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Abstract

The ‘Iron Hypothesis’ suggests a fertilization of the Southern Ocean by increased dust depo-

sition in glacial times. This promoted high primary productivity and contributed to lower

atmospheric pCO2. In this study, the diatom Pseudo-nitzschia subcurvata, known to form

prominent blooms in the Southern Ocean, was grown under simulated glacial and intergla-

cial climatic conditions to understand how iron (Fe) availability (no Fe or Fe addition) in con-

junction with different pCO2 levels (190 and 290 μatm) influences growth, particulate

organic carbon (POC) production and photophysiology. Under both glacial and interglacial

conditions, the diatom grew with similar rates. In comparison, glacial conditions (190 μatm

pCO2 and Fe input) favored POC production by P. subcurvata while under interglacial condi-

tions (290 μatm pCO2 and Fe deficiency) POC production was reduced, indicating a nega-

tive effect caused by higher pCO2 and low Fe availability. Under interglacial conditions, the

diatom had, however, thicker silica shells. Overall, our results show that the combination of

higher Fe availability with low pCO2, present during the glacial ocean, was beneficial for the

diatom P. subcurvata, thus contributing more to primary production during glacial compared

to interglacial times. Under the interglacial ocean conditions, on the other hand, the diatom

could have contributed to higher carbon export due to its higher degree of silicification.

Introduction

The Southern Ocean (SO) is the world’s largest high-nutrient low-chlorophyll region (HNLC)

and an area where physical forcing, atmospheric pCO2, biological production and marine bio-

geochemical cycles are tightly linked. In this region, primary production is restricted by the

bioavailability of the trace metal (TM) iron (Fe) [1–3]. Fe is an essential trace element, which is

needed by phytoplankton to transfer electrons in key cellular and metabolic processes includ-

ing photosynthesis, respiration, chlorophyll production, carbon (C) and nitrogen (N) fixation

[4]. The availability of Fe strongly influences phytoplankton species composition and growth

[5–9], and impacts the biological carbon pump and thus the global carbon cycle.
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Consequently, changes in Fe availability have caused feedback effects on climate over geologi-

cal timescales. Furthermore, the SO is a region of high CO2 exchange between ocean and

atmosphere [10, 11]. The SO has been reported to be a major sink of atmospheric CO2 during

glacial periods, while it was on the other hand a source of CO2 during glacial-interglacial tran-

sitions. At present day, the SO is the major sink of anthropogenic CO2 [12, 13].

During the Last Glacial Maximum (LGM), the SO experienced changes in oceanic circula-

tion and carbon storage. For instance, increased sea ice extent strengthened surface water

stratification, thus limiting ocean ventilation and trapping more carbon in the deep ocean

[14–16]. Additionally, the northward displacement of the westerly winds prevented the

upwelling of CO2-rich deep water [17]. Besides physical mechanisms, the strength of the bio-

logical pump might explain 25–50% of the roughly 100 μatm pCO2 discrepancy between gla-

cial (180 μatm pCO2) and interglacial (280 μatm pCO2) times as argued in several studies [18–

21]. This supports John Martin’s ‘Iron Hypothesis’, which suggests that an increase in dust

deposition during glacial times would fertilize the ocean, stimulate marine productivity, and

enhance C export [1, 2, 22–24]. Indeed, analysis of sediment cores revealed a positive correla-

tion between aeolian Fe supply and primary production during ice ages [20, 25]. Proxy data as

well as model simulations showed a doubling of the global dust deposition during the last gla-

cial climate condition, when 826 Tg/yr dust were deposited in the global ocean, compared to

the 440 Tg/yr dust in pre-industrial times [26, 27]. The difference was mainly due to a dryer

atmosphere and reduced vegetation cover [22]. Used a biogeochemical model to estimate the

impact of Fe deposition on the global ocean. Under current conditions, 33% of the world’s

oceans water masses have Fe concentrations, which limit the growth of phytoplankton. The

model simulations revealed that the percentage of Fe-poor water masses decline to 25% and

13% with pre-industrial and LGM dust input, respectively. Along with the North Pacific

Ocean, the SO showed the most significant difference in soluble Fe deposition during glacial

and interglacial times, accordingly having the largest impact on marine biogeochemistry [22].

The dust deposition in the SO during glacial times was roughly ten times higher (0.04–0.17

Tg/yr) than in pre-industrial times (0.005–0.018 Tg/yr) [27]. However, the SO is geographi-

cally isolated from arid, dust-producing regions and is thus overall characterized by low aeo-

lian Fe deposition [28]. Other sources of Fe include upwelling of deep nutrient-rich water,

entrainment of sedimentary Fe from continental shelfs and resuspension, island-wake effects,

seasonal sea ice extent and melt, as well as iceberg drift and melt [3 and references therein].

The phytoplankton community in the current SO is dominated by different diatom species

and the prymnesiophyte Phaeocystis antarctica [29]. Diatoms account for 40% of the ocean’s

total primary production [30–33] and dominate the export of particulate organic matter to the

seafloor [34, 35]. In other words, diatoms are crucial for the ocean’s ability to sequester C to

the ocean’s interior. Diatoms also have an extensive impact on the oceanic silica inventory, as

they produce frustules containing silica. Some frustules are resistant to remineralization and

dissolution, are well preserved in the sediment, and thus provide precious information about

past oceanic biogeochemistry. Pseudo-nitzschia species have been frequently observed in

today’s phytoplankton assemblages in Antarctic waters [36]. Mesoscale Fe fertilization experi-

ments in the SO triggered massive phytoplankton blooms dominated by large diatoms like the

pennate Pseudo-nitzschia sp. [7, 37]. Large diatoms in the SO appear to have a higher Fe

requirement compared to smaller phytoplankton because of physical constrains in the Fe

uptake process [38]. To compensate for this, they have evolved various strategies to acquire

bioavailable Fe. They generally reduce their biogeochemical Fe requirement through metal or

protein substitution [39] and reduce Fe-rich components of the photosystem apparatus [9]. [8]

suggested that Pseudo-nitzschia is able to accumulate intracellular Fe when ambient concentra-

tions of this TM are high, while maintaining a low Fe demand. This luxury uptake and

PLOS ONE Effects of low CO2 and iron supply on an Antarctic diatom

PLOS ONE | https://doi.org/10.1371/journal.pone.0260649 December 10, 2021 2 / 23

Funding: AP was supported by German Federal

Ministry of Education and Research (BMBF) as

Research for Sustainability initiative (FONA); www.

fona.de through Palmod project (FKZ:

01LP1505C). ST, FK and FP were funded by the

Helmholtz Association (HGF Young Investigators

Group EcoTrace, VH-NG-901). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0260649
http://www.fona.de
http://www.fona.de


subsequent storage of Fe supports growth in subsequent low Fe environments and enables

Pseudo-nitzschia to dominate phytoplankton assemblages across a wide range of oceanic Fe

concentrations.

In SO diatoms, Fe limitation often results in slower growth and reduced C fixation. The

photochemical quantum efficiency, which indicates how efficiently excitation energy is trans-

ferred to the reaction centers, is usually lowered [8, 40–42]. In an Fe-poor environment, cells

usually increase the functional absorption cross sectional area of their reaction centers, thereby

enhancing the target area, which absorbs incoming photons [38, 41]. The absorbed photons

can either drive photosynthesis, N reduction, C fixation, photorespiration or can be converted

to heat (non-photochemical quenching). Fe deficiency induces changes in the photosystem II

(PSII) reaction centers such as the reduction of the pigment content [43], causes less efficient

electron transport [40] and increases non-photochemical quenching to dissipate the excess

light energy [44].

Besides Fe limitation, phytoplankton cells have experienced variations in CO2 concentra-

tion in the past. Previous studies on the effect of high CO2 concentrations on phytoplankton

reported changes in their elemental composition (e.g. [45, 46]), in cell size (e.g. [47]) and in

the degree of silicification in diatoms (e.g. [48]). Furthermore, it was shown that low pCO2 lev-

els can influence the composition of Antarctic phytoplankton communities. For example,

experiments with natural phytoplankton assemblages from different regions across the SO [24,

49, 50] concluded that Pseudo-nitzschia flourishes at low pCO2 levels, while it does not do well

in response to ocean acidification. Indeed, between ambient and future elevated pCO2 levels,

the growth of P. subcurvata in a laboratory experiment was not stimulated under enhanced Fe

supply [51]. Under similar Fe conditions, a phytoplankton community from the Ross Sea, Ant-

arctica, responded to CO2 increase from 100 to 800 ppm with a dramatic reduction in cell

abundance of P. subcurvata, being replaced by Chaetoceros species [49]. Similarly, a commu-

nity from the Weddell Sea, Antarctica, shifted from Pseudo-nitzschia to Fragilariopsis after Fe

addition between 390 to 800 μatm pCO2 [50], while no difference in species composition was

found between the glacial (190 μatm) and the present-day (390 μatm) pCO2 levels. This implies

that reduced CO2 concentrations during glacial periods potentially favored pennate diatoms

such as Pseudo-nitzschia while diatom species such as Chaetoceros and Fragilariopsis became

most abundant under present-day and future pCO2 levels [49]. A few studies investigated the

SO phytoplankton assemblages and growth under low Fe supply in response to increasing

pCO2 [24, 50, 52]. [50] observed also a CO2-dependent taxonomic shift in Fe-deplete condi-

tions with increasing pCO2 with Pseudo-nitzschia being replaced by the pennate diatom Syne-
dropsis between 390 and 800 μatm pCO2 levels. Similarly, when pCO2 increased from 390 to

900 μatm another SO plankton community changed from being dominated by P. prolonga-
toides to one, which was dominated by P. antarctica [24]. Hence, irrespective of Fe availability

the genus Pseudo-nitzschia was found to be susceptible to ocean acidification pCO2 levels.

Studies that asses the effects of low pCO2 on phytoplankton often compare their results

with high pCO2 levels to understand ocean acidification. However, little is known about the

smaller variation from 180 (glacial) to 280 μatm (interglacial/pre-industrial) pCO2 under dif-

ferent Fe availability. Indeed, the potential interactive effect of low-pCO2 (180 and 280 μatm)

together with different Fe availability (deplete and replete) on net primary production and

export production is currently often not considered, when developing models or designing

laboratory experiments simulating glacial and interglacial ocean conditions. Studies looking at

N-isotopes and Th-corrected sediment accumulation rates describe large fluxes of biogenic

detritus out of surface waters in the glacial ocean due to a larger amount of lithogenic Fe trans-

ported by winds [26]. The latter study indicates that increased export production and thus
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enhanced C storage potentially contributed to the observed lower atmospheric CO2 concentra-

tions during glacial times [53].

The above-mentioned studies offer first insights on how some phytoplankton species cope

with glacial and interglacial climatic conditions. However, studies on the ecophysiology of

Antarctic diatoms subject to glacial vs. interglacial ocean conditions under reduced Fe condi-

tions, are yet lacking. In this study, the SO bloom-forming diatom P. subcurvata was grown

under Fe and CO2 conditions representative of glacial (lower CO2 and higher Fe) and intergla-

cial (higher CO2 and lower Fe) times to untangle the influence of these two environmental fac-

tors on growth, elemental stoichiometry, photosynthetic carbon production and

photophysiology. This allowed to assess its role in the paleo carbon cycle.

Material and methods

Experimental setup

Prior to the execution of the experiment, the oceanic diatom P. subcurvata (isolated by Philipp

Assmy at 49˚S, 2˚E, R/V Polarstern cruise ANT-XXI/4, April 2004) was grown for more than

one year in Antarctic seawater with a low total dissolved Fe (dFe) concentration of 0.5 nmol L-

1 Preacclimation and the main experiment were carried out in Fe-poor (0.4 nmol L-1) Antarc-

tic seawater collected at 60˚32S, 26˚29W (salinity of 33.8 ± 0.2), filtered through a sterilized,

acid-cleaned 0.2 μm filter (Sartobran, Sartorius). This water was spiked with chelexed (Che-

lex1 100, Sigma Aldrich, Merck) macronutrients (100 μmol L-1 Si, 100 μmol L-1 NO3
- and

6.25 μmol L-1 PO4
3-) and vitamins (30 nmol L-1 B1, 23 nmol L-1 B7 and 0.228 nmol L-1 B12)

according to the F/2R medium [54]. In addition, a TM mix containing Zn (0.16 nmol L-1), Cu

(0.08 nmol L-1), Co (0.09 nmol L-1 Co), Mn (1.9 nmol L-1), Mo (0.05 nmol L-1) in the ratio of

the original F/2 recipe adjusted to 4 nmol L-1 Fe was added. As suggested by [55], in order to

minimize the alteration of the natural seawater TM chemistry and ligands, no ethylenedi-

aminetetraacetic acid (EDTA) was added. The Fe-deplete treatments (henceforth referred to as

Control) contained 0.4 nmol L-1 dFe while for the Fe-enriched treatments (henceforth referred

to as +Fe), 4 nmol L-1 FeCl3 were added.

To avoid Fe contamination, TM clean techniques were used according to the GEOTRACES

cookbook [56]. The sampling and handling of the incubations was conducted under a laminar

flow hood (Class 100, Opta, Bensheim, Germany). All equipment was soaked for one week in

1% Citranox, followed by two weeks in 1 N HCl for polycarbonate and 5 N HCl for polyethyl-

ene materials. In between and after the cleaning process, the equipment was rinsed seven

times with Milli-Q (MQ, Millipore). Finally, everything was air dried under a clean bench (U.

S. class 100, Opta, Bensheim, Germany) and packed in three polyethylene bags.

All Control and +Fe incubations were bubbled with humidified air containing pCO2 levels

of 190 and 290 μatm, henceforth referred to as 190 and 290, respectively. Using a gas flow con-

troller (CGM 2000, MCZ Umwelttechnik, Bad Nauheim, Germany), both CO2 gas mixtures

were generated by combining CO2 free air (< 1 ppmv CO2, Dominick Hunter, Kaarst, Ger-

many) with pure CO2 (Air Liquide Deutschland Ltd., Düsseldorf, Germany) in the respective

ratios. They were regularly monitored with a Li-Cor (LI6252 Biosciences, Lincoln, NE) cali-

brated with CO2 free air and purchased gas mixtures of 150 ± 10 and 1000 ± 20 ppmv CO2

(Air Liquide Deutschland Ltd., Düsseldorf, Deutschland). Low pCO2 and Fe input character-

ized the glacial ocean, which was here simulated in the +Fe 190 treatment. Vice versa, the

interglacial ocean was characterized by higher pCO2 and no Fe input and mimicked by the

Control 290 treatment. In addition to the incubation bottles, Fe and carbonate chemistry were

determined in the culture medium which was incubated in the same way as the respective
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incubation bottles (pCO2 and Fe availability), to check if the different pCO2 and Fe manipula-

tions were successful.

All incubations were placed in front of LED (light-emitting diode) lamps at 100 μmol pho-

tons m-2 s-1 under a light:dark cycle of 16:8 h. The light intensity was adjusted with a LI-1400

datalogger (Li-Cor Biosciences, Lincoln, NE, USA) with a 4π-sensor (Walz, Effeltrich, Ger-

many). For this experiment, the long-term low Fe acclimated P. subcurvata stock culture was

inoculated to the different CO2-Fe conditions and was acclimated to each experimental condi-

tion at 2˚C for at least two weeks. The main experiment was carried out in triplicate 4 L acid-

cleaned polycarbonate bottles for each experimental treatment. The main experiment started

with initial cell densities of ~1000 cells mL-1, lasted between 8 and 9 days and reached final cell

densities between 67 000 and 107 000 cells mL-1.

Trace metal chemistry

At the end of the experiment, total dissolved Fe (dFe) samples were taken from the culture

medium by filtering 100 mL from each bottle through 0.2 μm HCl-cleaned polycarbonate fil-

ters (47 mm, Nuclepore, Whatman, GE Healthcare, Chicago, IL, USA) using a trace metal

clean filtration system under a clean laminar flow hood (Class 100, Opta, Bensheim, Ger-

many). The filtrate was then filled into a 125 ml HCl-cleaned PE bottle and stored triple-

bagged at 2˚C until analysis. Between each filtration, the filtration manifold was cleaned in an

acid bath consisting of 1 M HCl and rinsed seven times with Milli-Q. Prior to the dFe analysis,

0.2 μm pre-filtered seawater samples were acidified to pH 1.75 with double distilled HNO3,

minimizing the formation of Fe and Mn hydroxides. Next, samples were UV (ultraviolet) oxi-

dized for 1.5 h using a 450 W photochemical UV power supply (photochemical lamp 7825;

Power Supply 7830, ACE GLASS Inc., Vineland N.J., USA). Total dFe concentration of the

seawater samples and the processed blanks were measured with a seaFAST system (Elemental

Scientific, Omaha, NE, USA) [57] coupled to a sector field inductively coupled plasma mass

spectrometer (ICP-MS; Element 2, Thermo Fisher Scientific; resolution of R = 4000; oxide

forming rates below 0.3%). To minimize matrix effects, the seawater dFe concentrations were

analyzed by standard addition. The accuracy of the dFe data was assessed by measuring NASS-

6 (National Research Council of Canada) reference standards, with a recovery rate for Fe of

110%.

Carbonate chemistry

From the culture medium as well as from the incubation bottles at the end of the experiment,

dissolved inorganic carbon (DIC) was filtered through 0.2 μm filters (Nalgene, Thermo Scien-

tific) and was stored at 4˚C in 5 mL borosilicate glass bottles without headspace. The colori-

metric analysis was performed with a QuAAtro autoanalyzer (Seal Analytical, [58]). Again,

from the culture medium as well as from the incubation bottles at the end of the experiment,

samples for the total alkalinity (TA) were filtered through 0.6 μm GF/F filters (Whatman) and

stored at 4˚C in 150 mL borosilicate glass bottles. TA was measured via potentiometric titra-

tion [59] and the concentrations were calculated using a linear Gran Plot [60]. The pCO2 was

calculated using the CO2Sys program [61] with the equilibrium constants of [62] as refitted by

[63] using TA and DIC measurements, concentrations of phosphate and silicate, temperature

and salinity.

Growth

Cell count samples of P. subcurvata were fixed with 10% acid lugol solution and stored at 2˚C

in the dark until counting. Cell numbers of P. subcurvata were enumerated according to the
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method by [64] using 3 ml sedimentation chambers (Hydrobios, Kiel, Germany) on an

inverted microscope (Zeiss Axiovert 200) counting at least 400 cells.

The growth rates μ (d-1) were determined with

m ¼
ln Nt

N0

� �

Dt

where N0 and Nt denote the initial and the final cell concentrations of the experiments, respec-

tively and Δt is the incubation time in days. Final harvest took place when the cells were in

exponential growth and reached densities between 67 000 and 107 000 cells mL-1.

The cell volume was computed using the volume formula of a prism on parallelogram base

provided by [65]. The apical and transapical axes were measured via microscopy, while the

pervalvar axis was estimated to be half of the transapical axis with an average value of 1.2 μm.

Elemental composition

At the end of the experiment, particulate organic carbon (POC) and particulate organic nitro-

gen (PON) were measured after filtering onto pre-combusted (15 h, 500˚C) GF/F filters (pore

size ~ 0.6 μm, Whatman). The amount of seawater filtered ranged between 200–300 mL and

was dependent on the biomass in the treatments. Filters were stored at -20˚C and dried

for> 12 h at 60˚C. Analysis was performed using a Euro Elemental Analyzer 3000 CHNS-O

(HEKAtech GmbH, Wegberg, Germany). At the end of the experiment, samples to determine

biogenic silica (BSi) were filtered through a cellulose acetate filter (Sartorius, 0.6 μm) and

stored at -20˚C. The dried filters were submerged in 0.2 M NaOH at 95˚C for 45 minutes,

cooled in an ice bath for 15 minutes, neutralized with 1 M HCl according to [66] and analyzed

colorimetrically for silicate using standard spectrophotometric techniques [67]. Contents of

POC, PON and BSi were corrected for blank measurements and normalized to filtered volume

and cell densities to obtain cellular quotas. Production rates of POC, PON and BSi were calcu-

lated by multiplying the cellular quotas with the respective growth rate.

Pigments

The amount of seawater filtered to collect pigment ranged between 200–300 mL on the GF/F

filter and was dependent on the biomass in the treatments. Each pigment sample was flash fro-

zen in liquid nitrogen and stored at -80˚C until analysis. First, the pigments were homogenized

and extracted for 24 h in 90% acetone at 4˚C in the dark. Second, they were centrifuged for

five minutes (4˚C, 13000 rpm) and filtered through a 0.45 μm pore size nylon syringe filter

(Nalgene, Nalge Nunc International, Rochester, NY, USA). The pigments were analyzed by

reversed phase High Performance Liquid Chromatography (HPLC) on a LaChromElite system

equipped with a chilled autosampler L-2200 and a DAD detector L- 2450 (VWR-Hitachi Inter-

national GmbH, Darmstadt, Germany). A SpherisorbODS-2 column (25 cm × 4.6 mm, 5 μm

particle size; Waters, Milford, MA, USA) with a LiChropher100-RP-18 guard cartridge was

used for the separation of pigments, applying a gradient according to [68]. Peaks of light har-

vesting (LH) pigments chlorophyll a (Chl a) and c2 (Chl c2), fucoxanthin (Fuco), as well as of

the light protective (LP) pigments diatoxanthin (Dt) and diadinoxanthin (Dd) were detected,

identified and quantified by co-chromatography with the corresponding pigment standards

(DHI Lab Products, Horsholm, Denmark) using the software EZChrom Elite ver. 3.1.3. (Agi-

lent Technologies, Santa Clara, CA, USA). Pigment contents were normalized to filtered vol-

ume and cell densities to obtain cellular quotas.
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Photophysiological parameters

The efficiency of photochemistry in the PSII of P. subcurvata was assessed regularly during

and at the end of the experiment by means of a Fast Repetition Rate fluorometer (FRRf, FastO-

cean PTX) and a FastAct Laboratory system (both from Chelsea Technologies Group ltd.,

West Molesey, United Kingdom). Values were obtained using the FastPro8 software (Version

1.0.50), [69]. Measurements were performed at least 2 hours after begin of the light period at

2˚C after 10 minutes of dark-adaptation to ensure that all PSII reaction centers were fully oxi-

dized and non-photochemical quenching (NPQ) was relaxed [70]. For each treatment, a

0.2 μm filtered blank was collected, measured and subtracted.

The fluorometer’s LED (wavelength 450 nm) was automatically adjusted to a light intensity

of 1.2�1022 photons m-2 s-1. A single turnover flashlet was applied to cumulatively saturate

PSII, thus to close all PSII reaction centers, and consisted of 100 flashlets on a 2 μs pitch, fol-

lowed by a relaxation phase made of 40 flashlets on a 50 μs pitch to reopen the PSII reaction

centers. The saturation phase of the single turnover acquisition, comprised 24 sequences and

was fitted according to [71]. The minimum (F0) and maximum (Fm) Chl a fluorescence were

determined and the apparent maximum PSII quantum yield (Fv/Fm) was calculated according

to the equation:

Fv=Fm ¼ ðFm � F0Þ=Fm

Further outputs of the FastPro8 software from the single turnover measurements of dark-

adapted cells were the connectivity between PSII (P, dimensionless), thus the energy transfer

between PSII units, the time constant for electron transport at the acceptor side of PSII (τ, μs),

the functional absorption cross section of PSII photochemistry (σPSII, nm-2) and the cellular

concentration of functional PSII reaction centers (RCII, zmol cell-1).

During the photosynthesis-irradiance-curve (PE-curve), cells were exposed to eight light

levels ranging from 0 to 1868 μmol photons m-2 s-1 for five minutes each. At each light level,

six measurements of the light-adapted minimum (F0) and maximum (Fm
0) Chl a fluorescence

were taken and the effective PSII quantum yield (Fq
0/ Fm

0 = (Fm
0—F0)/ Fm

0) was calculated [72].

Cellular electron transport rates (cETR) were calculated following [73, 74] and normalized

by RCII [75] using:

cETR ¼ RCII � sPSII � E �
Fq
0=Fm

0

Fv=Fm

where E (photons m-2 s-1) is the applied instantaneous irradiance, which was measured sepa-

rately for each light level in seawater.

The cETR versus E curve was fitted according to [76] allowing to derive the maximum

cETR (cETRmax), the minimum saturating irradiance (IK) determined by the interception of

the light-limited region with the maximum photosynthetic rate, and the maximum light utili-

zation efficiency (α).

NPQ of Chl a fluorescence was calculated using the Stern-Volmer equation [77] at each

light level:

NPQ ¼
Fm
Fm
0 � 1
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Statistical assessment

To assess the effect of Fe concentration (Control and +Fe) and pCO2 (190 and 290) on all

experimental parameters among the different treatments of P. subcurvata, we used a two-way

analysis of variance (2-way ANOVA) followed by a pairwise multiple comparison test (post

hoc) using the Holm-Sidak method. All statistical analyses and the curve fittings were per-

formed using the program SigmaPlot (Version 13.0 from Systat Software, Inc., San Jose Cali-

fornia USA, www.systatsoftware.com). Statistical significance was defined when p< 0.05.

Results

Trace metal and carbonate chemistry

The total dFe concentrations of the different culture medium showed a significant difference

between the +Fe and the Control treatments (2-way ANOVA: p< 0.001, Table 1), with the +Fe
treatments having higher dFe concentrations than the Control treatments. The parameters of the

carbonate system are given in Table 1. TA remained constant in all culture media and incubation

bottles. As expected, increasing pCO2 significantly enhanced the DIC concentration in all culture

media and incubation bottles (2-way ANOVA: p< 0.001; post hoc +Fe: p< 0.001; post hoc Con-
trol: p = 0.005). While Fe availability did not alter DIC of the different culture media bottles, a sig-

nificant Fe effect was found for the P. subcurvata incubations, but only for the 190 treatments

(post hoc: p< 0.04). The interaction of CO2 and Fe also led to significant effects in DIC of the P.

subcurvata incubations (2-way ANOVA: p< 0.02). As expected, the pCO2 and DIC in all of the

290 treatments were significantly higher than in the 190 treatments (2-way ANOVA; p<0.001;

Table 1). Biologically driven changes to the carbonate chemistry were ruled out since TA, DIC,

and pCO2 values did not differ between the abiotic culture medium and the corresponding P.

subcurvata incubations for each treatment at the end of the experiment (Table 1).

Growth and elemental composition

The growth rates of P. subcurvata were unaffected by Fe deficiency and changes in pCO2

(Fig 1A). Similarly, cell volumes remained constant across all treatments (Table 2).

Table 1. Total dissolved iron (dFe) concentrations and carbonate chemistry determined at the end of the experiment in the culture medium (filtered seawater with-

out cells) and the P. subcurvata incubations of the four treatments (+Fe 190, Control 190, +Fe 290 and Control 290). The pCO2 was calculated from measured dis-

solved inorganic carbon (DIC) and total alkalinity (TA). For the culture medium, dFe, TA, DIC and pCO2 values represent the range of duplicate abiotic controls. TA,

DIC and pCO2 values of the P. subcurvata incubations represent the means ± SD (n = 3). Differences between the individual treatments of the P. subcurvata incubations

were determined with post hoc tests, where significant statistical (p< 0.05) differences are denoted by different letters.

Parameter Culture medium

190 290

+Fe Control +Fe Control

dFe (nmol L-1) 2.92–3.10 0.94–1.07 1.36–1.41 0.37–0.50

TA (μmol kg-1) 2308–2318 2304–2319 2304–2323 2302–2311

DIC (μmol kg-1) 2077–2101 2058–2077 2125–2131 2131–2132

pCO2 (μatm) 208–249 201–208 269–308 296–309

P. subcurvata incubations

Parameter 190 290

+Fe Control +Fe Control

dFe (nmol L-1) - - - -

TA (μmol kg-1) 2317 ± 11 a 2326 ± 9 a 2327 ± 13 a 2320 ± 9 a

DIC (μmol kg-1) 2046 ± 17 a 2071 ± 11 b 2138 ± 14 c 2118 ± 2 c

pCO2 (μatm) 181 ± 15 a 202 ± 24 a 287 ± 31 b 283 ± 29 b

https://doi.org/10.1371/journal.pone.0260649.t001
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Cellular POC quotas (Table 2) and POC production rates (Fig 1B) in both pCO2 treatments

were not affected by Fe deficiency. On the other hand, the increase of CO2 concentration

resulted in a 20–30% decrease of cellular POC quotas (2-way ANOVA: p< 0.001; Table 2) and

POC production (2-way ANOVA: p< 0.001; Fig 1B) in both Control and +Fe treatments.

At 190, lowered Fe concentration led to a decrease of cellular PON concentrations by 19%

(post hoc: p< 0.03), while no Fe effect was observed at 290. In response to increasing pCO2,

the cellular PON concentration was strongly reduced (2-way ANOVA: p = 0.005; Table 2) in

the +Fe (post hoc: p< 0.004), but not in the Control treatments (Table 2). The PON produc-

tion (Fig 1C) followed the same pattern as cellular PON quotas, showing a significant decrease

of 15% with reduced Fe availability in the 190 treatments (post hoc: p< 0.03), while remaining

constant in the 290 treatments. With increasing pCO2, a loss of 26% in PON production in the

+Fe (post hoc: p< 0.02), but not in the Control treatments was observed, resulting from an

interactive effect of Fe and CO2 availability (2-way ANOVA: p< 0.02; Fig 1C).

Molar C:N ratios ranged between 6.9 ± 0.1 and 8.1 ± 0.2 mol mol−1. Fe deficiency led to a

13% increase in the C:N ratio in the 190 treatments (post hoc: p< 0.04), while no such Fe

effect was observed in the 290 treatments. Furthermore, the increase of CO2 concentration

resulted in a decline of C:N by 15% in the Control (post hoc: p< 0.02), but not in the +Fe treat-

ments. The interaction of Fe and CO2 altered C:N ratios significantly (2-way ANOVA:

p< 0.03; Table 2).

Fig 1. Effects of Fe reduction (+Fe vs Control) and pCO2 increase (190 vs 290) on (A) growth rate (μ), (B) POC

production, (C) PON production and (D) BSi production in the four treatments of P. subcurvata (+Fe 190, Control
190, +Fe 290 and Control 290) at the end of the experiment. The values represent the means ± SD (n = 3). Different

letters indicate significant differences between treatments (p < 0.05).

https://doi.org/10.1371/journal.pone.0260649.g001
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Neither low Fe concentrations nor increased pCO2 changed the cellular BSi quota

(Table 2). However, as a result of Fe deficiency the BSi production in 290 significantly

increased by 35% (2-way ANOVA: p = 0.007; post hoc: p = 0.006; Fig 1D), but not in 190. A

response to higher pCO2 resulted in higher BSi production only in the Control treatments

(post hoc: p< 0.04).

Pigment composition

All quantified pigments, except for Chl c2, were significantly affected by Fe deficiency in either

the 190 or the 290 treatments (2-way ANOVA: Chl a p< 0.001; Fuco p< 0.02; Dd p< 0.02;

Dt p< 0.02; Fig 2A and Table 3). At 190, reduced Fe availability resulted in a decrease of Chl a

Table 2. Volume and elemental composition determined at the end of the experiment in the four treatments of P. subcurvata (+Fe 190, Control 190, +Fe 290 and

Control 290). The values represent the means ± SD (n = 3). Different letters indicate significant differences between treatments (p < 0.05).

Parameter P. subcurvata incubations

190 290

+Fe Control +Fe Control

Volume (μm3) 31 ± 11 a 34 ± 13 a 34 ± 16 a 32 ± 18 a

POC (pg C cell−1) 12.8 ± 0.9 a 11.7 ± 0.8 a 9.4 ± 0.9 b 8.2 ± 0.6 b

PON (pg N cell−1) 2.1 ± 0.1 b 1.7 ± 0.1 a 1.5 ± 0.2 a 1.5 ± 0.2 a

C:N (mol mol−1) 7.2 ± 0.6 a 8.1 ± 0.2 b 7.4 ± 0.4 a 6.9 ± 0.1 a

BSi (pg Si cell−1) 2.6 ± 0.2 a 2.8 ± 0.4 a 2.6 ± 0.2 a 3.1 ± 0.5 a

https://doi.org/10.1371/journal.pone.0260649.t002

Fig 2. Effects of Fe deficiency and pCO2 increase on (A) chlorophyll a (Chl a), (B) photosynthetic yields (Fv/Fm), (C)

functional absorption cross sections (σPSII) and (D) time constants (τ) in the four treatments of P. subcurvata (+Fe 190,

Control 190, +Fe 290 and Control 290) at the end of the experiment. The values represent the means ± SD (n = 3).

Different letters indicate significant differences between treatments (p < 0.05).

https://doi.org/10.1371/journal.pone.0260649.g002
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by 37% (post hoc: p = 0.002), of Fuco by 34% (post hoc: p< 0.02) and of Dd by 29% (post hoc:

p = 0.03), while Dt was not affected. At 290, the reduction of Fe significantly reduced the Chl a
concentration by 23% (post hoc: p = 0.03) and Dt by 60% (post hoc: p = 0.007), whereas Fuco

and Dd remained constant. In response to elevated pCO2, cellular Chl a quotas of P. subcur-
vata were significantly reduced in the +Fe (251 ± 17 to 192 ± 19 fg cell-1 for 190 and 290,

respectively; 2-way ANOVA: p< 0.03; post hoc: p = 0.02; Fig 2A), while this trend was absent

in the Control. No other pigments (Fuco, Chl c2, Dd or Dt) responded to changes in the pCO2.

The Chl a:C ratio in P. subcurvata was significantly affected by Fe deficiency (2-way

ANOVA: p = 0.005; Table 3) leading to a decrease of 33% (post hoc: p< 0.03) and 27% (post

hoc: p< 0.04) in the 190 and 290 treatments, respectively. Conversely, increased pCO2 had no

effect on the Chl a:C ratio.

Maximum quantum yield and changes to PSII

The photosynthetic yield of P. subcurvata (Fv/Fm) showed a significant Fe effect (2-way

ANOVA: p< 0.001; Fig 2B). At 190, Fv/Fm decreased significantly by 21% in response to Fe

deficiency (from 0.52 ± 0.01 to 0.41 ± 0.02 in the +Fe and Control, respectively, post hoc:

p< 0.001), while no Fe effect was observed in 290. Interestingly, CO2 enhancement differently

affected the photosynthetic yield of the two Fe treatments. While increasing pCO2 enhanced

the Fv/Fm in the Control treatment by 15% (from 0.41 ± 0.02 to 0.47 ± 0.01, post hoc:

p = 0.005), it reduced Fv/Fm in the +Fe treatments by 8% (from 0.52 ± 0.01 to 0.48 ± 0.01, post

hoc: p< 0.04). Hence, there was a significant interactive effect of CO2 and Fe availability on

Fv/Fm (2-way ANOVA: p = 0.002; Fig 2B).

The connectivity (P) was significantly affected by Fe deficiency (2-way ANOVA: p = 0.002;

Table 4), with the Control treatment having an 11% smaller energy transfer between PSII units

Table 3. Pigment concentrations determined at the end of the experiment in the four treatments of P. subcurvata (+Fe 190, Control 190, +Fe 290 and Control 290).

The values represent the means ± SD (n = 3). Different letters indicate significant differences between treatments.

Parameter P. subcurvata incubations

190 290

+Fe Control +Fe Control

Chlorophyll c2 (fg cell-1) 28.9 ± 6.9 a 19.4 ± 5.7 a 22.3 ± 5.1 a 19.1 ± 5.0 a

Fucoxanthin (fg cell-1) 140 ± 10 a 93 ± 24 b 110 ± 16 a 86 ± 24 a,b

Diadinoxanthin (fg cell-1) 28.3 ± 3.8 a 19.4 ± 4.5 b 24.1 ± 4.3 a 17.7 ± 3.9 a,b

Diatoxanthin (fg cell-1) 1.27 ± 0.24 a 1.08 ± 0.12 a,b 1.47 ± 0.44 a 0.64 ± 0.21 b

Chl a:C (mol mol−1) 0.21 ± 0.03 a 0.14 ± 0.02 b 0.22 ± 0.04 a 0.16 ± 0.03 b

https://doi.org/10.1371/journal.pone.0260649.t003

Table 4. Connectivity (P), cellular concentration of functional PSII reaction centers (RCII), light utilization efficiency at low irradiance (α), maximum cellular elec-

tron transport rate (cETRmax) and minimum saturating irradiance (Ik,) of P. subcurvata in the four treatments (+Fe 190, Control 190, +Fe 290 and Control 290) at

the end of the experiment. The values represent the means ± SD (n = 3). Different letters indicate significant differences between treatments (p< 0.05).

Parameter P. subcurvata incubations

190 290

+Fe Control +Fe Control

P (rel. unit) 0.44 ± 0.01 a 0.39 ± 0.02 b 0.43 ± 0.01 a 0.40 ± 0.01 a,b

RCII (zmol cell−1) 515 ± 58 a 525 ± 42 a 370 ± 38 b 519 ± 47 a

α (amol e− cell−1 s−1/ μmol photons m−2 s−1) 0.75 ± 0.13 a 0.97 ± 0.14 b 0.58 ± 0.08 a 0.82 ± 0.07 b

cETRmax (amol e− cell−1 s−1) 119 ± 21 a 165 ± 26 b 85 ± 5 a 139 ± 19 b

Ik (μmol photons m−2 s−1) 155 ± 9 a 171 ± 11 a,b 143 ± 15 a 169 ± 9 b

https://doi.org/10.1371/journal.pone.0260649.t004
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than the +Fe at 190 (post hoc: p = 0.002). In the 290 treatments, a similar, however, not signifi-

cant, decreasing trend was seen. In contrast, no response of P to increased CO2 was observed.

The functional absorption cross section of PSII (σPSII) showed a significant effect to Fe defi-

ciency (2-way ANOVA: p< 0.001; Fig 2C). While σPSII increased by 26% with reduced Fe

availability in 190 (from 2.47 ± 0.03 to 3.11 ± 0.18 nm-2, respectively, post hoc: p< 0.001), this

Fe effect was not seen in the 290 treatments. Furthermore, only in the Control treatments σPSII

was reduced by 10% from 3.11 ± 0.21 to 2.79 ± 0.09 nm-2 between 190 and 290, respectively

(post hoc: p = 0.01). Moreover, there was a synergistic effect between Fe and CO2 on σPSII

(2-way ANOVA: p = 0.009; Fig 2C).

The cellular concentration of functional PSII reaction centers (RCII) was significantly

altered by Fe deficiency (2-way ANOVA: p< 0.04; Table 4). This effect was only seen in 290,

where RCII increased by 29% (post hoc: p< 0.02). Increasing CO2 significantly reduced the

RCII concentration (2-way ANOVA: p< 0.05), but only in the +Fe treatments (post hoc:

p< 0.02).

Fe deficiency differently influenced the time constant for electron transport at the acceptor

of PSII (τ) in the two CO2 treatments. While lower Fe concentration reduced τ when grown at

190 μatm pCO2 (post hoc: p < 0.001), it was enhanced at 290 μatm pCO2 (post hoc: p = 0.006;

Fig 2D). The effect of increased CO2 on τ was significant (2-way ANOVA: p< 0.004). In the

Control treatments, τ increased from 548 ± 21 to 659 ± 23 μs from 190 to 290 μatm pCO2 (post

hoc: p< 0.001) while it remained constant in the +Fe treatments. Hence, there was a strong

interactive effect of Fe and CO2 on τ apparent (2-way ANOVA: p< 0.001).

PE-curve

The cellular electron transport rates (cETR) of all treatments followed the shape of a typical

PE-curve (Fig 3A). The light utilization efficiency of P. subcurvata at low irradiance (α) was

significantly affected by Fe deficiency (2-way ANOVA: p = 0.005; Table 4), with α increasing

by 29% at 190 (post hoc: p< 0.04) and by 41% at 290 (post hoc: p < 0.02). A CO2 effect was

also observed (2-way ANOVA: p = 0.02), where increased CO2 reduced α, but due to large

uncertainties, the individual post hoc tests of the +Fe and Control treatments were not signifi-

cant. In response to Fe deficiency, cETRmax (Table 4 and Fig 3A) was significantly enhanced

(2-way ANOVA: p< 0.006) by 39% at 190 and by 64% at 290 (both post hoc: p< 0.03). The

increase in CO2, however, did not lead to significant changes in cETRmax. The minimum satu-

rating irradiance (Ik) displayed a significant Fe effect (2-way ANOVA: p< 0.02; Table 4),

where Ik increased by 10% in the 290 treatments (post hoc: p< 0.04). Although not significant

(p>0.05), in the 190 treatments a similar trend was observed. Ik remained unchanged by

increasing CO2 irrespective of Fe availability.

The non-photochemical quenching of all treatments was similarly low at low irradiances

(Fig 3B). Exposed to irradiances higher than 350 μmol photons m-2 s-1, the NPQ in P. subcur-
vata increased nearly linearly and then leveled off between ~1.5 and 2.5 for all treatments. No

Fe or CO2 effect on NPQ was observed in any treatment.

Discussion

The ‘Iron Hypothesis’ suggests that the fertilization of the SO by increased dust deposition in

glacial times promoted growth and productivity of phytoplankton. The biological pump in the

SO was thus hypothesized to have reduced atmospheric pCO2. In this study, we assessed the

ecophysiological response of P. subcurvata simulating glacial and interglacial climate scenarios

in terms of changes in Fe and CO2 availability. It is important to note that while we manipu-

lated two of the main environmental parameters, Fe concentrations and pCO2, other
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parameters (macronutrient concentrations, temperature i.e.) likely also differed between the

glacial and interglacial ocean. For this study, however, the focus was on the interactive effects

of Fe and pCO2.

Glacial conditions favored POC production by P. subcurvata
Between 190 and 290 μatm pCO2, no change in growth rate was observed in the +Fe treat-

ments of P. subcurvata (Fig 1A). Previous laboratory studies with cultures of the same P.

Fig 3. Effects of Fe deficiency and CO2 increase on (A) cellular electron transport rates (cETR) and on (B) non-

photochemical quenching (NPQ) in the four treatments with P. subcurvata (+Fe 190, Control 190, +Fe 290 and Control
290) at the end of the experiment. The values represent the means ± SD (n = 3).

https://doi.org/10.1371/journal.pone.0260649.g003
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subcurvata strain also reported no changes in growth rate between 180 and 390 μatm pCO2

[51]. Similarly, growth remained unaffected in the temperate Pseudo-nitzschia pseudodelicatis-
sima between 200 and 380 μatm pCO2 [78], in T. pseudonana, T. rotula, and T. oceanica from

230 to 350 ppm [79] and in Proboscia alata from 135 to 200 μatm pCO2 [47]. Additionally,

growth rates, pigment contents, photosynthesis and photophysiology of the Antarctic diatom

Chaetoceros brevis did not change between 190 and 750 ppm [80]. Differently, however, is the

study by [46], which reported a stimulation of the growth rate of another P. subcurvata strain

from 100 up to 450 μatm pCO2. Also, growth of the temperate Pseudo-nitzschia multiseries was

enhanced between 220 and 400 ppm pCO2 [48]. It appears therefore that species- and strain-

specific differences in the CO2-dependence of growth among Pseudo-nitzschia exist.

The similar growth rates at both pCO2 levels and Fe availabilities maintained by P. subcur-
vata in our experiment (Fig 1A) suggest the operation of carbon concentrating mechanisms

(CCMs), which efficiently avoided CO2 limitation. This can also be inferred from [50], where

Pseudo-nitzschia was the most abundant species within a natural Southern Ocean phytoplank-

ton assemblage under both Fe-enriched and Fe-deplete conditions at 180 and 390 μatm. Previ-

ous studies showed that Antarctic phytoplankton species such as P. subcurvata operate very

efficient CCMs, which are constitutively expressed irrespective of CO2 availability [49, 51, 81].

In addition to highest uptake rates of C and macronutrients, the temperate diatom P. pseudo-
delicatissima exhibited a high Fe uptake affinity at 170 ppm [78]. The latter findings indicate

that Pseudo-nitzschia species can cope well with low CO2 conditions, enabling them to main-

tain high growth even under low CO2 conditions, as can be also seen here in P. subcurvata
(Fig 1A).

In this experiment, Fv/Fm was highest in the +Fe 190 treatment (Fig 2B), indicating that P.

subcurvata possessed highest photochemical fitness under simulated glacial conditions. With

increasing pCO2, however, Fv/Fm declined in the diatom, but only when Fe was added (Fig

2B). Such a negative CO2 effect in Fe-enriched conditions was also observed in the Chl a con-

tent (Fig 2A) and the number of functional RCII (Table 4). Indeed, P. subcurvata cells grown

in the +Fe 290 treatment had a lower Chl a content compared to ones in the +Fe 190 treatment

(Fig 2A), although the Chl a:C ratios were similar.

Moreover, cellular BSi quotas and production remained constant with increasing pCO2 in

the +Fe treatments (Fig 1D, Table 2) while a decline in POC and PON quotas as well as in

POC and PON production rates (Fig 1B and 1C and Table 2) was found. Reducing both POC

and PON quotas, P. subcurvata was able to maintain a constant C:N ratio (Table 2) in response

to increasing pCO2 under Fe-enriched conditions. Considering, however, that cETRs

remained similar between 190 and 290 (Fig 3A, Table 4), a reduction in POC and PON con-

tents indicates that the contribution of linear electron transport was reduced while cycling of

electron via alternative pathways was required to avoid excess light energy. These physiological

characteristics resemble those observed in various field incubation experiments under ocean

acidification conditions and indicate that P. subcurvata struggles when exposed to high pCO2

levels [24, 49, 50]. Overall, we can conclude that glacial conditions simulated by a low pCO2 of

190 μatm together with Fe enrichment was neither limiting growth nor POC production of P.

subcurvata. On the contrary, these conditions were beneficial for biomass production and

photochemical fitness of the diatom.

P. subcurvata adjusted its physiological machinery to cope with low Fe

supply

Contrary to other studies, we did not observe a decrease in cell volume of P. subcurvata grown

with decreasing Fe availability (Table 2) [42, 82]. This may have been masked by the fact that
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the P. subcurvata strain used in our experiment was acclimated to low Fe conditions for a long

time. Indeed, it exhibited large and elongated cells compared to the much shorter cells of the

stock culture grown in the Fe-rich F2 medium (12 μM Fe), thus increasing their surface area-

to-volume ratio. Furthermore, this strain was isolated from open ocean waters in the Atlantic

sector of the SO. It is well known that oceanic diatoms acclimate to Fe limitation by increasing

their surface area-to-volume ratio in order to maximize the number of transporter sites and

nutrient uptake kinetics [83, 84].

Many studies reported a decrease in growth rate with decreasing Fe availability [8, 39, 40,

42, 44, 85–89]. Nonetheless, some of them also observed that particular oceanic diatoms grew

at comparable rates under high and low Fe conditions [8, 86], as they have evolved acclimation

strategies to reduce their Fe requirement. In our experiment, the growth rate of the oceanic P.

subcurvata also displayed no difference between +Fe and Control conditions at the two pCO2

levels tested (Fig 1A) [42]. Suggested that the response of physiological and biochemical

parameters to Fe reduction precedes changes in growth rate. This may explain why we did not

see a decrease in growth rate here, despite observing typical responses to Fe-limiting condi-

tions as substantial reductions in photochemical quantum efficiency (Fig 2B), connectivity

(Table 4) and Chl a content (Fig 2A) accompanied by large functional absorption cross sec-

tions (Fig 2C) [9, 38, 40, 41, 85, 87, 88, 90, 91].

Under Fe deficiency, lowered Fv/Fm values indicate that the excitation energy was less effi-

ciently transferred in the antennae, due to damaged and altered parts of the photosynthetic

apparatus [41]. A decrease in Fv/Fm was commonly observed in cells grown in Fe-poor envi-

ronments [9, 40, 41, 44, 87, 88] and, as expected, we observed this trend in the Control 190
treatment of P. subcurvata (Fig 2B). In line with the tested P. subcurvata here, oceanic Pseudo-
nitzschia species usually decouple Fv/Fm and growth rate, reducing the former while maintain-

ing the latter [8]. This decoupling was suggested to be due to either a low energy requirement

of the diatom, or a compensating mechanism that generates reducing power, thus supporting

rapid growth [8].

The decrease in Fv/Fm (Fig 2B) and lowered connectivity (P, Table 4) at low pCO2 in the

low Fe P. subcurvata cells indicate that the transfer of excitation energy to the reaction centers

was compromised [9]. Because Fe deficiency affects the synthesis and thus cellular content of

Chl a, as seen in our data (Fig 2A), light harvesting may become more difficult for the cell.

While [85] held lowered pigment concentration during Fe starvation responsible for a decline

in photosynthesis, we did not observe reduced POC production rates (Fig 1B). Rather P. sub-
curvata compensated for a low Chl a content by increasing the functional absorption cross sec-

tion of PSII (σPSII), which is a measure of the target area of the light harvesting antenna (Fig

2C). In response to Fe deficiency this strategy can reduce the Fe demand and keep up the same

capacity of the cell to absorb light [92]. Our results agree with literature showing an increase in

σPSII with Fe reduction [9, 38, 40, 41, 75, 87–89].

These photophysiological adjustments, however, did not prevent changes in light absorp-

tion completely, as shown by the strongly impacted light use capacities of Fe-limited P. subcur-
vata (Table 4). Higher α values were found under Fe deficiency for both 190 and 290
treatments, indicating that cells were able to respond better to lower irradiances than Fe-

replete cells. Surprisingly, this effect was not always observed for Ik values of P. subcurvata,

which remained similar at 190 and was slightly higher at 290 (Table 4). Thus, while Fe defi-

ciency at 290 resulted in a more efficient light utilization at lower irradiances (higher α), the

cells required more light (higher Ik) in order to cover their photosynthetic requirement [40].

In other studies, Ik either decreased [40, 93] or remained unchanged [44, 85] under Fe

reduction.
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Even though POC-fixation remained constant under Fe deficiency (Fig 1B), cETRmax (Fig

3A, Table 4) and RCII concentration (only seen at 190 μatm pCO2) were enhanced (Table 4),

indicating similar linear electron transport, but also cycling of electrons into alternative path-

ways such as cyclic electron flow within PSII [94] or Mehler reaction [95]. Considering, how-

ever, that the latter pathways are Fe-expensive, other pathways such as activity of a putative

plastid plastoquinol terminal oxidase (PTOX) seem more plausible [96]. In support for this,

[9] also observed constant C assimilation, but enhanced electron transport with Fe limitation

in open ocean phytoplankton. Furthermore, a quicker turnover time at the acceptor side of

PSII (τ) was found at 190 μatm pCO2 in the Fe deficient P. subcurvata cells (Fig 2D), support-

ing PTOX activity, as previously observed for the Fe-limited Antarctic diatom Chaetoceros
debilis [44]. Interestingly, this was not reflected in higher NPQ activities (Fig 3B).

At low pCO2, BSi quotas and production rates of P. subcurvata remained unaltered in

response to Fe deficiency (Fig 1D, Table 2), as previously observed in Chaetoceros debilis [44],

Corethron pennatum [97] and Chaetoceros dichaeta [98]. Considering the importance of Fe in

C and N assimilation pathways, many studies reported a decrease in C and N under Fe defi-

ciency [40, 42]. In [99], the C quota per cell volume ranged between 0.02 and 0.03 pg μm-3 and

was similar between Fe-replete and Fe-deficient treatments in the oceanic Pseudo-nitzschia
fraudulenta, P. heimii, P. inflatula and P. turgidula, as well as in the coastal species P. multi-
series and P. pseudodelicatissima. This matches with our results for the two tested pCO2 levels

(POC per cell volume at 190 +Fe: 0.041±0.002 pg μm-3, Control: 0.035±0.005 pg μm-3 and at

290 +Fe: 0.029±0.005 pg μm-3, Control: 0.027±0.003 pg μm-3). The C:N ratio of diatoms was

reported to increase [78], decrease [100] or remain unchanged [42, 44] with reduced Fe avail-

ability. We observed an increase in the C:N ratio in response to Fe deficiency at 190 μatm

pCO2 (Table 2). In this case, POC quotas remained constant, whereas PON cell quotas

decreased with Fe deficiency (Table 2). Literature showed that Fe limitation can affect the sup-

ply of ‘new nitrogen’ to the cell as Fe is needed in some N-rich enzymes [101, 102]. [75]

observed less abundant transcripts for nitrite reductase under Fe limiting conditions in Phaeo-
cystis antarctica. Considering this, our reduced PON-fixation in P. subcurvata under low Fe

conditions in conjunction with low pCO2 could be coupled to a protein recycling process to

avoid N-limitation [39, 75, 103].

We can conclude that Fe deficiency results in a less efficient transfer of excitation energy in

P. subcurvata, allowing it to reduce its Fe demand. In order to keep up the same POC produc-

tion, P. subcurvata needed to rely on alternative electron pathways such as cyclic electron flow

as well as PTOX activity to prevent over-excitation.

Increased pCO2 weakened the effects of low Fe supply, but did not promote

biomass build up

Previous experiments with Pseudo-nitzschia demonstrated on the one hand, that the cell vol-

ume of P. pseudodelicatissima increased significantly as pCO2 decreased, while, on the other

hand, cell volume was found to decrease with decreasing Fe availability [42, 82]. In our experi-

ments, the cell volume of P. subcurvata did not decrease with reduced Fe availability and

increased pCO2 (Table 2), potentially due to a counteracting effect of both factors together.

Moreover, Fv/Fm decreased in response to Fe reduction at 190 (Fig 2B), while such Fe-depen-

dent decrease in Fv/Fm was not observed at 290. This indicates that increasing pCO2 had a pos-

itive effect on the maximum photochemical efficiency of low Fe P. subcurvata cells. A similar

effect by high CO2 concentration was also found for σPSII in Fe-deplete cells, being much

smaller (Fig 2C). Apparently, these positive CO2 effects weakened the strong Fe reduction

effects previously observed at 190. Such positive response did, however, not translate into
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more efficient energy transfer from photochemistry to biomass production. In fact, re-oxida-

tion of the primary electron acceptor Qa of low Fe cells was strongly compromised at 290 (Fig

2D). This was associated with reduced POC fixation and enhanced cETRs at 290 (Fig 3A,

Table 4), and as a consequence, alternative electron acceptors were required. Due to a syner-

getic effect of reduced Fe availability and increased pCO2, in our experiment we observed the

highest BSi production in low Fe high pCO2 conditions (Fig 1D). This increase in BSi produc-

tion with reduced Fe concentrations at 290 hints towards stronger silicification and the pro-

duction of thicker shells by P. subcurvata [104–106].

Conclusion: Glacial vs. interglacial

In our study, in a simulated Fe-fertilized glacial ocean (+Fe 190), P. subcurvata displayed simi-

lar growth rates as in interglacial ocean conditions (Control 290), despite lower Fe availability,

hinting towards an efficient acclimation strategy to reduce the Fe requirement. Under glacial

conditions, electrons were more efficiently channeled, leading to higher cellular POC and

PON concentrations and production rates. In comparison, the interglacial conditions with

higher pCO2 and reduced Fe availability resulted in reduced POC buildup of the diatom.

Thus, we observed that both higher Fe availability and lower CO2 concentration as in the gla-

cial ocean, promoted POC production by P. subcurvata. Assuming that P. subcurvata domi-

nated phytoplankton blooms in the SO during glacial and interglacial times, we can conclude

that P. subcurvata contributed more to primary production in the glacial than interglacial

ocean. The higher POC production rates by the diatom under glacial conditions facilitated

higher CO2 uptake from the atmosphere and potentially higher C export. This matches the

‘Iron Hypothesis’ of [1], which states that in the last glacial maximum higher Fe input from

dust fertilized the SO, thus stimulating higher primary production and reducing thereby the

atmospheric CO2 concentration. On the other hand, however, the thicker shells of P. subcur-
vata under the simulated interglacial conditions hint towards reduced grazing and thus its

higher contribution to C export [107]. Biogeochemical cycles changed in the past and will

change in response to future global climate change. Thus, understanding the dynamic interac-

tions of the ocean’s biogeochemistry and phytoplankton is important in order to better simu-

late past and future climatic scenarios.
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