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Introduction
Proteomics is the field which deals with the study of cellular 
behavior and human disease at the protein level. Recently, can-
cer treatment and prevention have made great strides, thanks to 
the development of high-throughput technologies in proteom-
ics. Among these, mass spectrometry (MS) analysis has become 
the preferred choice because of advantages such as high molec-
ular specificity and better detection sensitivity.1 Hence, MS is 
widely used in identification and quantification of complex 
proteome mixtures with the goal of discovering biomarkers, ie, 
molecular markers for disease.2–4

However, a major challenge in biomarker discovery is the 
identification of low-abundance proteins in peripheral blood. 
Selected reaction monitoring (SRM), conducted using a triple-
quadrupole (QQQ) instrument, has an extended mass range 
and has become one of the main methods for low-mass-range–
targeted proteomics by MS.5

Nevertheless, in most SRM-MS biomarker validation stud-
ies, the sample size is very small due to the economic cost of the 
experiments and difficulty in recruiting cases. Typically, the 
number of features (measured proteins) is vastly larger than the 
sample size. Moreover, depending on the instrument sensitiv-
ity, the data can be noisy due to low peptide efficiency, ie, low 
number of ions detected per peptide.

All the aforementioned issues create a difficult challenge to 
classical data-driven classification methods. In this article, this 
is addressed by a model-based Bayesian method for classifica-
tion of SRM-MS data. We perform Bayesian inference of the 

parameters of the SRM model proposed in the work by 
Atashpaz-Gargari et al5 and build a kernel classifier, similar to 
the classifier for liquid chromatography-mass spectrometry 
(LC-MS) data proposed in the work by Banerjee and Braga-
Neto.6 As in the latter reference, our method uses a likelihood-
free approach, called approximate Bayesian computation 
(ABC),7–9 which is necessary because the SRM model of 
Atashpaz-Gargari et al5 is complex and does not have an ana-
lytical formulation of the likelihood. After calibration of the 
parameters, the ABC method is implemented via a Markov 
chain Monte Carlo (MCMC) procedure10,11 to obtain a sam-
ple from the posterior distribution of the protein concentra-
tions. Small MCMC sample sizes are sufficient to obtain a 
kernel-based implementation of the Optimal Bayesian 
Classifier (OBC).12 Extensive experimental results examining 
the effect of various parameters demonstrate that the proposed 
method outperforms classical methods such as linear discrimi-
nant analysis (LDA) and 3NN,13 when sample size is very 
small, dimensionality is large, the data are noisy, or a combina-
tion of these.

The organization of the article is as follows. Section “SRM-
based MS model” surveys the SRM-MS model. Section “ABC-
MCMC classification algorithm” explains in detail the ABC 
rejection algorithm and the approximate Bayesian computation-
Markov chain Monte Carlo (ABC-MCMC) classifier. Section 
“Numerical experiments and results” presents the numerical 
results. Section “Conclusions” presents concluding remarks.

Bayesian Classification of Proteomics Biomarkers  
from Selected Reaction Monitoring Data using an 
Approximate Bayesian Computation-Markov Chain 
Monte Carlo Approach

Kashyap Nagaraja and Ulisses Braga-Neto
Department of Electrical & Computer Engineering and Center for Bioinformatics and Genomic 
Systems Engineering, Texas A&M University, College Station, TX, USA.

ABSTRACT: Selected reaction monitoring (SRM) has become one of the main methods for low-mass-range–targeted proteomics by mass 
spectrometry (MS). However, in most SRM-MS biomarker validation studies, the sample size is very small, and in particular smaller than the 
number of proteins measured in the experiment. Moreover, the data can be noisy due to a low number of ions detected per peptide by the 
instrument. In this article, those issues are addressed by a model-based Bayesian method for classification of SRM-MS data. The methodology 
is likelihood-free, using approximate Bayesian computation implemented via a Markov chain Monte Carlo procedure and a kernel-based 
Optimal Bayesian Classifier. Extensive experimental results demonstrate that the proposed method outperforms classical methods such as 
linear discriminant analysis and 3NN, when sample size is small, dimensionality is large, the data are noisy, or a combination of these.

Keywords: Proteomics, biomarker, approximate Bayesian computation (ABC), Markov chain Monte Carlo (MCMC), Optimal Bayesian 
Classifier (OBC), selected reaction monitoring (SRM)

RECEIVED: February 3, 2018. ACCEPTED: May 24, 2018.

Type:  Review

Funding: The author(s) received no financial support for the research, authorship, and/or 
publication of this article.

Declaration of conflicting interests: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDING AUTHOR: Ulisses Braga-Neto, Department of Electrical & Computer 
Engineering and Center for Bioinformatics and Genomic Systems Engineering, Texas A&M 
University, College Station, TX 77843-3128, USA.  Email: ulisses@ece.tamu.edu

786927 CIX0010.1177/1176935118786927Cancer InformaticsNagaraja and Braga-Neto
research-article2018

https://uk.sagepub.com/en-gb/journals-permissions
mailto:ulisses@ece.tamu.edu


2	 Cancer Informatics ﻿

SRM-BASED MS MODEL
In this article, we employ the model for the SRM pipeline pro-
posed in the work by Atashpaz-Gargari et al.5 Next, we review 
briefly each of the main components of this model.

Protein mixture model

The protein mixture model concerns the true abundance of 
proteins in the SRM experiment. There are n  samples in each 
class; for convenience, the 2 classes are labeled as 0 for control 
and 1 for treatment. There are N pro

a  proteins, N pro
c  of which 

are low-abundance candidates for biomarker validation. Protein 
identities are input as a FASTA file. As argued in previos 
works,5,14 protein concentration can be modeled by a gamma 
distribution. Hence, the protein concentration is given by
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values of these variables, which are displayed in Table 1, reflect 
the dynamic range of protein abundance levels while taking into 
account that the candidate proteins are expressed at a much 
lower level than the background proteins. The initial values used 
here are consistent with values obtained experimentally in the 
work by Taniguchi et al14 as well as the hyperparameter values 
used in the work by Atashpaz-Gargari et  al.5 Furthermore, 
these initial values are modified based on the data, as part of the 
prior calibration process described in Algorithm 1.

Proteins are divided into biomarker (differentially expressed) 
and nonbiomarker (not differentially expressed) proteins. We 
use fold change to quantify the difference:
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for l N pro
a= …1, , . The fold change parameter ai  is uniformly 

distributed in the interval [ , ]1 h , for h > 1. The value of h  
used here is displayed in Table 1.

While the gamma distribution is chosen for mean protein 
concentrations, the variation of protein concentration is mod-
eled by a multivariate gaussian vector. Accordingly, the con-
centration of protein l  in class j  is modeled as follows:
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for l N pro
a= …1, , . Here, we consider a diagonal covariance 

matrix Σ = [ ]σ lk N proXN pro
2  so that the protein concentrations 

are mutually independent or very weakly correlated (correla-
tion between proteins can be included at the cost of adding 
more parameters to the model):
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and

                            σ φ γii i pro
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The coefficient of variation φ  has the initial value displayed 
in Table 1, which is the same as the one used in the work  
by Banerjee and Braga-Neto.6 This value is modified based on 
the data, as part of the prior calibration process described in 
Algorithm 1.

To model the purification process usually performed as part 
of the SRM-MS protocol, we select a set G p  of high-abundance 
proteins to be removed (in fact, attenuated) from the protein 
mixture:
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Table 1.  Parameters used in the experiment.

Parameter Symbol Value/range

Instrument response factor κ 5

Noise severity α β, 0.03, 3.6

Peptide efficiency factor ei [0.1, 1]

Shape (gamma distribution) k ka c, Unif(1.6, 2.4), Unif(4, 6)

Scale (gamma distribution) θ θa c, Unif(9e6, 11e6), Unif(90, 
110)

Purification ηi 10 6−

Coefficient of variation φ Unif(0.3, 0.5)

Fold change f Unif(1.5, 1.6)
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The value for ηi  corresponds to the efficiency of the purifi-
cation process and should be very small. The value assumed 
here is displayed in Table 1.

Peptide mixture model

In SRM-MS, tryptic digestion of proteins is performed to gen-
erate small-mass peptides. Let Ωi be the set of all the proteins 
which contain the ith peptide:
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The readout abundance µij of the peptide can be modeled as 
follows:

	 µ κij ij
pep

iC e= 	 (9)

Here, ei  represents the peptide efficiency factor and κ  rep-
resents the LC-MS response factor.

However, the true peptide abundance is different from its 
readout value due to the noise:

                ν ε λij ij ij c
ppi N j= + = … ∈[ , , , ], [ , ]1 2 0 1 	 (10)

where εij  is additive gaussian noise, which has a quadratic 
dependence on µij  s given below:
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where λij  is the additive exponential noise introduced due to 
transition effects:

                             λ µ µij tran ij∼ ×Exp( ) 	 (12)

where µtran is a fixed constant.

The next step is called protein abundance roll-up. This is the 
process of obtaining the abundances of the parent proteins from 
the abundances and related characteristisc of their child peptides, 
detected during the MS1 process. To obtain the identities of the 
parent proteins, a second round of MS, called MS/MS, is often 
used and available databases of identities are searched. Here, we 
assume that the data from the rolled up abundances can be 
obtained and the readout of protein l  in sample j  is given by
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where κ  is the instrument response factor, Nl  is the set of 
proteins present in peptide l and ηl  is the number of peptides 
in set Nl . The data xlj  in equation (13) are then used for 
classification.

ABC-MCMC Classification Algorithm
As described in the introduction section, the algorithm 
mainly has 3 steps: prior calibration via ABC rejection sam-
pling, posterior sampling using an ABC-MCMC algorithm, 
and classification using a kernel-based method. We describe 
each of these steps below.

Prior calibration via ABC rejection sampling

Once the protein abundances as described in equation (7) are 
obtained, the total number of proteins N pro

a  is reduced via a feature 
selection algorithm. As per the equations in the previous section, 
the protein abundance profiles are a function of the following:

•• Baseline parameters γ γ γ γ= …[ , , , ]1 2 d
•• Prior hyperparameters: k k fa c a c, , , , ,θ θ φ
•• Instrument parameters: κ α β, , , ei

Algorithm 1. Prior calibration of k kc a c a, , , ,θ θ φ  using ABC rejection sampling
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Prior calibration via ABC rejection sampling is as described 
in Algorithm 1. Monte Carlo integrations are performed to 
obtain a set of parameters and only some of them are kept and 
rest are rejected via comparing with a threshold. All the approx-
imated triplets are averaged to obtain the optimal parameter.

In this algorithm, ε  is the error tolerance. This has to be 
chosen optimally so that it should not be too high for bad sam-
ples to be accepted or it should not be very small that all the 
samples are accepted, ie, P T S T St(|| ( ), ( )|| )( )

0 0 0< ≈ε
Once the optimal parameters are obtained, the fold change 

vector is calculated by the following sample mean estimate:
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Algorithm 2. Obtain the posterior samples of γ  using ABC-MCMC algorithm

1.	 Generate the mean vector γ γ γ γ( ) ( , , , )0
0 1= … d  from the Γ  distribution with optimal parameters generated in Algorithm 1.

	 For t t t t Ms s s= ++0 1 , ,1, ,..., ,  where ts  is the burn-in period do:
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Kernel-based classif ication

We employ the kernel-based scheme proposed in the work by 
Banerjee and Braga-Neto,6 which is itself based on the OBC 
in Dalton and Dougherty.12 One of the issues with kernel-
based classification is choosing the right value of the kernel 
bandwidth parameter. If the value of the bandwidth parame-
ter chosen is high, then it leads to oversmoothing and thus 

hiding many details in the data distribution. However, a small 
value for the bandwidth parameter leads to undersmoothing 
and thus many spurious noisy elements in the data are not 
eliminated. To address this, we employ an ensemble method, 
where different classifiers with different bandwidth parame-
ters are obtained and then majority vote is used for classifica-
tion. The classification algorithm is described in detail in 
Algorithm 3.

Algorithm 3. Using the ABC-MCMC–based posterior samples for classification.

1.	 Choose a set of kernel bandwidth parameters h h h hf= …( , , , )1 2  where f is the number of bandwidth values taken.

2.	 Choose the number of γ  samples from markov chain to be used in the kernel classifier. Say we select q samples from the posterior. It is 
advisable to choose the samples from the end. For example, in this case, t M qs + −  to t Ms + .

3.	 Choose a suitable kernel K for the analysis. In this article, we have chosen a zero mean unit variance gaussian kernel.

4.	 For a given test point x do:

	 Declare a result vector res_vec=zeros
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5.	 The kernel-based classifier is now given by
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where Tl  denotes the lth sample mean for the selected protein 
only.

ABC-MCMC posterior sampling

ABC-MCMC sampling is as described in Algorithm 2. Vector 
γ γ γ γ= 1 2, , , d  is sampled from p S p S pn n( | ) ( | ) ( )γ γ γ∝ . 
After a burn-in period for the Markov chain of ts , the next 
M  samples from ts  to t Ms +  are considered as the gener-
ated data. Proper selection of the thresholds in step 4 of 
Algorithm 2 plays a very important role in the performance of 
the ABC-MCMC algorithm.
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Numerical Experiments and Results
In this section, we demonstrate the application of the proposed 
ABC-MCMC classification algorithm for SRM data, using a 
synthetic data set generated from a subset of the human pro-
teome. We selected a list of proteins from the Drugbank and 
applied tryptic digestion of proteins using the OpenMS soft-
ware.15 Because our interest is in small sample sizes, we chose 
simple classification rules, which are known to perform well 
with small samples, for comparison: LDA and k-nearest neigh-
bor (KNN) with k = 3.

Synthetic SRM-MS data were generated by the model 
described in section “SRM-based mass spectrometry model,” 
using the parameters in Table 1. Synthetic sample data for 
prior calibration were generated using the midpoint of the 
intervals specified in Table 1. For example, as φ ∼ Unif 3,0.5)( .0 , 
we take 0.4 as the initial value.

For the MCMC procedure, we consider 10 000 samples 
from the posterior distribution of γ . A burn-in stage of around 
3000 iterations is considered. The value of prior probability was 
taken to be 0.5 (equally likely classes). Kernel density estimation 
is based on 15 MCMC samples of γ , ie, q = 15 in Algorithm 3 
(increasing this number did not show any significant difference 
in the results). From the initial number of 350 proteins, a t test 
is applied to select the top 10 to 15 proteins. We consider sam-
ple sizes n = 10  through n = 40  per class and select the num-
ber of features to be d = 3 5 8 10, , , . The results displayed below 
are average results over 6 runs of the experiment for each com-
bination of classification rule, sample size, and dimensionality. 

The classification error for each case is estimated on an inde-
pendent synthetic test data set of 100 sample points.

Effect of sample size

Figure 1 displays the average error rates for the different 
classification rules. The number of proteins selected is fixed 
at d = 10 . With the increase in sample size, we see that the 
total error decreases for all classification rules. An impor-
tant observation is that at small sample sizes, the perfor-
mance of ABC-MCMC is best, confirming the general 
principle of good small-sample performance by Bayesian 
methods.

Effect of dimensionality

The average error rates of the various classification rules against 
dimensionality, ie, number of selected proteins, are displayed in 
Figure 2, for fixed sample size n = 10  per class. We can observe 
a very strong peaking phenomenon16: as the number of selected 
proteins increases, the average classification error rates tend to 
go down at first, but then increase sharply, due to the small sam-
ple size, ie, small ratio between number of points over the dimen-
sionality. One can observe that the ABC-MCMC classification 
rule is the most accurate one when d  is large, which is in agree-
ment with the fact that Bayesian methods tend to outperform 
competing techniques under small ratios of sample size to 
dimensionality.

Figure 1.  Average classification error rates against sample size for a fixed number of selected proteins d =10 . ABC-MCMC indicates approximate 

Bayesian computation-Markov chain Monte Carlo; LDA, linear discriminant analysis.
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Effect of variability
Here, we keep the sample size at n = 10  and the number of 
features at d = 8  to investigate the impact on the classification 
of error rate of an increasing variability of the true protein  
concentration values. In Figure 3, one can observe that the 

performance of all classification rules degrades with increasing 
values of the coefficient of variation φ ; however, the perfor-
mance of the ABC-MCMC algorithm is uniformly better 
than the others due to the small sample size n = 10 .

Figure 2.  Average classification error rates against number of selected proteins for a fixed sample size n =10 . ABC-MCMC indicates approximate 

Bayesian computation-Markov chain Monte Carlo; LDA, linear discriminant analysis.

Figure 3.  Average classification error rates against the coefficient of variation φ  for a fixed sample size n =10  per class and fixed number of selected 

proteins d = 8 . ABC-MCMC indicates approximate Bayesian computation-Markov chain Monte Carlo; LDA, linear discriminant analysis.
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Effect of peptide eff iciency

Finally, we investigate the impact on the classification accuracy of 
varying the peptide efficiency. The peptide efficiency factor a con-
trols how many ions can be detected for a given peptide. Increasing 
this parameter uniformly increases efficiency for all peptides, 
which corresponds to a more accurate SRM-MS experiment. 
Indeed, one can observe in Figure 4 that classification accuracy 
tends to increase with increasing peptide efficiency. One can also 
observe that the ABC-MCMC classification rule displays the 
smallest error rates among the competing methods at low peptide 
efficiency, ie, in a more noisy experiment.

Conclusions
In this article, we have proposed a Bayesian approach for clas-
sifying SRM data with the goal of facilitating biomarker devel-
opment. This method is a combination of ABC and MCMC. 
We can see that for small sample sizes, large dimensionality, or 
noisy data, the performance of the proposed Bayesian classifier 
is superior to that of other approaches. Our results are based on 
a subset of the human proteome selected from the Drugbank, 
which are submitted to tryptic digestion in silico. In addition, 
the prior hyperparameters are calibrated using the available 
data. This makes the the approach realistic and broadly applica-
ble. Because we are studying the effects of the various parame-
ters of the SRM pipeline on the classification error, there is a 
need to use synthetic data from a generative model. The results 
are, however, expected to be reproducible on clinical SRM data.

Author Contributions
KN and UBN conceived and designed the experiments. KN 
analyzed the data. KN wrote the first draft of the manuscript. 

UBN contributed to the writing of the manuscript. Both 
authors read and approved the final manuscript.

References
	 1.	 Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 

2003;422:198–207.
	 2.	 Rifai N, Gillette M, Carr S. Protein biomarker discovery and validation:  

the long and uncertain path to clinical utility. Nat Biotechnol. 2006;24: 
971–983.

	 3.	 Hüttenhain R, Malmstrm J, Picotti P, Aebersold R. Perspectives of targeted  
mass spectrometry for protein biomarker verification. Curr Opin Chem Biol. 2009; 
13:518–525.

	 4.	 Ye X, Blonder J, Veenstra T. Targeted proteomics for validation of biomarkers in 
clinical samples. Brief Funct Genomic Proteomic. 2009;8:126–135.

	 5.	 Atashpaz-Gargari E, Braga-Neto U, Dougherty E. Modeling and systematic 
analysis of biomarker validation using selected reaction monitoring. EURASIP J 
Bioinform Syst Biol. 2014;2014:17.

	 6.	 Banerjee U, Braga-Neto U. Bayesian ABC-MCMC classification of liquid chro-
matography-mass spectrometry data. Cancer Inform. 2017;14:175–182.

	 7.	 Turner B, Zandt IV. A tutorial on approximate Bayesian computation. J Mathemat 
Psychol. 2012;56:69–85.

	 8.	 Csilléry K, Blum M, Gaggiotti O, François O. Approximate Bayesian Computa-
tion (ABC) in practice. Trends Ecol Evol. 2003;25:410–418.

	 9.	 Sisson S, Fan Y. Likelihood-free Markov chain Monte Carlo. In: Brooks S,  
Gelman A, Jones G, Meng XL, eds. Handbook of Markov Chain Monte Carlo. 
New York, NY: Chapman & Hall; CRC Press; 2010.

	10.	 Geyer CJ. Practical Markov chain Monte Carlo. Statis Sci. 1992;7:473–483.
	11.	 Wegmann D, Leuenberger C, Excoffier L. Efficient approximate Bayesian com-

putation coupled with Markov chain Monte Carlo without likelihood. Genetics. 
2009;182:1207–1218.

	12.	 Dalton L, Dougherty E. Optimal classifiers with minimum expected error 
within a Bayesian framework part I: discrete and Gaussian models. Pattern 
Recogn. 2013;46:1301–1314.

	13.	 Webb A. Statistical Pattern Recognition. 2nd ed. New York, NY: John Wiley & 
Sons; 2002.

	14.	 Taniguchi Y, Choi P, Li G, et al. Quantifying E. coli proteome and transcrip-
tome with single-molecule sensitivity in single cells. Science. 2010;329: 
533–538.

	15.	 Sturm M, Bertsch A, Gröpl C, et al. OpenMS—an open-source software 
framework for mass spectrometry. BMC Bioinform. 2008;9:163.

	16.	 Hughes G. On the mean accuracy of statistical pattern recognizers. IEEE Trans 
Informat Theory. 1968;14:55–63.

Figure 4.  Average classification error rates against the lower bound for the peptide efficiency factor ei  for a fixed sample size n = 10  per class and fixed 

number of selected proteins d = 8 . ABC-MCMC indicates approximate Bayesian computation-Markov chain Monte Carlo; LDA, linear discriminant analysis.




