±724.946)

GNNq (1) 3h 168.832 (±188.286) 126,225.899 (±562,311.371) 235.882 (±265.726)

GNNd (1) 164.528 (±182.431) 127,471.411 (±571,985.433) 236.079 (±267.887)

GNNgr (1) 143.100 (±144.381) 79,202.233 (±309,171.505) 196.715 (±201.295)

GNNqgr (1) 149.769 (±168.372) 93,474.430 (±460,505.513) 202.048 (±229.498)

GNNsl (1) 172.606 (±182.565) 117,719.663 (±490,176.192) 233.887 (±251.075)

ARIMA (2844) 229.139 (±283.488) 172512.497 (±839,840.629) 264.666 (±320.454)

LSTM (2844) 268.269 (± 215.494) 192,273.747 (±525,928.089) 338.988 (±278.197)

Naive 445.657 (±573.288) 844,369.636 (±3,552,303.321) 564.808 (±724.946)

GNNq (1) 6h 186.570 (±208.805) 157,179.349 (±657,231.586) 261.085 (±298.405)

GNNd (1) 197.032 (±217.406) 169,179.710 (±713,804.705) 270.959 (±309.507)

GNNgr (1) 156.773 (±163.219) 95,958.014 (±389,080.101) 211.768 (±226.120)

GNNqgr (1) 166.788 (±183.809) 114,271.417 (±505,934.955) 223.819 (±253.375)

GNNsl (1) 177.517 (±190.946) 139,345.311 (±589,300.754) 248.903 (±278.245)

ARIMA (2844) 237.026 (±243.406) 152,980.337 (± 299,022.317) 280.883 (±275.1284)

LSTM (2844) 290.504 (± 221.231) 215,440.658 (±585,540.530) 362.157 (±290.377)

Naive 685.219 (±915.489) 1,880,087.023 (±8,132,191.379) 827.188 (±1093.740)

GNNq (1) 12h 187.419 (±229.787) 189,112.463 (±913,244.057) 269.144 (±341.636)

GNNd (1) 206.836 (±267.642) 239,994.215 (±1,206,237.416) 295.081 (±391.120)

GNNgr (1) 193.796 (±234.397) 195,603.403 (±949,279.271) 277.460 (±344.472)

GNNqgr (1) 159.373 (±187.872) 118,149.585 (±599,204.577) 218.187 (±265.648)

GNNsl (1) 179.012 (±220.276) 182,799.867 (±898,308.893) 261.680 (±338.177)

ARIMA (2844) 216.664 (±205.569) 128,209.707 (±230,840.883) 263.832 (±244.696)

LSTM (2844) 252.473 (±267.717) 238,852.906 (±1,135,378.617) 330.673 (±359.992)

Naive 940.104 (±1,265.396) 3,209,833.152 (±14,297,120.361) 1,068.467 (±1,438.381)

The number in brackets in the Model column indicates the number of instances of each model. The lower values of each metric for the GNN
models are shown in bold

Whereas the central regions of Spain usually have very low
population densities (except for Madrid), many of the most
crowded Spanish cities are located near the coast.

To expand this correlation among population and the
accuracy of the models, we investigated the finding
observed in Fig. 5a, i.e., the larger the population of an MA,
the larger its flow of outgoing trips. Thus, Fig. 11 shows the
MAE of each model regarding the magnitude of outgoing
flows of the MAs. As it is shown, the accuracy of all the
models degrades if the trips generated by the target MA
increases. This is a common pattern in all the evaluated
models.

Last, Fig. 12 compares the total number of trips generated
by all the MAs in the test dataset with the corresponding

prediction of GNNgr . We have chosen this model as it
was the GNN instance with better results (Table 5). Such a
predicted value is computed as the predicted aggregates for
each MA made by the GNN model at each time. As we can
see, the model predicted the overall trend of trips with great
detail.

The results show that the GNN solution achieves a high
accuracy for human mobility prediction on a nationwide
scale. Our approach can anticipate the outgoing trips of
MAs with an accuracy like models trained for each MA
individually. That a single model is used for the overall
prediction instead of individual models for each MA brings
important benefits in terms of deployment and usage for real
infrastructures.
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Fig. 10 Geographical distribution of the MAE per model in the Spanish MAs for T =1h
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Fig. 11 Evolution of the MAE
per model with respect the MA’s
sheer number of outgoing trips
for T =1h

In operational terms, the GNNgr model has an MSE
of roughly 137 trips per hour (Table Table 5). Considering
the volume of trips emitted by the MAs, this prediction
deviation seems small enough to make the solution suitable
for a real-world setting. Therefore, it could be used as part
of a decision-support system to help authorities to order the
pre-emptive closure of certain MAs in a pandemic scenario.
Thus, the system could trigger an alarm when the predicted
number of outgoing trips in certain hours of a region exceeds
a threshold based on its current epidemiological state.
Likewise, a similar approach could be used to proactively
adapt the prices of certain long-distance means of transport
of a region based on the predicted outgoing flow of travelers
at certain hours.

5.6 Mobility prediction including weather condition

One key feature with an impact on the human mobility
behavior in a region is its current weather condition [40].
Therefore, we enriched our prediction approach by consid-
ering the temperature at each MA as a new contextual input
of the model.

Remembering the formulation of the problem stated in
Section 4.1, in this case we intend to find a mapping func-
tion F ′:

F ′(OT h
i ,Wh

i ) → ott+T
i

where Wh
i = 〈wt

i , w
t−1
i ,. . . , w

t−hprev

i 〉 is the temperature
sequence of each MA during the last hprev hours, ∀mi ∈M.

To collect the meteorological data, we made use of the
Reliable Prognosis web service3. This platform provides
an open repository with the meteorological conditions col-
lected by multiple weather stations deployed at national
and international airports worldwide. We extracted the tem-
perature values covering the study period from weather
stations in all the Spanish airports in the platform. Then,

3https://rp5.ru/Weather in the world

each MA was associated with its closest airport’s tempera-
ture sequence W . Fig. 13 shows the resulting association in
which 55 airport locations were extracted.

Next, we fed a new GNN. Unlike in the previous exper-
iment, this model took as input a feature matrix OT W t ∈
R

N×12×2∀t ∈ T comprising the last 12 outgoing trips and
temperature values of the MAs at time instant t . Table 6
shows the parameters of the model obtained following a
grilled-search approach with tr set to 0.9. Remembering the
results discussed in Section 5.5, the model used the Agr

matrix as the adjacency matrix.
Table 7 shows the metric values of the resulting model

GNNw
gr . Regarding the results obtained by the baseline

GNNgr model (Table 5), this novel approach does not
improve the accuracy of the proposal. However, the new
model yielded poorer results for all the metrics and
time horizons. For instance, GNNgr obtained an MAE
of 136.877 for T =1h whereas GNNw

gr obtained 206.388.
Likewise, for T =12h the baseline model obtained a MAE of
193.796 and the value of model enriched with weather data
was 300.965.

To find the rationale of this accuracy degradation, the
map in Fig. 14a shows in white those MAs where GNNw

gr

achieved better results than the baseline GNN model for
all the time horizons. From this map, a clear pattern exists
in the spatial distribution of those MAs. As we can see,
most of these improved MAs are usually located close to
the boundary of their airport’s area of influence. Therefore,
these areas receive and emit flows from and toward other
MAs with different temperature sequences. Hence, this
enriches the model and improves its accuracy.

Furthermore, Fig. 14b depicts in black those MAs where
GNNw

gr obtained a MAE, MSE or RMSE above the 90th

percentile of such metrics given GNNgr . Here, we can also
see a clear spatial pattern because most of these degraded
MAs are in the center of their airports’ area of influence
(instead of the borders). Therefore, these MAs are mostly
influenced by surrounding areas whose temperatures are
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Fig. 12 Comparison of the total
number of outgoing trips and the
aggregated predictions of
GNNgr for T =1h

all the same as they belong to the same weather area
defined by an airport. Furthermore, the new input layer
comprising such temperatures just adds complexity to the
model providing no relevant knowledge.

Besides, Fig. 15 shows the number of trips emitted by
improved and degraded MAs. From this figure, it is possible
to see that both groups of MAs emitted trips on a similar
scale. Consequently, the improvement and degradation of
the GNN accuracy do not seem influenced by such a factor.

Last, we can conclude the key drawback of including
weather data for mobility prediction was that the spatial
scale defining the outgoing trips differed from the scale used
for the temperature data. Whereas the former was defined
at MA granularity, the latter was based on the airports’ areas
of influence which cover broader land areas. This mismatch
allowed the model to not leverage the new input data source
appropriately. One possible solution would be to inject a
different weather data stream for each MA following the
open-data approach this study claims. However, in oper-
ational terms, it would be rather difficult to find, collect
and process such streams from numerous weather stations.
Besides, we can expect not all the MAs to have a functional
weather station, especially those involving rural and low-
populated regions. Another solution would be the aggrega-
tion of trip flows, so they are defined in the same spatial

Fig. 13 Association between MAs and airports. Each black dot
indicates the location of an airport. The MAs around each dot with
the same color indicate the areas covered by the airport (the area of
influence of the airport)

scale than the temperature stream. Nonetheless, this would
reduce the utility of the proposal as the spatial granularity
of the predictions would not fit in many potential use cases.

6 Conclusion and future works

The study of human mobility is gaining momentum due to
the continuous increase of data produced by different types
of mobile devices, and for the socioeconomic benefits
obtained from its range of applications; from traffic fore-
casting to urban planning, to the prediction of human flows
in context of a pandemic, as with COVID-19. However,
most studies focus on scenarios covering relatively small
distances, as intra-urban scenarios. To extend the utility
of human mobility data, this study deals with a nation-
wide dataset to analyze its feasibility to forecast large-scale
human flows. We proposed the study of a dataset published
by the SMT including trip data throughout Spain during a
9-month period.

The analysis of this large-scale trip data reveals that the
connections between origin and destination areas could be
considered as a sparse graph. Therefore, we propose the use
of a GNN as a compelling alternative to forecast the number
of outgoing trips within an hour from any mobility area
identified in the dataset. With this GNN, several factors such
as the spatial distance among areas, their population, or their
spatial lag can be included in the study. The results show

Table 6 Model parameters for the experiments with weather data

Parameter Value

Batch size 32

Learning factor 0,001

Optimizer Adam

Num. of GC layers (Lg) 1

GC activation function ReLU

Num. of LSTM layers 1

Num. of LSTM neurons 300

LSTM activation function Hyperbolic tangent

Num of MLP layers (Lmlp) 1

Num of MLP neurons 200

Num. of epochs 40
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Table 7 Metric values of GNNw
gr for different time horizons (T )

T MAE MSE RMSE

1h 206.388 196,953.628 282.300

(±252.180) (±893,711.000) (±342.492)

3h 273.089 361,923.161 376.584

(±339.387) (±1,586,234.000) (±469.238)

6h 300.036 381,354.557 386.284

(±389.861) (±1,611,739.000) (±481.892)

12h 300.965 427,649.183 416.326

(±374.367) (±1,941,091.000) (±504.391)

this technique achieves a high accuracy in the predicted
number of trips textcolorbluefor multiple time horizons
up to 12 hours, outperforming other techniques such as
LSTM and with a similar performance to ARIMA, but
with a notable advantage. Our proposal only needs a single
model for processing the whole dataset, whereas ARIMA

Fig. 14 Geographical distribution of the MAs according to the
GNNw

gr results. The red dots indicate the location of the airports

Fig. 15 Range of outgoing trips of the MAs based on whether they are
improved by GNNw

gr

requires a different model for each mobility area in the
study (up to 3216 in this study). This may be a determining
factor when deploying the model for real infrastructure in
terms of simplicity and computational efficiency. Last, the
influence of weather conditions has been also studied for
the mobility prediction, however the results do not show a
general improvement over the baseline dataset due to the
different granularity of both types of data.

In the future, we plan to study the accuracy of our model
when applied to other nationwide datasets to validate the
model at a general level. An extension of the forecasting
period will also be explored in these experiments. Another
line of research consists in combining the mobility dataset
with data from Online Social Networks to check the
feasibility of the latter as a mobility predictor.

Code availability The source code of the project is available at https://
github.com/fterroso/GNN-nation-wide-mob-predictor
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