Table 1: Characteristics of P	atients with Pulm	onary NTM Isola	tes	
Characteristic	All Patients	Patients	Patients Not	P-value
	with pNTM	Meeting pNTMi	Meeting pNTMi	
	Isolates	Criteria	Criteria	
Number, N	225	109 (48.4)	116 (51.6)	
Age, median (IQR)	71 (62-79)	71 (64-79)	73 (61-80)	0.596
Gender, female	112 (49.7)	65 (60)	47 (41)	0.005
Race/ethnicity				0.504
White	154 (68.4)	74 (67.9)	80 (69)	
Black	21 (9.3)	7 (6.4)	14 (12.1)	
Asian	12 (5.3)	7 (6.4)	5 (4.3)	
Other/Unknown	38 (16.9)	21 (19.3)	17 (14.6)	
Unknown				
Body Mass Index (BMI),	24.3 (20.9-27.4)	22.6 (19.5-25.9)	25.1 (22.8-27.8)	0.001
median (IQR)	, ,	. ,	, ,	
Comorbidities				
Hypertension	148 (65.8)	67 (61.5)	81 (69.8)	0.207
Current or former smoker	129 (57.3)	65 (59.6)	64 (55.1)	0.504
Gastroesophageal reflux	129 (57.3)	67 (61.5)	62 (53.4)	0.229
disease (GERD)	, ,	` ′	` ′	
Cardiovascular disease	95 (42.2)	41 (37.6)	54 (46.6)	0.180
Chronic obstructive	84 (37.3)	43 (39.4)	41 (35.3)	0.582
pulmonary disease (COPD)				
Bronchiectasis	84 (37.3)	52 (47.7)	32 (27.6)	0.002
Diabetes mellitus	46 (20.4)	23 (21.1)	23 (19.8)	0.869
Solid organ malignancy	40 (17.8)	13 (11.9)	27 (23.3)	0.036
Autoimmune condition	39 (17.3)	21 (19.2)	18 (15.5)	0.485
Previous latent	22 (9.8)	10 (9.2)	12 (10.3)	0.825
tuberculosis infection				
Hematologic Malignancy	14 (6.2)	3 (2.8)	11 (9.5)	0.051
Mycobacterium isolates	813	166	647	
(total number)				
M. avium complex	123 (54.7)	82 (75.2)	41 (35.3)	0.001
M. simiae	41 (18.2)	11 (10.1)	30 (25.9)	0.003
M gordonae	21 (9.3)	2 (1.8)	19 (16.4)	0.001
M. fortuitum,	15 (6.7)	3 (2.8)	12 (10.3)	0.031
M. abscessus	12 (5.3)	7 (6.4)	5 (4.3)	0.561
M. kansasaji	4 (1.8)	2 (1.8)	2 (1.7)	1
M. chelonge	2 (0.9)	0	2 (1.7)	0.499
Other Mycobacterium spp.	7 (3.1)	2 (1.8)	5 (4.3)	0.447
Data expressed as N (%) or M	edian (IQR)	•		

Characteristic	Patients Offered	Patients Not Treated	P-value	
	Treatment			
Number, N	60 (55)	49 (45)		
Age, median (IQR)	70 (63-76)	73 (65-82)	0.049	
Gender, female	33 (55)	32 (65)	0.328	
Race/ethnicity				
White	40 (66.7)	34 (69.4)		
Black	6 (10)	1 (2.0)		
Asian	3 (5)	4 (8.2)		
Other/Unknown	11 (18.3)	10 (20.4)		
Body Mass Index (BMI), median (IQR)	23.7 (19.2-26.0)	22.1 (20.2-25.4)	0.672	
Comorbidities				
Gastroesophageal reflux disease (GERD)	39 (65)	28 (57.1)	0.434	
Current or former smoker	39 (65)	26 (53.1)	0.242	
Hypertension	34 (56.7)	33 (67.3)	0.323	
Chronic obstructive	31 (51.7)	12 (24.5)	0.006	
pulmonary disease (COPD)				
Bronchiectasis	30 (50)	22 (44.9)	0.700	
Cardiovascular disease	20 (33.3)	21 (42.9)	0.327	
Autoimmune condition	14 (23.3)	7 (14.3)	0.329	
Diabetes mellitus	14 (23.3)	9 (18.4)	0.639	
Solid organ malignancy	8 (13.3)	5 (10.2)	0.769	
Previous latent tuberculosis infection	5 (8.3)	5 (10.2)	0.751	
Hematologic malignancy	3 (5.0)	0 (0)	0.251	
Mycobacterium isolates (total number)				
M. avium complex	53 (88.3)	29 (59.2)	0.001	
M. simiae	5 (8.3)	6 (12.2)	0.538	
M gardonae	0 (0)	2 (4.1)	0.200	
M. fortuitum	0 (0)	3 (6.1)	0.088	
M. abscessus	1 (1.7)	6 (12.2)	0.044	
M. kansasaii	1 (1.7)	1 (2.0)	1.000	
M. chelonae	0 (0)	0 (0)	1	

Conclusion. Approximately half of pNTM isolates were observed in patients who did not meet criteria for pNTMi diagnosis. Female patients, lower BMI, bronchiectasis, or MAC isolation were more likely to meet pNTMi criteria. Management of pNTMi remains a challenge, with younger patients with COPD and MAC more likely to receive treatment.

Disclosures. All Authors: No reported disclosures

1413. Effect of Automated Identification of Antimicrobial Stewardship Opportunities for Urinary Tract Infections

Connor Deri, PharmD¹; Rébekah Wrenn, PharmD, BCPS²; Rebekah W. Moehring, MD, MPH³; Justin Spivey, PharmD, BCPS, BCIDP⁴; Michael E. Yarrington, MD³;

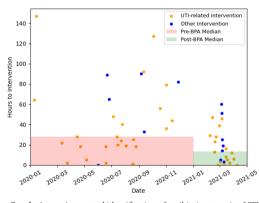
¹Duke University Hospital, Durham, North Carolina; ²Duke University, Durham, North Carolina; ³Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, NC; ⁴Duke University Medical Center, Durham, North Carolina

Session: P-81. UTIs

Background. The treatment of asymptomatic bacteriuria (ASB) does not improve clinical outcomes in most patients and may be associated with an increased risk of adverse events such as *Clostridioides difficile* infection. A best practice alert (BPA) was created to identify patients with possible ASB for antimicrobial stewardship (AS) review. We aimed to determine whether automated identification of ASB improved the timing of stewardship intervention.

Methods. An electronic health record BPA message to inpatient AS pharmacists was activated on 01/19/2021. The BPA identified inpatients with a new antibiotic order with an associated genitourinary indication and a preceding urinalysis with 0 to 5 WBC/hpf. BPAs were reviewed by an AS pharmacist during weekdays and normal business hours. We retrospectively evaluated the impact of the BPA on time from order to stewardship intervention between a cohort of pre-BPA (01/2020 to 12/2020) and post-BPA (01/20/2021 to 04/10/2021) patients. Included patients met the BPA criteria and had an AS intervention within 7 days of the antibiotic order. We specified interventions that were UTI-related. The median time from antibiotic order entry to any AS intervention was compared pre- to post-BPA using the Mann Whitney U test. Rates of UTI-related interventions were compared with Fisher's Exact test.

Results. 327 antibiotic orders met BPA criteria and were analyzed: 245 and 82 in the pre- and post-BPA group, respectively. Groups had similar baseline characteristic (Table 1). A total of 33 (27 UTI-related) pre-BPA group and 24 (17 UTI-related) post-BPA group interventions were documented by the AS team. The median time to any intervention was 28 hours (IQR 18-64.5) in the pre-BPA group compared to 13.5 hours (IQR 3.5-28.75) in the post-BPA group (p=0.03, Figure). The pre-BPA group had a lower rate of UTI-related interventions compared to the post-BPA group (11.0% vs 20.7%, p=.04).


Table 1. Baseline Characteristics

Characteristics	Eligible Pre-BPA (n = 245)	Eligible Post-BPA (n = 82)		
	(11 - 243)	(11 - 82)		
Median age, years (IQR)	64 (45-74)	58.5 (39-72)		
Sex, male	101 (41.2)	32 (39)		
Race				
Caucasian	141 (57.6)	49 (59.8)		
African American	79 (32.2)	23 (28)		
Other	25 (10.2)	10 (12.2)		
eGFR within 48 hours	197 (80.4)	75 (91.5)		
Median eGFR (IQR)	71 (45-93) mL/min/1.73m ²	75 (51-92.5) mL/min/1.73m ²		
Pregnant	3 (1.2)	0 (0)		
WBC within 48 hours	212 (86.5)	80 (97.6)		
Median Serum WBC (IQR)	8.9 (6.9-13) x 10 ⁹ /L	9.2 (7.1-11.3) x 10 ⁹ /L		
ANC < 1000	3 (1.2)	2 (5)		
Urinary catheter	63 (25.7)	15 (18.3)		
Urinalysis				
Positive nitrite	66 (26.9)	26 (31.7)		
Urine culture in preceding 7 days	227 (92.6)	74 (90.2)		
No growth	35 (15.4)	13 (17.6)		
Mixed flora or	73 (33)	16 (50)		
< 10,000 cfu/mL organisms				
Organism(s) identified	119 (52.4)	27 (36.5)		
Urine culture organism	119 (48.6)	27 (32.9)		
Enterobacterales	88 (73.9)	15 (55.6)		
Enterococcus spp.	17 (14.3)	7 (25.9)		
Pseudomonas aeruginosa	4 (3.4)	0 (0)		
Other	10 (8.4)	5 (18.5)		

^aData reported as n (%) or median (IQR)

beGFR: estimated glomerular filtration rate; WBC: white blood cell; ANC: absolute neutrophil count

Figure: Time-to-Intervention among patients with UTI antibiotic order indication, absence of pyuria, and stewardship intervention

Conclusion. Automated identification of antibiotics targeting UTI with urinalysis showing absence of pyuria reduced the time to stewardship intervention and increased rate of UTI-specific interventions. The use of clinical decision support may aid in efficiency of AS review and syndrome-targeted AS impact.

Disclosures. Rebekah W. Moehring, MD, MPH, UpToDate, Inc. (Other Financial or Material Support, Author Royalties)

1414. Real-World Study of Healthcare Resource Use and Costs Associated with Inappropriate and Suboptimal Antibiotic Use Among Females with Uncomplicated Urinary Tract Infection in the United States

Madison T. Preib, MPH¹; Fanny S. Mitrani-Gold, MPH²; Xiaoxi Sun, MA¹; Christopher Adams, MPH¹; Ashish V. Joshi, PhD²; ¹STATinMED Research, Ann Arbor, MI, USA, Ann Arbor, Michigan; ²GlaxoSmithKline plc, Collegeville, PA, USA, Chicago, Illinois

Session: P-81. UTIs

Background. Urinary tract infections (UTIs) are the most common outpatient infection requiring medical care in the US; but, despite Infectious Diseases Society of America 2011 guidelines for treating uncomplicated UTI (uUTI), variation in prescribing practices still exists. Few studies have used real-world data (RWD) to evaluate uUTI-associated healthcare resource use (HRU) and costs. We examined HRU and direct costs associated with appropriate *and* optimal (AP&OP) and inappropriate *or* suboptimal (IA/SO) antibiotic (AB) prescribing in females with uUTI using US RWD.

Methods. This retrospective cohort study used RWD from IBM MarketScan (commercial/Medicare claims) to examine uUTI-related HRU and costs (inpatient, emergency room, outpatient, pharmacy) per index uUTI episode and during 1-year follow-up among females (age ≥ 12 years) diagnosed with uUTI from July 1, 2013–December 31, 2017 (index date). Patients had an oral AB prescription \pm 5 days of the index date, and continuous health plan enrollment ≥ 6 months pre/1 year post-index date; those with complicated UTI were excluded. Patients were stratified by AB prescription as follows: AP&OP = guideline-compliant and correct duration; IA/SO = guideline non-compliant/incorrect duration or re-prescription/switch within 28 days.

Résults. The study included 557,669 patients. In the commercial population (n=517,664, mean age 37.7 years), fewer patients were prescribed AP&OP (11.8%) than IA/SO (88.2%) ABs, a trend also seen in the Medicare population (n=40,005, mean age 74.5 years). In both populations, adjusted average numbers of uUT1-related ambulatory visits and pharmacy claims were lower for the AP&OP cohort than the IA/SO cohort during index episode and 1-year followup (p < 0.0001, Table 1). In the commercial population, total adjusted uUT1-related costs were \$194 (AP&OP) versus \$274 (IA/SO; p < 0.0001); in the Medicare population, total adjusted uUT1-related costs were \$253 (AP&OP) versus \$355 (IA/SO; p < 0.0001) (Table 2).

Table 1. uUTI-related HRU for commercial and Medicare populations calculated using the GLM model

		Al	Il patients (N=557,66	i9)		
Outcome variable [‡]	Commercial population* (n=517,664)			Medicare p		
	AP&OP prescription ⁵ (n=60.132)	IA/SO prescription ⁵ (n=300.660)	p-value	AP&OP prescription ⁵ (n=2119)	IA/SO prescription [§] (n=10.595)	p-value
		Index uUTI	episode (per patien	t)		
Ambulatory visits, n (95% CI)	1.0 (1.0, 1.0)	1.1 (1.1, 1.1)	< 0.00017	0.9 (0.9, 1.0)	1.0 (1.0, 1.1)	< 0.00011
Pharmacy claims, n (95% CI)	1.0 (1.0, 1.0)	1.2 (1.2, 1.2)	< 0.00011	1.0 (1.0, 1.1)	1.2 (1.2 1.2)	< 0.00011
Proportion of patients with ambulatory visits, % (95% CI)	90.6 (90.4, 90.8)	90.5 (90.4, 90.6)	0.3897	83.5 (81.8, 85.0)	84.2 (83.4, 84.8)	0.4317
Proportion of patients with pharmacy claims, % (95% CI)	98.8 (98.7, 98.9)	98.8 (98.7, 98.8)	0.3425	97.3 (96.5, 97.9)	97.8 (97.5, 98.1)	0.0923
		1-year follow-	-up period (per patie	ent)		
Ambulatory visits, n (95% CI)	1.3 (1.3, 1.3)	1.4 (1.4, 1.4)	< 0.0001	1.3 (1.3, 1.4)	1.6 (1.6, 1.6)	< 0.00011
Pharmacy claims, n (95% CI)	1.3 (1.3, 1.3)	1.5 (1.5, 1.5)	< 0.00011	1.4 (1.3, 1.4)	1.7 (1.7, 1.7)	< 0.00011
Proportion of patients with ambulatory visits, % (95% CI)	92.3 (92.1, 92.5)	92.0 (91.9, 92.1)	0.03131	86.2 (84.7, 87.6)	87.3 (86.6, 87.9)	0.1858
Proportion of patients with pharmacy claims, % (95% CI)	98.9 (98.9, 99.0)	99.0 (98.9, 99.0)	0.5565	97.7 (97.0, 98.2)	98.3 (98.1, 98.6)	0.03751

"Mean (SD) age 37.7 (14.3) years, "Mean (SD) age 74.5 (7.9) years, "All values shown are adjusted averages, "The appropriateness of a prescription was defined as follows: AP, a guideline-compliant AB (fish-line fostomycin, introductation, or TIMP-SMX alone); CP, an AB prescribed for the cornect duration (1.4) or fostomycin, 3 valys for TIMP-SMX, and 5 says for mittomical most 6 says for mittomical most 6 says for mittomical most 6 says for mittomical most compliant AB (e.g., use of an AB Tails is not fish-line tentionation). As a quideline non-compliant AB (e.g., use of an AB Tails is not fish-line tentionation). As a quideline accordance of the same of the

AB, antibiotic; AP&OP, appropriate and optimal; CI, confidence interval; GLM, generalized linear model; HRU, healthcare resource use; IA/SO, inappropriat or suboptima; SD, standard deviation; TMP-SMX, trimethoprim-sulfamethoxazole; UTI, urinary tract infection; uUTI, uncomplicated urinary tract infection

 $\label{thm:commercial} \begin{tabular}{ll} Table 2. uUTI-related costs for commercial and Medicare populations calculated using the GLM model \end{tabular}$

	Commercial population* (N=517,664)			Medicare (N=4			
Outcome variables [‡]	AP&OP prescription ⁵ (n=60,132)	IA/SO prescription [§] (n=300,660)	p-value	AP&OP prescription ⁵ (n=2119)	IA/SO prescription ⁵ (n=10.595)	p-value	
		Index uUTI	pisode (per patient	j			
Outpatient ambulatory costs, \$ (95% CI)	132 (131, 133)	170 (169, 170)		158 (150, 166)	186 (182, 190)	< 0.0001	
Pharmacy costs, \$ (95% CI)	11 (11, 11)	15 (15, 15)	< 0.00011	13 (13, 14)	16 (16, 16)		
Total costs: inpatient + ER + ambulatory + pharmacy, \$ (95% CI)	174 (172, 176)	257 (256, 259)		236 (222, 250)	315 (306, 323)		
Total costs: ≤ 99th %ile by cohort, \$ (95% CI)	144 (143, 145)	209 (209, 210)		167 (158, 176)	218 (213, 224)		
		1-year follow-	up period (per patie	nt)			
Outpatient ambulatory costs, \$ (95% CI)	174 (173, 176)	221 (220, 222)		223 (212, 236)	228 (281, 295)		
Pharmacy costs, \$ (95% CI)	15 (14, 15)	19 (19, 19)	< 0.0001	18 (17, 19)	23 (23, 24)		
Total costs: inpatient + ER + ambulatory + pharmacy, \$ (95% CI)	232 (230, 234)	330 (328, 331)		372 (350, 396)	498 (484, 512)	< 0.00011	
Total costs: ≤ 99th %ile by cohort, \$ (95% CI)	194 (193, 196)	274 (272, 275)		253 (240, 268)	355 (346, 364)	1	

*Mean (SD) age 3.77 (14.3) years: "Mean (SD) age 7.45 (7.6) years: "All values shown are adjusted werepas: "The appropriateness of a prescription was defined as follows: AP, a guideline-complant AB (first-line fosformycin, nitrofurantion, or TMP-SMX alone), OP, an AB prescribed for the correct duration (1 day for fosformycin, 3 days for TMP-SMX, and 5 days for introfurantion); IA, a guideline non-complant AB (e.g., use of an AB that is not first-line teatment, or contemporaneous use of two first-line ABs); SO, where evidence of tentanent failure exists (recept of intravenous ABselvation to a different or AB within 28 days of index date, or primary UTI diagnossis within 28 days of land diagnosis, "Statistically significant difference (6 - 0.55)."

AB, antibiotic; AP&OP, appropriate and optimal; CI, confidence interval; ER, emergency room; GLM, generalized linear model; IA/SO, inappropriate or subcoplinal; SD, standard deviation; TMP-SMX, trimethoprim-sulfamethoxazole; UTI, urinary tract infection; uUTI, uncomplicated urinary tract infection; %ile percentile

Conclusion. Overall uUTI-related HRU and costs in the US were low during index episodes and follow-up. However, females with uUTI prescribed IA/SO ABs were more likely to incur higher HRU and costs than those prescribed AP&OP ABs, suggesting an unmet need for training to optimize uUTI prescribing per US guidelines.

Disclosures. Madison T. Preib, MPH, STATinMED Research (Employee, Former employee of STATinMED Research, which received funding from GlaxoSmithKline plc. to conduct this study) Fanny S. Mitrani-Gold, MPH, GlaxoSmithKline plc. (Employee, Shareholder) Xiaoxi Sun, MA, STATinMED Research (Employee, Employee of STATinMED Research, which received funding from GlaxoSmithKline plc. to conduct this study) Christopher Adams, MPH, STATinMED Research (Employee, Employee of STATinMED Research, which received funding from GlaxoSmithKline plc. to conduct this study) Ashish V. Joshi, PhD, GlaxoSmithKline plc. (Employee, Shareholder)

1415. Allergies to Antimicrobial Agents Among US Females with Uncomplicated Urinary Tract Infection

Jeffrey Thompson, PhD¹; Alen Marijam, MSc²; Fanny S. Mitrani-Gold, MPH³; Jonathon Wright, BSc¹; Ashish V. Joshi, PhD³; ¹Kantar Health, New York, NY, USA, New York, New York; ²GlaxoSmithKline plc., Collegeville, PA, USA, Collegeville, Pennsylvania; ³GlaxoSmithKline plc, Collegeville, PA, USA, Chicago, Illinois

Session: P-81. UTIs

Background. Uncomplicated urinary tract infections (uUTI) are generally treated empirically with antibiotics. However, antibiotic (AB) allergies limit the available oral treatment options for some patients. We assessed the proportion of self-reported AB allergies among US females with uUTI.

Methods. We performed a cross-sectional survey of US females ≥ 18 years of age with a self-reported urinary tract infection (UTI) in the 60 days prior to participation and a prescription of oral AB. Participants were further screened for evidence of a complicated urinary tract infection and, after exclusions, participants with a uUTI completed an online questionnaire about their most recent episode. Participants were from the Northeast (20%), Midwest (44%), South (20%), and West (16%) US. Descriptive self-reported allergy data were stratified into subgroups by whether the participant had recurrent UTI (defined as \geq 2 uUTIs in the past 6 months or \geq 3 uUTIs in past 12 months including index UTI), the number of different ABs given for the index episode (1, 2, \geq 3), and whether the treatment was clinically appropriate according to Infectious Diseases Society of America uUTI guidelines.

Results. Overall, 375 female participants completed the questionnaire. The most commonly prescribed ABs for participants' most recent uUTI were trimethoprim-sulfamethoxazole (TMP-SMX; 38.7%), ciprofloxacin (22.7%), and nitrofurantoin (18.9%) (Table 1). Most participants received only 1 AB for their uUTI (62.7%) and the majority were classified as having a non-recurrent uUTI (56.5%). No AB allergies were reported for most participants (69.3%); overall, 24.0% reported 1 AB allergy and 6.7% reported ≥ 2 . A higher proportion of participants reported ≥ 2 allergies in the recurrent uUTI, ≥ 3 AB, and multiple AB subgroups (Table 2). The most common allergy was to TMP-SMX (15.7%), followed by amoxicillin-clavulanate (8.3%) and ciprofloxacin (5.3%) (Table 2). Similar allergy trends were seen across subgroups, except higher rates of ciprofloxacin allergy were seen in participants given multiple ABs (Table 2).

Table 1. Antibiotics used to treat most recent uUTI

Antibiotic used to treat most recent uUTI (N=375)	n (%)
Trimethoprim-sulfamethoxazole	145 (38.7)
Ciprofloxacin	85 (22.7)
Nitrofurantoin	71 (18.9)
Cephalexin	56 (14.9)
Amoxicillin-clavulanate	35 (9.3)
Levofloxacin	11 (2.9)
Ofloxacin	10 (2.7)
Cefdinir	5 (1.3)
Fosfomycin	2 (0.5)
Cefaclor	0
Cefpodoxime-proxetil	0

uUTI, uncomplicated urinary tract infection.

Table 2 . Frequency of antibiotic allergies across cohort subgroups $% \left(1\right) =\left(1\right) \left(1\right)$

	Total (N=375)	Recurrent uUTI Number of AB for recent uUT			UTI Appropriateness of treatment				
		Yes (n=163, 43.5%)	No (n=212, 56.5%)	1 AB (n=235, 62.7%)	2 AB (n=88, 23.5%)	≥ 3 AB (n=52, 13.9%)	1 AB/1st line* (n=123, 32.8%)	1 AB/2nd line ¹ (n=112, 29.9%)	Multiple AB ¹ (n=140, 37.3%
				intibiotic allergies,	n (%)				
0	260 (69.3)	116 (71.2)	144 (67.9)	164 (69.8)	62 (70.5)	34 (65.4)	91 (74.0)	73 (65.2)	96 (68.6)
1	90 (24.0)	33 (20.2)	57 (26.9)	61 (26.0)	18 (20.5)	11 (21.2)	28 (22.8)	33 (29.5)	29 (20.7)
≥ 2	25 (6.7)	14 (8.6)	11 (5.2)	10 (4.3)	8 (9.1)	7 (13.5)	4 (3.3)	6 (5.4)	15 (10.7)
Trimethoprim-sulfamethoxazole	59 (15.7)	28 (17.2)	31 (14.6)	33 (14.0)	18 (20.5)	8 (15.4)	14 (11.4)	19 (17.0)	26 (18.6)
Amoxicillin-clavulanate	31 (8.3)	16 (9.8)	15 (7.1)	21 (8.9)	4 (4.5)	6 (11.5)	6 (4.9)	15 (13.4)	10 (7.1)
Ciprofloxacin	20 (5.3)	10 (6.1)	10 (4.7)	9 (3.8)	5 (5.7)	6 (11.5)	6 (4.9)	3 (2.7)	11 (7.9)
Cephalexin	14 (3.7)	6 (3.7)	8 (3.8)	9 (3.8)	2 (2.3)	3 (5.8)	5 (4.1)	4 (3.6)	5 (3.6)
Nitrofurantoin	7 (1.9)	1 (0.6)	6 (2.8)	6 (2.6)	0	1 (1.9)	2 (1.6)	4 (3.6)	1 (0.7)
Levofloxacin	5 (1.3)	3 (1.8)	2 (0.9)	2 (0.9)	1 (1.1)	2 (3.8)	0	2 (1.8)	3 (2.1)
Cefacior	4 (1.1)	1 (0.6)	3 (1.4)	4 (1.7)	0	0	3 (2.4)	1 (0.9)	0
Offoxacin	4 (1.1)	0	4 (1.9)	2 (0.9)	2 (2.3)	0	0	2 (1.8)	2 (1.4)
Cefdinir	3 (0.8)	3 (1.8)	0	1 (0.4)	2 (2.3)	0	0	1 (0.9)	2 (1.4)
Cefpodoxime-proxetil	2 (0.5)	0	2 (0.9)	1 (0.4)	1 (1.1)	0	0	1 (0.9)	1 (0.7)
Fosforrycin	0	0	0	0	0	0	0	0	0

*Defined as only one first-line oral AB used to treat last uUTI; 'Defined as only one second-line oral AB used to treat last uUTI; 'Defined as two or more different oral AB (any line) used to treat last uUTI.

AB, antibiotic; uUTI, uncomplicated urinary tract infection

Conclusion. AB allergies were relatively frequent in this uUTI cohort and the most common allergy was to TMP-SMX, which was the most prescribed AB. Allergies to ABs reduce the available treatment options for uUTI in some patients.

Disclosures. Jeffrey Thompson, PhD, Kantar Health (Employee, Employee of Kantar Health, which received funding from GlaxoSmithKline plc. to conduct this