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ABSTRACT: The pharmaceutical industry has significantly contributed to improving human
health. Drugs have been attributed to both increasing life expectancy and decreasing health
care costs. Unfortunately, there has been a recent decline in the creativity and productivity of
the pharmaceutical industry. This is a complex issue with many contributing factors resulting
from the numerous mergers, increase in out-sourcing, and the heavy dependency on high-
throughput screening (HTS). While a simple solution to such a complex problem is
unrealistic and highly unlikely, the inclusion of metabolomics as a routine component of the
drug discovery process may provide some solutions to these problems. Specifically, as the
binding affinity of a chemical lead is evolved during the iterative structure-based drug design
process, metabolomics can provide feedback on the selectivity and the in vivo mechanism of
action. Similarly, metabolomics can be used to evaluate and validate HTS leads. In effect,
metabolomics can be used to eliminate compounds with potential efficacy and side effect
problems while prioritizing well-behaved leads with druglike characteristics.

■ BENEFITS OF DRUG DISCOVERY

Extending Life Expectancy. The pharmaceutical industry
has had a tremendous beneficial impact on human health. In
fact, the increased use of pharmaceuticals in developed nations
has significantly contributed to an increase in life expectancy
(Figure 1a).1 Lichtenberg has estimated that 40% of the
increase in life expectancy from 1982 to 2001 across 52
countries can be attributed to new drug launches.2 Specifically,
greater than 80% of the gains in life expectancy for cancer
patients have been attributed to new treatments that include
medicines.3 A separate study indicates that 50−60% of life
expectancy gains in cancer patients are directly attributed to
pharmaceuticals.4 Similarly, the death rate from human
immunodeficiency virus infection/acquired immunodeficiency
syndrome (HIV/AIDS) decreased 85% after the approval of
antiretroviral treatments in 19955 and, correspondingly, AIDS
patients now have close to normal life expectancies.6 A
comparable outcome has been observed with a 25% decline
in coronary heart disease and mortality between 1997 and
2007, which is due, in part, to cholesterol-lowering drugs
(Figure 1b).7,8 A recently completed 22-year follow-up study
on the benefit of treating hypertension indicated that life
expectancy increased one day for each month of treatment.9 In
addition, the introduction of antibiotics has largely contributed
to the eight year increase in life expectancy between 1944 and
1972 (Figure 1a).10 In fact, the major causes of death in 1900
were infectious diseases (pneumonia, tuberculosis, diarrhea, and
enteritis),11 but due to the beneficial impact of antibiotics, by
2013 the leading causes of death can be attributed to an aging
population (heart disease, cancer, stroke, and chronic lung
disease).5 Clearly, there is a growing body of empirical evidence

demonstrating the significant contribution of pharmaceuticals
to increasing life expectancy.

Reducing Health Care Costs. Health care costs in the U.S.
have expanded at a rate significantly faster than inflation
(Figure 1c).12 The costs of pharmaceuticals are a significant
contributor to these rising health care expenditures, where
pharmaceuticals expenditures account for approximately 10% of
the total U.S. health care costs per year. Despite this inherent
initial expense, pharmaceuticals have actually contributed to an
overall decrease in the cost of health care.13 Simply,
pharmaceutical use prevents serious health-related events that
lowers the use of health care resources such as emergency room
visits, hospital stays, medical personnel time (nurses, physicians,
surgeons, etc.), surgery facilities, and diagnostic services (X-ray,
magnetic resonance imaging (MRI), computerized tomography
(CT) scans, etc.). In fact, a recent study of the Canadian health
care system indicated that for each dollar spent on
pharmaceuticals by a male patient, a decrease of 1.48 dollars
was achieved in other health care resources.14 Similarly, the use
of cholesterol lowering drugs in Scandinavia has led to a 34%
reduction in hospital stays and a corresponding savings of
$3872 per patient.15 Treating relapsing−remitting multiple
sclerosis patients with cladribine (immunosuppressant) resulted
in a similar decrease in hospital stays, emergency room visits,
and missed work.16 Likewise, a randomized study across 28
countries analyzed the incremental cost-effectiveness ratio
(ICER) of treating patients with clopidogrel, an antiplatelet
agent.17 The treatment was determined to be cost-effective,
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with an ICER that ranged from $4833 to $6475. These studies,
among others, have clearly indicated that the use of
pharmaceuticals is a beneficial and cost-effective approach to
lowering total health care costs.

■ DRUG DISCOVERY CHALLENGES

Decline in New Drugs Approved by the U.S. Food and
Drug Administration (FDA). Despite the historical benefits
of drug discovery to human health and well-being, there has
been a disturbing decline over the last decades in the creativity
and output of the pharmaceutical industry.18−21 Since 1996,
there has been a precipitous drop in the number of new drugs
approved by the FDA (Figure 1d). Also, an increasing number
of these new drugs are simply repositioned22 or “me too”.23

Furthermore, there has been a steady decline in the efficiency of
drug discovery as measured by the number of drugs per dollar
of research and development (R&D) spending.18 What are the
underlying problems with drug discovery causing this
diminishing productivity? First and foremost, drug discovery
is probably the most difficult endeavor embarked upon and, as a
result, a high failure rate is commonly encountered. For
example, an extremely high attrition rate occurs during the drug
discovery process, where estimates indicate that it takes upward
of 45 active research projects to generate one new drug
application (NDA) to the FDA.19,24 Furthermore, the
corresponding success rate of NDAs in clinical trials is only
11%.25 Further contributing to the situation is the high cost
associated with the drug discovery process. The average cost for

developing a new drug has been estimated to range from $800
million26 to $1.8 billion dollars.19 The high cost associated with
drug discovery will severely limit the number of active research
projects pursued by a company.

Potential Reasons for the Decline in New Drugs.
Unfortunately, in response to these challenges, a number of
serious and deleterious decisions have been made that have
only aggravated the situation. The pharmaceutical industry has
undergone an extensive round of mergers. Between 2000 and
2011, the pharmaceutical industry has lost nearly 300000 jobs
according to the consulting firm Challenger, Gray & Christmas.
Obviously, this drastic decline in highly trained personnel with
extensive drug discovery experience has only contributed to the
continuing decrease in the discovery of new drugs. Additionally,
the pharmaceutical industry has significantly diminished drug
development efforts in a number of therapeutic areas including
Alzheimer’s and Parkinson’s disease,27 antibiotics,28 psychiatric
disorders,29,30 vaccines,31 and even cardiovascular diseases.32

These therapeutic areas are being abandoned by some
companies because of the low success rate or a low return on
investment. Instead, the focus is on identifying the next
“blockbuster” drug with profits in the billions of dollars per
year.33 This approach effectively eliminates the possibility of
discovering new therapies for important areas of human health.
Conversely, the concentrated effort within a few research areas
has inevitably led to the decrease in new drugs and the increase
in the number of redundant drugs.34

Figure 1. (a) A correlation between increasing U.S. life expectancy5 (solid black diamonds) and the decreasing U.S. mortality rate associated with
infectious disease (solid red circles) between 1930 and 2006 (adapted from Armstong et al.10). (b) A correlation between the decrease in U.S. heart
disease death rates5 and the decrease in U.S. LDL cholesterol levels (adapted from Kaufman et al.7). (c) Plot of the total U.S. health care cost per
capita (solid black diamonds) and the associated expenditures on pharmaceuticals (solid red circles) between 2000 and 2011.12 (d) Plot of the
decrease in new drugs approved by the FDA (solid black diamonds) between 1996 and 2013. Trend lines are provided to simply assist in visualizing
the overall data trends and are not a model fit.
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Other ill-conceived managerial decisions have also con-
tributed to the decline in the productivity and creativity of the
pharmaceutical industry, which include outsourcing,35,36 the
application of metrics,24,37 and restricting project timelines.38 In
effect, drug discovery is being treated like any other
manufacturing process where cost savings is driving business
decisions, but assembly line science does not work because the
process is highly interdisciplinary and unpredictable.39,40

Outsourcing simply leads to the isolation of critical
components of the process, but breakthroughs and problem-
solving require routine interactions between experts with
diverse skill sets and experiences. Similarly, metrics emphasizes
the bookkeeping of meaningless data to create the illusion of
success, but the number of compounds synthesized, assays run,
or structures solved is irrelevant if a drug is not the outcome.
Finally, restricting research projects to a predefined timeline of
only two to three years almost guarantees a pattern of repetitive
failures. A priori predicting how long it will take any project to
yield a positive outcome is simply foolish. Instead, an informed
decision based on experience and results should be used to
make a decision on whether to terminate or continue a project.
The focus on predefined timelines and assembly line science

is a result of the integral role that HTS have been playing in the
drug discovery process.41−44 This has occurred despite the fact
that HTS has not contributed to an increase in the number of
new drug discoveries.25,45−47 In general, HTS does not provide
information on the in vivo mechanism of action, does not
provide evidence of a direct binding interaction with the
protein target, and has a tendency to identify a large number of
hits with undesirable modes of action or false positives.48−54

Furthermore, the false leads that routinely emerge from HTS
will contribute to delays in a drug discovery project and may
eventually result in a project being terminated. In fact, poor
HTS outcomes may also contribute to the observed failures of
drug leads in the clinic.25,46 Of course, the HTS community has
been aggressively responding to these issues by improving the
quality and diversity of screening libraries,55−58 by improving
the statistical analysis of HTS data sets,53,54 and by combining
HTS with virtual screens.59 Unfortunately, a significant number
of the problems encountered in the pharmaceutical industry are
self-inflicted and will require a philosophical paradigm shift in
how drug discovery is conducted. Clearly, these problems will
not be solved with technology advancements like structure-
based drug discovery,60 combinatorial chemistry,61 fragment-
based screening,62 or metabolomics,63 but the adaption of
metabolomics and other related approaches as an integral part
of a drug discovery program has the potential of benefiting the
drug discovery process.

■ METABOLOMICS
Metabolomics Overview. Metabolomics is a natural

extension of genomics, transcriptomics, and proteomics, but
instead of monitoring changes in the expression of genes or
proteins, metabolomics monitors changes in the concentration
of the low-molecular-weight (<1 kDa) compounds (metabo-
lites) present in a cell, tissue, organ, organism, or biofluid
(urine, plasma, cerebrospinal fluid, etc.). The metabolome is
the entire collection of small molecules or metabolites within a
biological sample that may include amino acids, carbohydrates,
cofactors, fatty acids, nucleotides, and even xenobiotics that
includes drugs and drug-associated metabolites. The number of
metabolites for a particular biological system may range from
thousands to hundreds of thousands of compounds.

Importantly, changes in the metabolome or in a specific
metabolite are a direct result of changes in the biological
activity of an enzyme or protein. Correspondingly, metab-
olomics is commonly employed to define phenotypes.64 This is
a critical difference between metabolomics and other “omics”
techniques. The change in the expression level of a gene or
protein does not necessarily correlate with a change in protein
activity.65 Thus, metabolomics provides a direct measure of the
state of the cell or biological system, where changes in the
metabolome capture how the system responds to environ-
mental or genetic stress. Specifically, a drug or an active
chemical lead would be expected to perturb the metabolome of
a cell or tissue upon treatment.
Targeted and untargeted metabolomics are two distinctly

different approaches to investigating the metabolome. A
targeted metabolomics approach follows changes to a specific
metabolite or set of metabolites based on some prior
information or hypothesis. Specifically, the identified or
targeted metabolites are expected to respond to a drug
treatment, disease state, genetic modification, or some other
environmental stressor. Conversely, untargeted metabolomics
is discovery based. The metabolites or metabolic pathways
affected by these external stress factors are unknown. The goal
of untargeted metabolomics is to monitor the entirety of the
metabolome in order to identify the affected metabolites and
pathways. In either case, the metabolome extracted from cells
or biofluids are compared before and after the addition of the
stress factor (drug treatment, genetic mutation, disease, etc.). A
variety of analytical techniques are routinely used for
metabolomics, but mass spectrometry (MS)64 and nuclear
magnetic resonance (NMR) spectroscopy66 are the two most
commonly employed methods. The application of NMR to
metabolomics has been extensively reviewed, and only critical
issues will be highlighted.66−77

Important Issues Related to Metabolomics. Metab-
olomics is a valuable tool of chemical biology and systems
biology, and its application has been rapidly expanding (Figure
2). The ease of use and general utility has contributed to the

continually increasing number of metabolomics studies. A
standard protocol for analyzing bacterial cell cultures with
metabolomics is illustrated in Figure 3.78 Unfortunately, the
apparent simplicity of metabolomics also makes it easy to apply
the technique incorrectly.79 This has resulted in numerous
erroneous studies in the literature. Untargeted metabolomics
consists of acquiring one-dimensional (1D) 1H NMR spectra
for a set of cell lysates or biofluid samples that are then analyzed
using standard multivariate statistical analysis techniques.80 The
1D 1H NMR spectra provides a fingerprint of the state of the

Figure 2. Plot of manuscripts per year where the key word
“metabolomics” was included in the topic field in the Web of Science
database updated Jan 9, 2014.
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metabolome, where principal component analysis (PCA),
partial-least-squares (PLS), and orthogonal projection to latent
structures discriminant analysis (OPLS-DA) determine if the
metabolomes differentiate between the multiple classes (e.g.,
drug treated vs untreated cells). PLS and OPLS-DA S-plots and
loading plots are then used to identify the spectral features (i.e.,
chemical shifts and associated metabolites) that primarily
contribute to these observed class differentiations. Incorrect
sample preparation and collection procedures may lead to
biologically irrelevant changes to the metabolome.78 Inappro-
priate data processing and analysis protocols may bias the
metabolomics data set, causing an erroneous interpretation.81,82

The lack of model validation may imply a class distinction that
does not really exist.83 Similarly, class separations in a scores

plot may be identified that are not statistically justified.84,85

Correspondingly, a current challenge in the field of
metabolomics is optimizing and standardizing protocols.86,87

Unlike genomics or proteomics samples, metabolomics
samples are not static and will change with time and from
the handling and processing procedures.88 Verifying that the
observed changes in a metabolomics sample are biologically
relevant, as opposed to artifacts of sample preparation, is critical
to a successful metabolomics study. Thus, multiple replicates of
cell samples are grown, harvested, and lysed under identical
conditions as is practically possible and as quickly as possible.
Importantly, processing of samples should be completely
randomized because, at a minimum, a time-bias will be
imprinted on the samples if each class was processed

Figure 3. A flowchart of protocol used for the NMR analysis of bacterial metabolomes. Reprinted with permission from ref 78. Copyright 2013
Proteomass Scientific Society.
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sequentially. Similarly, each step of the process should be
performed by the same individual. Again, variations in
individual techniques may bias the outcome if each class was
processed by different researchers. Despite these efforts,
significant within class variability will occur because of the
intrinsic nature of biological samples. Thus, it is also critical to
prepare enough replicates per class in order to obtain statistical
relevance to any observed class discrimination. Typically, a
minimum of 6−10 replicates of cell lysates is required, but the
sample size increases significantly for a clinical study.89 It is also
critical to quantify the statistical significance of the cluster
separations in the resulting scores plot.
Acquiring and processing the NMR spectra for each cell

lysate can also induce unintended perturbations in the
metabolomics data set. Randomizing the NMR data collection,
utilizing automation, and obtaining efficient solvent suppression
minimizes these concerns. Specifically, high-quality solvent
suppression is required to avoid baseline correcting the NMR
spectrum. A minimal and uniform approach to processing the
NMR spectrum (Fourier transformation and phase correction)
is preferred because baseline correction, applying a window
function, zero filling, and other processing steps will modify the
data in a biologically irrelevant manner. Proper preprocessing of
the metabolomics data set, which includes removing noise,90

normalization, scaling, and aligning (or binning), is also
necessary for a reliable PCA, PLS, or OPLS-DA model and
meaningful interpretation of the metabolomics data. Removing
noise regions eliminates the possibility that serendipitous
covariant noise peaks may contribute to irrelevant class
separation. Normalization corrects for the variability in total
metabolite concentration or NMR sensitivity due to exper-
imental differences in the total number of cells harvested, in the
efficiency in extracting the metabolomes, and potentially due to
changes in instrument performance. Similarly, scaling accounts
for large differences in metabolite concentrations within a given
sample (dynamic range issue) and prevents intense peaks from
dominating the multivariate statistical analysis. Binning or
aligning the spectra corrects for small variations in peak
position and peak shape due to differences in sample conditions
(pH, ionic strength, concentration, etc.) and instrument
variability between replicates. In practice, multiple program
packages are used for each step of the NMR data processing
and analysis including separate software for processing of the
1D 1H NMR spectra, preprocessing the metabolomics data set,
and the multivariate statistical analysis. This situation clearly
contributes to the lack of a standard set of protocols and the
significant variations between individual metabolomics studies.
To address this issue, we have developed an open-source
platform for the complete handling of NMR metabolomics data
and the generation of validated multivariate statistical models
(MVAPACK, http://bionmr.unl.edu/mvapack.php).91 We have
also developed software to analyze the statistical significance of
cluster separations in PCA, PLS, and OPLS-DA scores plots
(PCA/PLS-DA utilities, http://bionmr.unl.edu/pca-utils.
php).84,85

Applying Metabolomics to Drug Discovery. The first
step of the drug discovery process is to identify initial chemical
leads with reasonable affinity (typically a KD of 10 μM or less)
and novel structures (patentable) that have druglike character-
istics (Lipinski’s Rule of Five)92 and are synthetically achievable
and malleable. This is primarily accomplished by using a high-
throughput screen of a chemical library composed of hundreds
of thousands to millions of compounds.41 The chemical leads

are then evolved to high-affinity ligands (KD ≤ nM) through an
iterative process involving structure-based drug design, tradi-
tional medicinal chemistry techniques, and multiple activity
assays. This process may include cell-based assays to measure
cell viability when the desired activity of a chemical lead is cell
death (i.e., infectious disease and cancer). While this process is
generally very efficient and high affinity ligands typically
emerge, there is a fundamental difference between a true
drug lead and a tight-binding ligand. It is well-known that an
increase in affinity can be achieved by increasing the size and
hydrophobicity of a compound, which are generally detrimental
to druglike characteristics.48−52 In fact, the drift of corporate
libraries toward these undesirable traits has been well-
documented,93 which inevitably led to the development of
Lipinski’s Rule of Five.92 Furthermore, compounds with poor
physiochemical properties also tend to provide misleading
biological activity. For this class of compounds, the inhibition of
a protein target likely occurs through undesirable mechanisms
such as micelle formation or induced protein aggregation or
precipitation.48−52 Correspondingly, the process of increasing
binding affinity may actually change the mode of action of a
lead candidate in an undesirable direction.
Besides improving efficacy, increasing the binding affinity of

chemical leads is also intended to improve selectivity.
Reasonably, the more a particularly compound has been
optimized to bind to the exact sequence and structural
characteristics of a specific active site, the less likely it will
bind to other proteins. Of course, a secondary assay using a
panel of functional homologues with high sequence and
structure similarity to the therapeutic target is routinely used
to evaluate compound selectivity. Unfortunately, these protein
panels are rarely exhaustive. Despite these efforts, the lack of
efficacy and issues with toxicity, which include off-target
activity, are the primary reasons potential drugs fail in the
clinic.94 Correspondingly, evaluating issues related to bioavail-
ability (absorption, distribution), in vivo activity, in vivo
selectivity, compound stability (metabolism, excretion), and
toxicity are an integral, but extremely challenging component of
the drug discovery process. This critical information is a
primary outcome of clinical trials, but of course this is a costly
and highly inefficient means of identifying problematic drug
leads. Ideally, serious problems would be identified and
eliminated prior to initiating a clinical trial. Metabolomics can
assist in this endeavor.
In essence, as the affinity of a chemical lead is enhanced it is

also critical to validate and maintain a desirable in vivo mode of
action. Is the compound being taking up by the cell? Is it
inhibiting the intended protein target? Are there any off-target
effects or toxicity issues? Because the metabolome captures the
state of the cell and is a direct measure of protein activity, any
observed changes in the metabolome as a result of a drug
treatment would provide information on the drug’s activity and
selectivity. In this manner, untreated wild-type cells represent a
negative control and a knockout mutant cell line, where the
protein target has been genetically inactivated to provide a
positive control. The difference between these two samples
represents the activity of the protein target as measured by the
observed changes in the metabolome. This difference is
observed with a PCA, PLS, or OPLS-DA scores plot generated
from a set of 1D 1H NMR spectra. Simply, each 1D 1H NMR
spectrum is reduced to a single point in the principal
component (PC)-space of a scores plot. Similar spectra, and
correspondingly similar metabolomes, will cluster together in a
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scores plot. Conversely, NMR spectra obtained from distinctly
different metabolomes will form separate clusters in a scores
plot.
The in vivo activity of a chemical lead can then be

ascertained by treating both the wild-type and mutant cells
with the lead compound and interpreting the resulting
clustering patterns in a PCA, PLS, or OPLS-DA scores plot
(Figure 4). A chemical lead that is inactive in vivo would have
no impact on the metabolome of either the wild-type or mutant
cells. The separation in the scores plot would simply reflect the
difference in the activity of the target protein. So, the treated
and untreated wild-type cells will cluster together and separate
from the treated and untreated mutant cells in the scores plot
(Figure 4A). A chemical lead with the desired in vivo activity
and selectivity, only inhibiting the identified protein target,
would perturb the metabolome of the wild-type cells in a
manner similar to the mutant cells. Thus, wild-type cells treated
with the chemical lead would cluster together with both the
treated and untreated mutant cells in the scores plot (Figure
4B). The untreated wild-type cells would still form a separate
cluster because the protein target is still active. The
metabolome of the mutant cells is not affected by treatment
with the chemical lead because the protein target is already
inactivated and the chemical lead does not inhibit a secondary
protein. Conversely, if the chemical lead was not selective, then
the treated wild-type and mutant cells would form a third
cluster separate from the untreated wild-type and mutant
clusters (Figure 4C). Changes in the metabolome from the

treated cells would result from inactivating multiple proteins,
but the untreated mutant cells would only have the target
protein inactivated. Finally, if the chemical lead actually inhibits
the wrong protein target in vivo, then four separate clusters
would be observed in a scores plot (Figure 4D). Effectively, a
different set of active or inactive proteins is present in the four
different cell cultures. The treated wild-type cells would have
the wrong protein inactivated, whereas the treated mutant cells
would have both the original target protein and the wrong
protein inactivated.
Importantly, the results of the metabolomics study would be

used to prioritize chemical leads and focus effort. Compounds
that maintained the desired in vivo activity and selectivity in the
metabolomics experiments while providing a route to improve
binding affinity would be identified as chemical leads and
proceed to more advanced animal and absorption, distribution,
metabolism, and excretion (ADME) studies. Conversely,
compounds that lack in vivo activity in the metabolomics
study are likely to experience bioavailability issues and
compounds that are nonselective in the metabolomics study
are likely to encounter toxicity issues. These compounds should
be excluded if these problems cannot be easily corrected.
Compounds that unexpectedly target the wrong protein in the
metabolomics study should simply be abandoned. Importantly,
the cluster analysis can be supplemented with an in-depth and
exhaustive analysis of metabolite concentration changes (Figure
3). Changes to a specific set of metabolite should be correlated
with each of the clusters observed in the scores plot. S-Plots

Figure 4. Illustration of hypothetical PCA scores plot for the following scenarios (A) inactive compound, (B) active and selective inhibitor, (C)
active, nonselective inhibition of target and secondary protein, and (D) active, nonselective preferential inhibition of secondary protein. Labels
correspond to: wild-type cells (open circles), drug-treated wild-type cells (black solid circles), knockout mutant cells where the protein target of the
drug is inactive (open triangles), and drug-treated mutant cells (black solid triangles). Abbreviations correspond to mutant cells (mut) and wild-type
cells (wt). Adapted from Forgue et al. (2006).95
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from PLS and OPLS-DA are routinely used to identify the
metabolites primarily contributing to the observed class
differentiation in the scores plot. Similarly, loadings plots
provide information on the relative contribution to the class
differentiation which can be used to infer metabolite
concentration changes. In addition, 13C-labeled metabolites
combined with two-dimensional (2D) 1H−13C heteronuclear
single quantum coherence (HSQC) experiments can be used to
identify and quantify metabolite concentration changes. Finally,
this information can be combined together to generate a
metabolic network to capture the global changes to the
metabolome.
Examples of Using Metabolomics in Drug Discovery.

Employing metabolomics as part of a drug discovery project is
very appealing because of its relative simplicity, universal

application, and high information content. For instance, while
obtaining a knockout mutant may not always be practical (i.e.,
the therapeutic target may be essential), there are other equally
valid approaches to obtaining a positive control. The activity of
the target protein can be manipulated using RNA interference
(RNAi), a known drug, monoclonal antibody, or any other
means of modulating the activity of a protein. The technique is
not restricted to metabolomic extracts from cell lysates. The
approach can be applied to tissues, organs, organisms, or a
variety of biofluids. Similarly, metabolomics is also extremely
valuable even if the in vivo target of the chemical leads is
unknown. The successful application of metabolomics to a drug
discovery project is simply dependent on identifying the
appropriate set of classes to compare (e.g., wild-type vs mutant,
healthy vs disease, drug treated vs untreated, etc.). The

Figure 5. (a) The PCA scores plot comparing A. nidulans uaZ14 mutant (green X’s), wild-type with AZA (solid red squares), uaZ14 mutant with
AZA (solid blue circles), and wild-type cells (solid black diamonds). The clustering pattern is comparable to the hypothetical PCA scores plot
depicted in Figure 4B, which is consistent with an active and selective inhibitor. Abbreviations correspond to mutant cells (mut), wild-type cells (wt),
and 8-azaxanthine (AZA). Reprinted with permission from ref 95. Copyright 2006 American Chemical Society. (b) PCA scores plot comparing
Mycobacterium smegmatis mc2155 (solid blue squares), TAM23 (solid black circles), GPM14 (solid red diamonds), GPM16 (solid green upright
triangles), TAM23 pTAMU3 (solid gold inverted triangles), mc2155 with DCS (solid purple squares), and TAM23 with DCS (solid red circles),
GPM14 with DCS (solid purple diamonds), GPM16 with DCS (solid cyan upright triangles), and TAM23 pTAMU3 with DCS (solid orange
inverted triangles). The clustering pattern is comparable to the hypothetical PCA scores plot depicted in Figure 4C, which is consistent with an
active and nonselective inhibitor. Abbreviations correspond to mutant cells (mut), wild-type cells (wt) and D-cycloserine (DCS). Reprinted with
permission from ref 96. Copyright 2007 American Chemical Society. (c) 2D OPLS-DA scores plot demonstrating the clustering pattern for 12
antibiotics with known biological targets and three compounds of unknown in vivo activity: untreated M. smegmatis cells (solid black squares),
chloramphenicol (solid cyan diamonds), ciprofloxacin (solid gold diamonds), gentamicin (solid pink diamonds), kanamycin (solid purple
diamonds), rifampicin (solid red diamonds), streptomycin (solid yellow diamonds), ethambutol (solid light-green inverted triangles), ethionamide
(solid cyan inverted triangles), isoniazid (solid pink inverted triangles), ampicillin (solid red upright triangles), D-cycloserine (solid upright purple
triangles), vancomycin (solid upright orange triangles), amiodorone (solid purple circles), chlorprothixene (solid light-green circles), and clofazimine
(solid red circles) treated M. smegmatis cells. The ellipses correspond to the 95% confidence limits from a normal distribution for each cluster. The
untreated M. smegmatis cells (solid black squares) was designated the control class, and the remainder of the cells were designated as treated. The
OPLS-DA used one predictive component and six orthogonal components to yield a R2X of 0.715, R2Y of 0.803, Q2 of 0.671, and a CV-ANOVA p-
value of 1.54 × 10−34. Reprinted with permission from ref 97. Copyright 2012 American Chemical Society.
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following are a few illustrated examples of using metabolomics
to assist drug discovery.
8-Azaxanthine (AZA) is an inhibitor of urate oxidase and was

shown to inhibit new hyphal growth in Aspergillus nidulans.95

The corresponding metabolomics study demonstrated that the
drug was a selective in vivo inhibitor (Figure 5a).95 The
metabolome of an A. nidulans uaZ14 mutant that eliminated
urate oxidase was shown to be distinct from the metabolome
from wild-type mycelia. Treating both the wild-type and uaZ14
mutant mycelia with AZA resulted in a PCA scores plot with a
clustering pattern consistent with a selective and active
inhibitor and a potential antifungal (Figure 4B). D-Cycloserine
(DCS) is a second-line treatment for tuberculosis that has been
used for over 50 years despite the lack of an in vivo mechanism
of action. DCS has been shown to inhibit both alanine
racemase (Alr) and D-alanine-D-alanine ligase (Ddl) in vitro. A
metabolomics study was conducted to determine if alanine
racemase was the lethal target of DCS using Mycobacterium
smegmatis mc2155 as a model system.96 The results indicated
that DCS is a promiscuous inhibitor and that Alr is not the
lethal target of DCS (Figure 5b). Treating both the wild-type
mc2155 cells and an alr null mutant (TAM23) with DCS
resulted in a PCA scores plot with a clustering pattern
consistent with a nonselective inhibitor (Figure 4C). In fact,
DCS is well known to have serious side effects that include
seizures and mental disorders, presumably due to off-target
activity (agonist against N-methyl-D-aspartate (NMDA)
receptors). This is clearly consistent with the metabolomics
results and indicative of potential problems with nonselective
inhibitors: the likelihood of side effects or toxicity issues. Again,
this demonstrates the value of incorporating metabolomics in a
drug discovery effort in order to identify and eliminate such
problems prior to clinical trials. These types of comparative
metabolomics analysis can also be used to identify a potential in
vivo mode of action to identify novel inhibitors. The
Tuberculosis Antimicrobial Acquisition and Coordinating
Facility (TAACF) screened a large chemical library against
M. tuberculosis using cell-based assays. TAACF only reported
MIC50 values, where the mechanism of action was unknown. A
metabolomics study was conducted to infer an in vivo mode of
action for three highly active compounds identified by
TAACF.97 Instead of comparing the metabolomes between
wild-type and mutant cell lines as before, this study compared
the activity of a collection of known antibiotics with defined
cellular targets against the TAACF unknowns. Simply, multiple
drugs inhibiting the same cellular target would be expected to
induce a similar change in the metabolome. This is exactly what
was observed (Figure 5c). Drugs that target cell wall synthesis,
mycolic acid biosynthesis, or transcription, translation, or DNA
supercoiling formed separate and distinct clusters in the OPLS-
DA scores plot. The TAACF unknowns clustered together with
the cell wall inhibitors implying a similar mechanism of action.
A subsequent literature search verified that the TAACF
unknowns have been previously shown to disrupt bacterial
membranes. Again, this demonstrates the value of incorporating
metabolomics while evolving chemical leads. The metabolomics
analysis can verify that the in vivo mechanism of action is
maintained as the binding affinity is improved.

■ CONCLUSIONS
Metabolomics is a valuable and versatile technique that is
making important contributions to systems biology, personal-
ized medicine, biomarker discovery, toxicology, and disease

diagnostics. Similarly, the inclusion of metabolomics as a
routine component of the drug discovery process may improve
the efficiency and success rate of drug discovery. Given the
current challenges facing the pharmaceutical industry and the
high reliance on high-throughput screens for lead identification,
metabolomics fills an important need. Metabolomics is useful
for verifying a desirable in vivo mechanism of action for HTS
chemical leads and for further validating and verifying the mode
of action is maintained as the binding affinity is iteratively
increased. In this manner, metabolomics can be used to identify
truly novel leads with a unique cellular target and bioactivity.
Metabolomics is also useful for determining if a chemical lead is
a selective in vivo inhibitor. This is a unique asset of
metabolomics that provides a simple mechanism to remove
chemical leads with potential side effects or toxicity issues. For a
drug discovery effort to effectively benefit from adapting
metabolomics, the technology needs to be properly applied.
Incorrect sample preparation and collection procedures,
inappropriate data processing and analysis protocols, incorrect
application of statistical techniques, and the lack of model
validation are all common occurrences that result in erroneous
outcomes. Nevertheless, these issues are aggressively being
addressed by the field, which has led to the development and
adaptation of standards by The Metabolomics Standards
Initiative (MSI, http://msi-workgroups.sourceforge.net/)86

and the Coordination of Standards in Metabolomics
(COSMOS, http://cosmos-fp7.eu/).87 NMR metabolomics is
also limited to systems where a drug treatment modulates the
metabolome in a direct response to the drug’s biological
activity. For instance, drugs designed to prevent plaque
formation in Alzheimer’s patients by physically inhibiting β-
amyloid aggregation may not perturb the metabolome because
the drug does not affect protein activities. Furthermore, the
metabolomes from both a healthy control and the disease state
needs to be readily accessible from a cell culture, tissue, organ,
or biofluid for a comparative analysis. This is relatively
straightforward to achieve for drugs targeting any disease with
well-established cell lines (various cancers, neuronal cells,
pathogenic bacteria, viruses, etc.). The expanding collection of
disease-specific human stem cell lines also significantly increases
the number of diseases amenable to analysis by metabolomics.
Animal models may also be used, but this would dramatically
increase the cost while decreasing throughput. Alternatively, a
knock-down mutant cell line can be generated for a specific
therapeutic target, where the comparison would simply be
between wild-type and mutant cell lines. In essence, the
availability of a cell-based or target-specific HTS assay implies
that it is also possible to conduct a metabolomics study.
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