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Abstract
Random fluctuations (noise) in gene expression can be studied from two complemen-
tary perspectives: following expression in a single cell over time or comparing expression
between cells in a proliferating population at a given time. Here, we systematically inves-
tigated scenarios where both perspectives can lead to different levels of noise in a given
gene product. We first consider a stable protein, whose concentration is diluted by cel-
lular growth. This protein inhibits growth at high concentrations, establishing a positive
feedback loop. Using a stochastic model with molecular bursting of gene products, we
analytically predict and contrast the steady-state distributions of protein concentration
in both frameworks. Although positive feedback amplifies the noise in expression, this
amplification is much higher in the population framework compared to following a single
cell over time. We also study other processes that lead to different noise levels even in
the absence of such dilution-based feedback. When considering randomness in the parti-
tioning of molecules between daughters during mitosis, we find that in the single-cell per-
spective, the noise in protein concentration is independent of noise in the cell cycle dura-
tion. In contrast, partitioning noise is amplified in the population perspective by increasing
randomness in cell-cycle time. Overall, our results show that the single-cell framework
that does not account for proliferating cells can, in some cases, underestimate the noise
in gene product levels. These results have important implications for studying the inter-
cellular variation of different stress-related expression programs across cell types that are
known to inhibit cellular growth.
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Author summary
Expression levels of gene products can exhibit cell-to-cell variation within an other-
wise genetically identical cell population. Such random variation, often referred to as
expression noise, has been reported in all organisms, from bacterial to human cells.
This contribution quantifies the degree of random fluctuations in the concentration of
a specific protein from two complementary perspectives: following its concentration in
a single cell over time (single-cell perspective) and across a cell population (population
perspective). When are the statistical fluctuations in expression levels different between
these two perspectives? Analytical results combined with agent-based models that track
protein concentration in each cell of a growing colony identify two such scenarios. The
first scenario corresponds to high levels of a specific protein reducing cellular growth. In
the second scenario, the random segregation of molecules between daughters (partition-
ing) dominates expression noise. In both these cases, the classical single-cell approach
underestimates the degree of concentration fluctuations seen across a cell population.
These results have important implications for regulating stochastic variations in diverse
stress-related expression programs that promote drug-tolerant states in microbial and
cancer cells.

Introduction
The intracellular level of gene products is the result of complex interconnected biochemi-
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cal processes that are intrinsically stochastic and often operate with low-copy number com-
ponents. This stochasticity is manifested as intercellular variation in gene expression levels
within an isogenic cell population despite controlling for factors, such as the extracellular
environment and cell-cycle effects [1–4]. Random fluctuations (noise) in gene expression lev-
els fundamentally impact all aspects of cell physiology and the fidelity of cellular information
processing. Not surprisingly, depending on the gene function and context, expression noise is
subject to evolutionary pressures [5–10] and actively regulated through diverse mechanisms.
For example, the promoter architecture/genomic environment [11–13], the kinetics of differ-
ent gene expression steps [14–16], the inclusion of feedback/feedforward loops [17–23], and
the ubiquitous binding of proteins to decoy sites [24–26] have been shown to both attenuate or
amplify noise levels.

Over the last few decades, single-cell studies have revealed beneficial roles of noise in
gene product levels. These include, but are not limited to, driving genetically identical cells
to different fates [27–34] and facilitating population adaptation to environmental fluctua-
tions [35–39]. The latter scenario is exemplified by rare populations of clonal cells that sur-
vive lethal stresses, as seen in antibiotic treatment of bacteria [40–45], or cancer cells under-
going chemotherapy [46–50]. The non-genetic basis of heterogeneous single-cell responses
to stress is a topic of current research, and several publications have implicated preexisting
drug-tolerant expression states arising as result of noise in gene regulatory networks [51,52].

Random fluctuations in the level of a given protein can be studied from two perspectives:
single cell and population [53–55]. The single-cell perspective approach captures the stochas-
tic dynamics of protein level in a single cell over time (Fig 1A), and here the effects of cell
growth and division are either ignored or implicitly captured (for example, through contin-
uous dilution of concentration). This framework is also known as single lineage since it ran-
domly tracks one of the branches of a lineage tree [53]. In the population perspective, one
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Fig 1. Single-cell and population perspectives for investigating stochastic gene expression with dilution-based feedback regulation. (A) (top:) For the single-cell
perspective, concentration of a given protein is tracked along a single lineage. (bottom:) From a population point of view, the protein concentration distribution is obtained
across all descendants of the colony. Different shades of green represent the protein level for each cell. (B) (left:) Schematic of the gene expression model with random bursts
of protein synthesis, and concentration dilution in between burst events. In the model without regulation (blue), the dilution rate is constant. In the model with feedback
on dilution (green), the dilution rate decreases as the protein concentration increases, according to (3). (right:) Sample trajectories of protein concentration in a single cell,
along with the corresponding single-cell protein concentration distributions for both models. The gray lines in the background show protein dilution trajectories; horizontal
dashed lines represent the mean concentration in both models. These trajectories are for different single cells with initial values selected from previous simulations such
that they start from steady state conditions. Parameter values used for these trajectories are 𝛽 = 10, k = 1/100, 𝜆 is found using (7) with the mean protein level set to 100.
Therefore, 𝜆 = 10 (no feedback), 𝜆 = 4.76 (with feedback). Time is presented in units such as 𝛾 = 1.

https://doi.org/10.1371/journal.pcbi.1013014.g001

explicitly considers an exponentially expanding cell population, and gene product variabil-
ity is quantified across all cells at a given time point. A fundamental question of interest is
when do these complementary perspectives predict different degrees of stochastic variation in
gene expression?

Our analysis identifies two scenarios where single-cell and population perspectives yield
different extents of fluctuations in the concentration of a given protein of interest. The first
scenario arises when the intracellular concentration directly or indirectly affects cellular growth,
and hence determines the cell’s proliferation capacity. We specifically focus on the case
where high protein concentration inhibits cellular growth. This drives the concentration even
higher because of reduced dilution. This effect implements a positive feedback loop [56–
60]. This expression-growth coupling can be seen in many cases of protein-induced stress
response [61], cell resource saturation [62,63], and is a feature of many stress-tolerant expres-
sion programs. For example, high expression of specific proteins comes at the cost of inhibit-
ing cellular growth in the absence of stress, but improves cell survival in the presence of stress
[58,64–66].

From a mathematical perspective, for this scenario we propose approaches based on the
solution of the associated differential Chapman-Kolmogorov equation (dCKE), and the popu-
lation balance equation (PBE), to derive protein concentration distributions in the single-cell
and population perspectives, respectively. The simplicity of our modeling frameworks allows
exact derivations of the corresponding probability density function (pdf), which are then
compared and contrasted between the two perspectives with increasing feedback strength.

The second scenario corresponds to randomness in the partitioning of protein molecules
between two daughters during mitosis and cytokinesis [67]. In this scenario, concentration fluc-
tuations in the single-cell perspective are modeled using the formalism of Stochastic Hybrid
Systems (SHS) resulting in an exact analytical formula for the concentration noise level, as
quantified by the steady-state squared coefficient of variation of protein concentration. The
corresponding statistics from the population perspective are obtained via agent-based models
that track expression levels within each cell of a proliferating colony. Interestingly, our results
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show that coupling the partitioning process with the inherent randomness of cell-cycle times
enhances expression variability across the population as compared to the single-cell perspec-
tive. We begin by formally introducing the two different perspectives for studying stochastic
expression, and how stochasticity is modeled based on random bursts of gene activity.

Results
Single-cell and population level analysis to quantify gene expression
statistics
We study stochastic variations in the concentration of a specific protein within proliferating
cells using two complementary perspectives. These perspectives are graphically illustrated in
Fig 1A, where the expansion of a cell colony is represented as a lineage tree: the root of the
tree represents the progenitor cell, each branching point is a cell division event, and the hor-
izontal distance (time) between consecutive branching points represents the cell-cycle dura-
tion. The color intensity represents the protein level at a given time: the lighter the green,
the higher the protein level. The color intensity in Fig 1A bottom can be related to a two-
dimensional graph of protein level over time (Fig 1A top). During cell division, a mother
cell splits into two identical daughters, each inheriting half of the mother’s volume and pro-
tein amount. Thus, the protein concentration in the newborn daughters is assumed to be
equal to the mother’s concentration just before division. This assumption of perfect partition-
ing will be relaxed later in the manuscript. In the single-cell approach, only one of the two
daughter cells is tracked after division and protein statistics are determined based on multiple
single-lineage paths over time. In contrast, in the population approach, both daughter cells are
tracked, and statistics are estimated on all descendant cells at a fixed point in time.

Ergodicity of protein distributions. In our approach, we consider two main methods
for estimating protein statistics (mean and noise). The first method involves taking the time-
averaged statistics of the stochastic process over a long trajectory (as shown in Fig 1A top in
which the statistics are obtained from a single trajectory). The second method involves esti-
mating the statistics at a given time across different replicas (as illustrated in Fig 1B in which
the statistics are estimated from multiple independent trajectories at the last point). From
a mathematical perspective, when these two averaged values are equivalent, the stochastic
process is considered ergodic [68]. Ergodicity will be used for our analytical derivations by
assuming that our statistics are time-independent. Due to the computational expense of fol-
lowing a proliferating population for a prolonged period, our simulations’ results, unless oth-
erwise specified, will be estimated using the second method. For single cells, we obtain statis-
tics from thousands of independent cells at a given time. For the population perspective, we
perform the statistics on all cells across thousands of colonies at a given time.

Gene expression as a burst-dilution process. To analytically derive and contrast the con-
centration distribution in both perspectives, we take advantage of a simple model of gene
expression that has previously been introduced [69] and validated with single-cell data [70,
71]. This model consists of modeling protein synthesis as occurring in short periods of intense
gene activity, often referred to in the literature as bursting. Diverse mechanisms that span all
stages of gene expression (promoter activation/transcription/translation) have been simpli-
fied as effective bursting processes [72–79]. During each burst event, protein concentration
increases by a random amount. Considering a long-lived protein (i.e., half-life much longer
than the cell-doubling time), the effects of cell growth are captured through continuous dilu-
tion along the cell cycle. Given that prokaryotes typically have short cell doubling times, our
model is primarily applicable to the long-lived proteins found in these microorganisms [80].
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Effects of growth-mediated feedback on protein concentration fluctuations
In this section, we describe models that couple bursting expression events with dilution-
based positive feedback, considering both single-cell and population perspectives. We analyze
these models to derive exact steady-state distributions for protein concentration. These dis-
tributions are then compared and contrasted between the two perspectives, with and without
feedback regulation.

Model description. In the single-cell perspective, the protein concentration x(t) at time t
within an individual cell evolves stochastically according to the following rules. Burst events
occur according to a Poisson process with rate or burst frequency 𝜆. During each burst, x
increases instantly with a burst size b drawn from an exponential distribution with mean 𝛽.
These increments in concentration are conveniently represented by the reset:

x 𝜆→ x + b, b∼ Exp(1/𝛽). (1)

It is important to point out that both the burst frequency and size in this concentration
model are invariant with respect to the cell size. This implicitly assumes appropriate scaling of
expression rates (in terms of the number of molecules synthesised per unit time) with cell size
[81–89].

Feedback in dilution is modeled phenomenologically by considering the cellular growth
rate

𝛾
1 + kx

, (2)

which is a decreasing function of concentration x (Fig 1B, lower panels). This results in the
following dilution dynamics in between burst events

dx
dt
= –

𝛾x
1 + kx

, (3)

where k≥ 0 can be interpreted as the feedback strength and 𝛾 > 0 is the maximum dilution rate.
The growth rate also defines the rate with which cell division occurs. In our model, division
is defined as a point process with a propensity given by (2) with the sole effect, at the popula-
tion level, of generating a new cell with the same protein level of the parent cell. Therefore, in
the single-cell approach, division has no effect on protein concentration. In more mathemat-
ical terms, intracellular fluctuations in protein concentration are captured by the piecewise
deterministic Markov process (PDMP) x(t) defined by (1)–(3). For the reader’s convenience,
we provide a compilation of model parameters and symbols used to quantify concentration
statistics in Table 1.

Protein statistics with no feedback. Before analyzing the feedback model, we briefly
review the special case of no feedback (k = 0) that corresponds to constant cellular growth and
dilution with rate 𝛾 (Fig 1B, upper panels). Prior analysis of this unregulated gene expression
model predicted that the steady-state protein distribution p(x) followed a gamma distribu-
tion with parameters 𝜆/𝛾 and 𝛽 (shape and scale, respectively) [69], consistent with single-cell
variations in the expression of specific proteins in Escherichia coli and Saccharomyces cere-
visiae [71]. The steady-state protein distribution can be analyzed through its statistical prop-
erties (defined in Table 1): the mean ⟨x⟩, the squared coefficient of variation CV2

x (quantifying
the noise in protein level), and the skewness (measure of the distribution asymmetry). For
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Table 1. Model parameters and variables studied in the text.
Notation Interpretation
x Random process representing the intracellular protein

concentration
𝜆 Rate of occurrence of protein bursts, i.e., burst

frequency
𝛽 Mean size of exponentially distributed protein bursts
𝛾 Maximum dilution rate
k Feedback strength quantifying the expression-dilution

coupling
𝜀 Degree of partitioning noise in the segregation of

protein molecules between daughters
𝜏d Cell cycle duration
x+ Protein concentration just after a cell division.
⟨xn⟩ n-th order moment of a random variable/process, ⟨⋅⟩ is

the expectation operator
⟨xn⟩ ∶= limt→∞⟨xn⟩ Steady-state moment of a random variable
⟨x⟩ Steady-state mean protein concentration
𝜎2

x ∶= ⟨x2⟩ – ⟨x⟩
2

Steady-state variance of protein concentration
CV2

x ∶= 𝜎2
x/⟨x⟩

2
Steady-state coefficient of variation of protein
concentration, also defined as noise

Skewx ∶= (⟨x3⟩ – 3⟨x⟩𝜎2
x – ⟨x⟩

3
) /𝜎3

x Steady-state skewness of protein concentration
(⋅)SC, (⋅)Pop Statistics of protein concentration in single cell and

population perspectives, respectively
https://doi.org/10.1371/journal.pcbi.1013014.t001

this unregulated case (k = 0), we obtain

⟨x⟩ = 𝜆𝛽𝛾 , CV2
x =

𝛽
⟨x⟩

, Skewx = 2

¿
ÁÁÀ 𝛽
⟨x⟩

, (4)

and it is interesting to note the ratio Skewx/CVx = 2.
Protein distribution from a single-cell perspective. For the model with feedback (k>0),

the time evolution of the probability density function (pdf) pSC(x, t) is given by the differen-
tial Chapman-Kolmogorov equation (dCKE) [69,90,91] (see Methods). Here and through-
out the article the subscript SC is used to denote distributions and statistics in the single-cell
perspective. The stationary protein distribution pSC(x) defined as pSC(x) ∶= limt→∞ pSC(x, t)
satisfies

pSC(x) = (1 + kx) 𝛽𝜂2

Γ(𝜆/𝛾)e
–𝜂x(𝜂x)𝜆/𝛾–1, 𝜂 = 1/𝛽 – 𝜆k/𝛾, (5)

where Γ(z) = ∫ ∞0 uz–1e–udu is the gamma function (see S1 Text Sect 1 for details on dCKe and
its analytical solution) and z = 𝜆/𝛾 is its argument. We observe from (5) that pSC(x) exists only
for the set of parameters 𝜆, 𝛽, 𝛾, and k that satisfy 𝜂 > 0. An interpretation of this condition is
that the average production rate 𝜆𝛽 must be less than the maximum dilution rate 𝛾/k in (3).
Otherwise, the protein dilution is not fast enough to compensate for the protein production
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rate and the mean level unboundedly increases over time; thus, the stationary distribution
does not exist. Fig 2A shows the space of parameters where the distribution (5) exists.

Moments of protein distribution at single-cell perspective. Using (5), we obtain the
following statistical properties of the protein level in terms of the feedback strength k:

⟨x⟩SC = ⟨x⟩
1 + k𝛽
1 – k⟨x⟩

, (6a)

(CV2
x)SC =

𝛽
⟨x⟩
⎛
⎝
1 –

1 + 𝜆/𝛾
(1 + 1

k𝛽 )
2
⎞
⎠
, (6b)

(Skewx)SC = 2
(𝜆/𝛾 + 1 – (𝜂𝛽)3)
(𝜆/𝛾 + 1 – (𝜂𝛽)2)3/2

, (6c)

where ⟨x⟩ is the mean concentration of the unregulated process as per (4). To have a fair com-
parison of the effect of increasing k, we hold the mean protein level ⟨x⟩SC fixed for different
values of k. To achieve this, we use (6a) to express the burst frequency 𝜆 as a function of k:

𝜆 = 𝛾⟨x⟩SC
𝛽(1 + k𝛽 + k⟨x⟩SC)

. (7)

As a graphic example, the way 𝜆 must change as we increase k to maintain ⟨x⟩SC = 100
is shown in Fig 2A (red line). Fig 2B (top) shows that under weak feedback, there are min-
imal differences between single-cell and population perspectives. However, a significant
divergence emerges under strong feedback, although the mean concentration remains fixed

Fig 2. Comparison of protein distribution in single-cell and population perspectives as the feedback intensifies. (A) The region of existence of the steady-state protein
distribution in terms of the feedback strength k and relative burst frequency 𝜆/𝛾. Green region: stationary distribution p(x) exists in both single cell and population per-
spectives. Brown region: Only the distribution in the population perspective exists. Yellow region: Distribution does not exist in any of the frameworks. Bold red line: a set of
values (k,𝜆/𝛾), resulting in fixed ⟨x⟩SC = 100 as per (7). Black dashed line represents the maximum burst frequency in which the distribution exists for both perspectives
regardless the feedback strength. (B) Comparison of protein distribution in single-cell (solid green line) and population perspectives (brown dashed) as feedback increases:
(top:) weak feedback, (bottom:) strong feedback. (C) From top to bottom: Mean protein level, protein noise, and distribution asymmetry in the single cell and population
frameworks; 𝜆 is chosen so that ⟨x⟩SC = 100 as k increases following the bold red line in panel (A). For all plots, we set 𝛽 = 10, 𝛾 = 1.

https://doi.org/10.1371/journal.pcbi.1013014.g002
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as per (7) (Fig 2B bottom). It is also possible to notice that for a giving ⟨x⟩SC, (CV2
x)SC, and

(Skewx)SC are increasing functions of k (Fig 2C green lines). Thus, as feedback becomes
stronger, the protein distribution exhibits greater noise and becomes more right-skewed.
In particular, in the limit of weak feedback strength (k≪ 1), the distribution statistics are
approximated as:

(CV2
x)SC ≈

𝛽
⟨x⟩SC

(1 + k(𝛽 + ⟨x⟩SC)) , (8a)

(Skewx)SC ≈ 2

¿
ÁÁÀ 𝛽
⟨x⟩SC

(1 + k
2
(𝛽 + ⟨x⟩SC)) . (8b)

Notice that without regulation (k = 0), the protein distribution in a single cell becomes
identical to the unregulated one with statistics given by (4). The presence of weak regula-
tion perturbs these unregulated statistics (4) by an increasing function of k. Finally, recall
that the ratio (Skewx)SC / (CVx)SC was equal to 2 for unregulated gene expression (k = 0), but
decreases below 2 with increasing positive feedback strength k.

Protein distribution for population perspective. To extend the single-cell framework
to a population one, it is required to describe the dynamics of cell proliferation. We assume
that cell division events are modeled by a non-homogeneous Poisson process with rate
𝛾/(1 + kx) [92]. Then, a cell with protein level x at time t has a probability [𝛾/(1 + kx)]dt
to divide during the next infinitesimal time interval (t, t + dt). It also follows that cells with
low protein concentrations proliferate faster than those with high protein levels. Note that in
the limit of the unregulated protein (k = 0), division events occur according to the standard
Poisson process with rate 𝛾, and the cell cycle is exponentially distributed with mean 1/𝛾.

In the population framework, in addition to the protein, we also quantify the time evo-
lution of the cell population size. To this end, we introduce the population density function
h(x,t), which describes the population as the number of cells with a given concentration x at
time t. To obtain h(x,t) we solve the associated population balance equation (PBE) [55,93]
(see Methods). The PBE is similar to the dCKE, but after division, the process follows the
dynamics of both daughter cells. In steady-state conditions, only the population size grows,
whereas the proportion of cells with a given protein level remains steady. Thus, h(x,t) can be
decomposed as

h(x, t) = f(t)pPop(x), (9)

where f (t) is an exponential function (explained in S1 Text Sect 2) associated with the popula-
tion size growth and pPop(x) is the stationary probability density function of the protein con-
centration x; the subscript Pop indicates quantities determined in the population perspective.
In S1 Text Sect 2, we also show that pPop(x) has the closed expression:

pPop(x) = (1 + kx) 𝛽𝜌
2

Γ(𝜉)e
–𝜌x(𝜌x)𝜉–1, 𝜌 = 1

𝛽 – k𝜉, 𝜉 = 𝜆/𝛾
k𝛽 + 1

. (10)

Similarly to the single-cell approach, the protein distribution at population perspective
exists if 𝜌 > 0. Fig 2A shows that the population distribution exists whenever the single-cell
distribution does. Moreover, pPop(x) always exists when 𝜆 < 𝛾, that is, when the burst fre-
quency is below the maximum dilution rate. In general, the population distribution exists for
values of 𝜆 that satisfy (𝜆 – 𝛾)𝛽 < 𝛾/k. This existence condition is less strict than the one for a
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single-cell model: a population distribution may exist even if the single-cell distribution does
not (Fig 2A).

Moments of protein concentration for population perspective. A comparison of the
protein distributions for both frameworks is shown in Fig 2B. If the feedback is weak (upper
panel), then the difference between the distributions is insignificant; this is consistent with
the fact that both distributions are identical to the gamma distribution in the unregulated case
(k = 0). As the feedback becomes stronger (lower panel), the differences between protein dis-
tributions become larger: population distribution shifts to lower concentration and becomes
more light-tailed, indicating a larger portion of cells with low protein concentration.

The statistics of the protein level in the population perspective are obtained as:

⟨x⟩Pop = ⟨x⟩
1 + k𝛽

1 + k𝛽 – k⟨x⟩
, (11a)

(CV2
x)Pop =

𝛽
⟨x⟩
(1 + ̃k –

𝜆
𝛾
̃k2) , (11b)

(Skewx)Pop = 2

¿
ÁÁÀ 𝛽
⟨x⟩

1 + 2 ̃k – 3𝜆
𝛾
̃k2 + (𝜆𝛾 )

2 ̃k3

(1 + ̃k – 𝜆
𝛾
̃k2)

3/2 , (11c)

where ̃k = k𝛽/(1 + k𝛽) is an auxiliary constant, and these are compared to their counterparts
in the single-cell perspectives in Fig 2C. To obtain the limit of weak feedback strength (k≪
1), we take the approach used in (8) and fix ⟨x⟩SC. The statistics for the protein from pop-
ulation perspective (11) can be expressed in terms of their single-cell counterparts and the
parameter k:

⟨x⟩Pop ≈ ⟨x⟩SC(1 – k𝛽), (12a)

(CV2
x)Pop ≈ (CV2

x)SC (1 + k𝛽) , (12b)

(Skewx)Pop ≈ (Skewx)SC (1 + k
𝛽
2
) . (12c)

We see that from the population perspective, noise and skewness (given by (12b) and
(12c), respectively) increase at least linearly faster than the moments for a single cell. This is
because as the feedback intensifies, the population includes more fast-proliferating cells with
low protein concentration, and the mean protein level ⟨x⟩Pop decreases to zero (Fig 2C, upper
panel). This causes higher noise levels for stronger feedback (Fig 2C, middle panel). Finally, as
k increases, the population distribution becomes more right-skewed (Fig 2C, lower panel) as a
result of population composition shifting to proliferative cells with lower concentrations.

Strong feedback limit and the dynamics of divergence. Besides the approximations of
weak feedback, we can also study the strong feedback limit, while keeping ⟨x⟩SC fixed accord-
ing to (7). In this limit, the statistics in each perspective show different properties. Noise and
skewness in the single-cell framework exhibit the following limits:

lim
k→∞
(CV2

x)SC = 1 + 2𝛽/⟨x⟩SC, (13a)

lim
k→∞
(Skewx)SC = 2

1 – ̃𝛽3

(1 – ̃𝛽2)3/2
, ̃𝛽 = 𝛽

⟨x⟩ + 𝛽
. (13b)
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In contrast, these statistics are unbounded in the population perspective, i.e.,

lim
k→∞
(CV2

x)Pop = lim
k→∞
(Skewx)Pop =∞. (14)

In a single cell, the existence conditions provide an exact counterbalancing relationship
between the feedback strength and the intrinsic noise (stochastic production); thus, the noise
is finite. In the population perspective, as we keep ⟨x⟩SC fixed, when the feedback increases,
only cells with low protein levels proliferate, shifting the mean to zero, making the other
moments diverge.

Another context worth studying involves the scenario where the protein distribution can
exist in the population perspective but not at the single-cell level (details in S1 Text Sect 3).
Using simulations, we explore how the protein levels diverge within this parameter region
(Fig A in S1 Text). In this context, the mean protein concentration diverges over time at the
single-cell level because dilution cannot counterbalance protein production. However, in
the population, this divergence is balanced by the proliferation of cells with lower protein
concentrations, maintaining a steady-state distribution at the population level.

Complementary formulations for protein statistics. Biologically, the coupling between
gene product levels and proliferation rate can be more complex than the simple model
explained here. To have a broader view of this phenomenon, we explored the following sce-
narios that can provide better biological accuracy in specific contexts: increasing the feedback
strength without fixing the mean protein level; assuming that the transcription rate is propor-
tional to the proliferation rate; considering a short-lived protein, and including a cell cycle
duration with different levels of randomness.

First, we explore how the protein statistics change when we increase the feedback strength
k while keeping the parameters 𝜆, 𝛽, and 𝛾 fixed. This means that ⟨x⟩SC is not fixed. Under
these conditions, in addition to an eventual divergence of ⟨x⟩SC, we obtained similar results:
the noise level and skewness in the single-cell perspective are always lower than in the popu-
lation one; further details and comparisons with the unregulated case are provided in S1 Text,
Sect 4.

As a second scenario, we studied how single cell and population statistics differ if the
transcription rate is not constant but depends on the cell growth rate (𝜆(x)∝ 𝛾(x)) [94].
In this context, we observe that the feedback strength induces smaller differences in the pro-
tein means between the single-cell and the population perspectives. The mean at population
level is around 10% less than the mean for single cell while the noise is essentially the same
between both perspectives. Details of this model are provided in S1 Text Sect 5.

Third, we analyzed a model in which the protein degrades at a constant rate with a time
scale shorter than that of the cell cycle duration. The results indicate that as the natural degra-
dation rate surpasses the dilution rate, the protein distributions at both the single-cell and
population levels converge to a gamma distribution corresponding to unregulated gene
expression. Additional details are provided in S1 Text Sect 6. As a final scenario, we studied
the effect of modeling the cell cycle duration to have a distribution tighter than exponential,
as observed in most experiments. Using simulations, we observe that the moments of proteins
in both perspectives show negligible changes when the duration of the cell cycle is less noisy
(Fig E in S1 Text). Additional details are provided in S1 Text Sect 7.

Now, having explored the impact of growth-mediated feedback on protein statistics, we
study how additional noise generated during the partitioning of protein molecules between
daughter cells impacts protein stochasticity in single-cell and population perspectives.
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Effects of molecule partitioning on protein concentration fluctuations
During cell division or mitosis, a parent cell segregates its contents, including chromosomes,
organelles, and gene products, between daughters. In the absence of any active regulation of
segregation, each molecule has a random chance of being inherited by each descendant cell.
This randomness in partitioning constitutes an additional noise source that drives intercel-
lular heterogeneity in protein levels [67,95–99]. We investigated whether this source of noise
predicts differences on expression variability in single-cell and population perspectives. To
isolate the effect of partitioning noise, we first explore an unregulated model in which gene
expression evolves deterministically rather through stochastic bursting. Although partitioning
effects result from the discreteness of molecules, we model protein levels using a continuous
variable and consider partitioning as a jump process. This approach allows us to separately
add specific sources of noise while neglecting intrinsic fluctuations typically found in dis-
crete models (such as discrete production and degradation of molecules). Rather, any intrinsic
source of noise is effectively captured by effective transcriptional bursting. First, we present
the solution focusing on partitioning noise, which follows binomial statistics (mean and vari-
ance) equivalent to the discrete counterpart [100]. Next, we add intrinsic noise in the form of
stochastic bursting events.

Coupling deterministic expression with partitioning errors. As a starting point, we
ignore noise in gene expression and the protein concentration x evolves deterministically as
per the first-order differential equation:

dx
dt
= 𝜆𝛽 – 𝛾x. (15)

The term 𝜆𝛽 (the product of the burst frequency and the average burst size) represents
the net average protein synthesis rate and 𝛾 is the constant dilution rate ignoring feedback
regulation.

In the previous section, we assume that the cell cycle duration, the time between con-
secutive divisions, is exponentially distributed. Relaxing this assumption, we now consider
the cell-cycle time to be an independent and identically distributed random variable 𝜏d that
can follow any arbitrary positively-valued continuous distribution with mean ⟨𝜏d⟩ and noise
quantified through its squared coefficient of variation, CV2

𝜏d
(Fig 3A). We set the mean dura-

tion of the cell cycle such that the population doubles every ln(2)/𝛾 units of time. The partic-
ular value of ⟨𝜏d⟩ satisfying this requirement will depend on the value of CV2

𝜏d
as previously

explained [54].
Having defined the timing of cell-division events, we next describe how we model the ran-

dom partitioning during the process. First, consider a mother cell with concentration x just
before division. A division event results in two daughters with concentrations x+ and 2x– x+

respectively. Here x+ is a random variable that is appropriately bounded 0 < x+ < 2x to ensure
non-negative concentrations (see S1 Text Sect 8), and has the following mean and variance
(conditioned on x)

⟨x+⟩ = x, Var(x+) = 𝜀x. (16)

Note that the mean protein concentration in both newborn daughters is the same as the
mother cell. The constant 𝜀 quantifies the extent of randomness in the partitioning process
and depends on multiple of factors, such as the cell size at mitosis, the specifics of molecular
segregation (for example, molecules segregating as monomers or dimers), errors in cell size
partitioning, etc. Note that the scenario of perfect partitioning (x+ = x with probability one) is
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Fig 3. Noisy cell-cycle durations amplify protein noise differences between single-cell and population perspectives. (A) (top:) The cell-cycle duration 𝜏d is a ran-
dom variable following an arbitrary distribution. Within the cell cycle, the protein concentration evolves deterministically as per the ordinary differential equation (15).
(bottom:) During mitosis, protein molecules are randomly segregated among daughters resulting in differences in the inherited concentration. Different shades of green
represent different levels of protein concentration. (B) (left:) Trajectories of protein concentration in an expanding cell colony, where jumps represent randomness in
protein partitioning among daughters during cell division. The green line: a single-cell trajectory is generated by randomly choosing one of the two daughter cells (red
lines) after each division event. The light brown lines represent other descendant cells. The cell-cycle times are assumed to be exponentially distributed in this simula-
tion. (right:) The steady-state probability density functions of the protein concentration in single-cell and population perspectives. Single-cell statistics are estimated
over a 5000 independent individuals; population statistics are estimated using all cells of 2000 colonies (including sisters, progenitor and other cells). Statistics were cal-
culated after 6 generations. (C) Effect of noise in the cell cycle time as quantified by its squared coefficient of variation (CV2

𝜏d
) on the noise in the protein concentration

(CV2
x). The solid line is the analytically predicted noise in the single-cell perspective as given by (18), and the dots represent noise levels computed from simulations.

Mean concentrations in both models are identical (⟨x⟩SC = ⟨x⟩Pop = ⟨x⟩ = 20). (D) A logarithmic scale representation of the steady-state protein noise level as a function
of the mean protein level, highlighting variability differences between single-cell and population perspectives. Parameters used for the plot are 𝛾 = ln 2, ⟨𝜏d⟩ = 1, 𝜀 = 1,
k𝛽 = 20𝛾.

https://doi.org/10.1371/journal.pcbi.1013014.g003

recovered for 𝜀 = 0. We refer the reader to S1 Text Sect 8 for further details on this approach
and how x+ is randomly generated.

Partitioning noise for single-cell perspective. In the single-cell perspective, x(t) is a
PDMP with deterministic dynamics (15) and resets

x↦ x+, (17)

that occur during the division events (Fig 3B). If the protein level after the division x+ fol-
lows the statistics (16), it is possible to obtain exact analytical formulas for the steady-
state mean and noise levels of x(t) (see S1 Text Sect 9 for details). More specifically, our
results show that for any arbitrarily distributed cell-cycle time 𝜏d, the protein statistics
are

⟨x⟩SC = ⟨x⟩ =
𝜆𝛽
𝛾 , (CV2

x)SC =
1
⟨x⟩
( 𝜀
2 ln 2

) , (18)

and remarkably, they are invariant of the statistical properties of the cell-cycle time. Thus,
making the cell-cycle times more random, this is, increasing CV2

𝜏d
for fixed mean ⟨𝜏d⟩, will

not have any impact on the protein noise level (Fig 3C). Notice the inverse scaling of noise
(CV2

x)SC with the mean protein level in (18) (Fig 3D) is a direct consequence of the variance
of x+ being proportional to the concentration in (16). This is also seen in the unregulated
bursting model (4) leading to indistinguishability of noise mechanisms from such scaling
relationships [67].

Partitioning noise for population perspective. Having analytically solved the statistics of
concentration fluctuations in the single-cell perspective, we turn our attention to quantifying
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protein variability in an expanding cell colony. In the limit case when the cell-cycle duration is
fixed (this is 𝜏d = ⟨𝜏d⟩ with probability one) we show analytically that both perspectives show
the same concentration noise (S1 Text Sect 10).

For general randomly distributed cell-cycle duration, we resort to simulation of agent-
based models as done in previous works [101,102]. The basis of the simulation algorithm with
more details is provided in S1 Text Sect 11 and its implementation is published in our repos-
itory [103]. In simulation, we consider each cell as an agent with particular properties, such
as protein level x and an internal timer that regulates its division timing. Each division event
leads to two newborn cells with concentration partitioning as described above. During the
cell cycle, protein concentrations evolve by (15) considering deterministic expression, and the
time to the next division is drawn independently according to a prescribed arbitrary statistical
distribution.

Sample realizations of protein concentrations from this agent-based framework are illus-
trated in Fig 3B. Both perspectives yield the same mean concentration while the protein level
noise follows:

(CV2
x)Pop > (CV2

x)SC . (19)

This means that protein has a higher noise in protein concentration from the population
perspective. A quantification of this difference is presented in Fig 3C, where both noise lev-
els start out equal when CV2

𝜏d
= 0. In contrast to the single-cell perspective (where (CV2

x)SC
is invariant of CV2

𝜏d
), (CV2

x)Pop increases monotonically with increasing randomness in cell-
cycle duration. For exponentially-distributed cell-cycle times (CV2

𝜏d
= 1), the approxima-

tion used by several models [104], and as assumed in the PBE model of the previous section,
(CV2

x)Pop is approximately twice of (CV2
x)SC (Fig 3C). The inverse scaling of noise with mean

as seen in (18) is also preserved in the population perspective, although with a higher propor-
tionality constant resulting in a shifted line in the logarithmic scale (Fig 3D) (similar to that
seen in (12b) for the case of dilution-based feedback). Observe that if there is no partitioning
noise, the cell cycle noise will not affect the protein noise. This occurs since the main drivers
of heterogeneity in protein levels (cycle-dependent injections of noise) are not present for that
case.

Finally, the qualitative differences seen in Fig 3C are recapitulated in more realistic agent-
based models that explicitly take into account cell size dynamics (see Fig G in S1 Text and
S1 Text Sect 12), and here cell size homeostasis mechanisms drive mother-daughter and
daughter-daughter cell-cycle correlations.

Coupling stochastic expression with partitioning errors. To complete the approach, we
now consider stochastic gene expression as captured by protein synthesis occurring in ran-
dom bursts. From a single-cell perspective, the protein noise is analytically derived as (see
details in S1 Text Sect 9)

(CV2
x)SC =

1
⟨x⟩
( 𝜀
2 ln 2

+ 𝛽) , (20)

and is the sum of two noise contributions as given by equations (4) (contribution form
the transcriptional bursting noise) and (18) (contribution form partitioning noise). To obtain
the corresponding statistics in the population perspective we modify the earlier described
agent-based model to consider intracellular concentrations evolving via stochastic bursts and
continuous exponential decay with a constant dilution rate 𝛾 in between bursts. Fig 4 shows
simulation trajectories corresponding to two different scenarios:
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Fig 4. Increasing randomness in molecular segregation between daughters enhances protein noise differences between single-cell and population perspectives. (A)
Sample trajectories of protein concentration in an expanding cell colony when expression variability is dominated by partitioning noise (𝛽 = 0.2 and 𝜀 = 1 in (20)). (B)
Comparison of the steady-state protein concentration noise (CV2

x) from single-cell (green circles) and population perspectives (brown squares) calculated from simulations
of the agent-based model. The solid line represents the analytically-predicted noise level (20). (C) Sample concentration trajectories for the high intrinsic noise scenario
(𝛽 = 5 and 𝜀 = 1 in (20)). Other parameters are taken as 𝛾 = ln 2, ⟨x⟩ = 20,𝜆 = 𝛾⟨x⟩/𝛽, 𝜀 = 1). 2000 colonies where simulated for population perspective, 5000 individuals
where simulated for single-cell perspective.

https://doi.org/10.1371/journal.pcbi.1013014.g004

• One where the partitioning noise dominates (𝛽 ≪ 𝜀), in which case (CV2
x)Pop >

(CV2
x)SC (Fig 4A).

• The other where intrinsic noise dominates (𝛽 ≫ 𝜀), in which case (CV2
x)Pop ≈ (CV2

x)SC
(Fig 4C).

Fig 4B quantifies these differences with increasing intrinsic noise component, i.e., increasing
𝛽. The key message of this figure is that when intrinsic noise dominates, then both perspec-
tives are similar in terms of the concentration statistics. This can be intuitively understood
from our earlier analytical results where both perspectives yield similar protein concentration
pdfs (Fig 2B) in the case of perfect partitioning (𝜀 = 0). In contrast, the gap between (CV2

x)Pop

and (CV2
x)SC increases as partitioning noise begins to dominate.

Discussion
In this manuscript, we have investigated stochastic concentration fluctuations in an individ-
ual cell over time (single-cell perspective) and across all descendant cells at a fixed time point
(population perspective). A key assumption is that the protein of interest is long-lived; thus,
its decay is dominated by dilution from cellular growth. We identified two scenarios where the
concentration statistics are different between single-cell and population perspectives:

• Expression-growth coupling, where a cell’s proliferation rate depends on the concentra-
tion of a specific protein.

• Random partitioning of molecules between daughters during cell division.

Consistent with previous observations [53], our analytical results corroborated with the sim-
ulation of agent-based models find that the noise in the single-cell perspective is underes-
timated (Figs 2C and 3C). We discuss these scenarios in more detail below. The reduction
in cellular growth rate with increasing protein concentration is captured phenomenologi-
cally through expression (2). This expression defines the feedback in gene expression, where
bursts in protein synthesis represent the intrinsic noise in gene expression. This feedback has
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been observed in specific cases, including stress-response factors in bacteria such as RpoS
[58] and others in fission yeast [105]. These factors regulate the transcription of other genes,
thus establishing an indirect relationship between gene products and the growth rate. Our
approach can also be applied to more direct examples, such as proteins with significant tox-
icity levels that inhibit cell growth [61]. This scenario is particularly relevant in the case of
synthetic constructs where the gene product is non-functional to the cell. Other proteins that
affect cell proliferation, such as division timing regulators, may require a more complex cell
cycle-dependent modeling [106].

The continuous protein dilution between consecutive bursts is defined by the differen-
tial equation (3). We derive exact analytical formulas for steady-state concentration proba-
bility density functions at both single-cell and population perspectives, as given by (5) and
(10), respectively. Before discussing these results, we comment on the no-feedback case. In
the absence of any concentration-dilution coupling, both perspectives yield the same gamma-
distributed concentration. This result can be generalized to consider transcription feedbacks
that are common regulatory features in gene expression [107,108]. Our analysis (see S1 Text
Sect 13) shows that a constant dilution rate with an arbitrary concentration-dependent burst
frequency yields identical concentration distributions in both perspectives.

The presence of dilution-based positive feedback shifts the concentration distribution
in the population perspective to lower protein levels (Fig 2B) due to increased proliferation
of low-expressing cells. This explains the lower mean levels and the higher noise and skew-
ness in cell populations compared to the single-cell perspective (Fig 2C). A key qualitative
difference is seen in the parameter space where the steady-state concentration distributions
exist (Fig 2A). In the single-cell perspective this existence region is defined by the net synthe-
sis rate (𝜆𝛽) being lower than the maximum rate of concentration decrease 𝛾/k in (3) that is
reached when the protein level is high. The existence region is expanded in the population
perspective as cells with higher concentrations proliferate slower, and hence do not contribute
significantly to the population.

Although we highlighted the differences between single-cell and population approaches, it
is also important to mention the scenarios where single-cell statistics are similar to population
statistics. First, we found:

• When the protein half-life is short relative to the cell cycle (Fig D in S1 Text).

In the context of protein half-life being longer relative to the cell cycle, we observe addi-
tional regimes:

• When partitioning noise is much smaller than intrinsic noise and the protein level does
not affect cell growth or proliferation.

• When the burst frequency is proportional to the growth/dilution rate. Within the
explored parameter regime, the differences between both approaches are relatively small
(Fig C in S1 Text).

The equivalence of these scenarios is relevant for experimental design. In these scenar-
ios, it is possible to infer the protein statistics of one perspective measuring the other. Our
work offers a framework for estimating the degree of similarity between these population
perspectives.

The approach of the article can be expanded in multiple ways. While we have kept the
modeling framework simple to obtain analytical insights, our models can be refined in
the future to consider the scaling of expression rates with the dilution rate [94], explicitly
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accounting for cell size and cell-cycle effects [109–111], incorporating promoter transcrip-
tional states and mRNA dynamics in more complex gene expression models [112]. Other
modifications of the model can include a negative feedback in the proliferation rate. In a
previous contribution, for instance, we investigated dilution-based negative feedback [102],
where increasing concentration increases the cellular growth (dilution) rate. This would be
the case for many cellular growth factors, where lower concentrations result in lower prolif-
erative capacities [113]. As expected, the results here are opposite to those seen in Fig 2, with
the distribution now shifting to a higher concentration in the cell population relative to the
single-cell distribution [102]. In summary, if the expression of a specific gene determines cellular
proliferative capacity at an individual-cell level, then the statistical fluctuations in its gene prod-
uct levels can be qualitatively and quantitatively different between population and single-cell
perspectives.

The discrepancy between single-cell and population perspectives also arises when con-
sidering another source of intrinsic noise, the random segregation of molecules between
daughters. In the single-cell framework, these random segregation events appear as jumps or
noise-injections in the concentration at division times (Fig 3B). The statistical properties of
these jumps are defined in (16) where the degree of partitioning noise can be tuned through
the variable 𝜀. We derived the steady-state noise in concentration (20) for an arbitrarily dis-
tributed cell-cycle duration and find it to be insensitive to fluctuations in cell-cycle times.
In contrast, the corresponding noise within a cell population increases monotonically with
increasing randomness in cell-cycle times (Fig 3C). One way to explain this effect is that the
randomness in cell cycle times manifests itself as a fluctuation in colony size [114], and larger
colonies exhibit higher intracellular concentration fluctuations resulting from the accumu-
lation of noise-injecting division events. Thus, while both perspectives predict similar noise
levels for a fixed cell cycle duration, the noise gap increases with CV2

𝜏d
, and the noise at the

population level is approximately twice the noise in single cells when the cell cycle timing is
distributed exponentially (Fig 3C).

A key limitation of our modeling approach is that cell-cycle duration is considered to be
timer, that is, each duration is independently and identically distributed. It is well known that,
if cells grow exponentially in cell size along the cell cycle, then such timer-based models are
not able to provide cell size homeostasis, that is, the variance in cell size grows unboundedly
over time [115,116]. We address this limitation by modifying the agent-based model to explic-
itly consider the size dynamics of individual cells and implemented size control according
to adder – the size added from cell birth to division is not correlated with the newborn size
[117–122]. Statistics computed from simulating these cell-size homeostatic models are pre-
sented in S1 Text Sect 12 and recapitulate the qualitative finding of Fig 3C: protein noise in a
cell population is more sensitive to fluctuations in added size compared to the single-cell per-
spective. Interestingly, these simulations show that the single-cell concentration noise that
is invariant to CV2

𝜏d
in the timer model (Fig 3C), increases slightly with CV2

𝜏d
in the adder

model (Fig G in S1 Text). The agent-based models used in this study have been uploaded to
zenodo for the research community and can be modified to include other types of size control
mechanisms and more complex biochemical processes of gene expression [103].

In summary, we have determined differences in studying gene expression in isolated
cells versus expanding cell lineages. Although we specifically considered stable proteins,
these results can be adapted to other types of biomolecules, such as mRNAs & metabolites,
and extended to study intracellular differences in chromosome abundance, plasmids and
organelles [123–125]. The focus on intrinsic noise mechanisms (bursting and partitioning
noise) can also be generalized to explore extrinsic noise through parametric fluctuations in
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gene product synthesis/decay rates [126,128,129]. For example, recent work has reported ran-
dom fluctuations in translation rates in Schizosaccharomyces pombe that dissipate quickly
within a cell cycle [130]. Finally, it will be interesting to test our predictions with single-cell
expression data using lineage tracking via cellular barcodes, where the extent of cell prolif-
eration can be directly linked to gene expression patterns and their corresponding statistical
fluctuations [64].

Methods
Analytical methods
The single-cell model is formulated as a piecewise-deterministic Markov process with deter-
ministic growth-mediated dilution and stochastic jumps (bursts). In general form, the deter-
ministic component is represented by a dynamical system ̇x(t) =A(x(t), t). Stochastic bursts
are characterized by a burst kernel 𝜔(b|y, t), which describes the probability of transitioning
from state y to x = y+b within an infinitesimal time interval. Bursts occur at a rate 𝜆(x, t), with
their sizes drawn from an arbitrary non-negative distribution.

The time evolution of the protein probability density at the single-cell level, pSC(x, t), is
described by the Chapman-Kolmogorov equation:

𝜕
𝜕t pSC(x, t) = –

𝜕
𝜕x (A(x, t)pSC(x, t)) – 𝜆(x, t)pSC(x, t)

+∫ 𝜆(y, t)𝜔(x – y|y, t)pSC(y, t)dy.

In this work, the burst frequency is constant (𝜆(x, t)≡ 𝜆) and bursts are exponentially dis-
tributed (𝜔(b|y, t) = e–(x–y)/𝛽/𝛽) as per (1), while the dynamical system A(x,t) is given by (3).
Under these assumptions, the Chapman-Kolmogorov equation becomes:

𝜕pSC(x, t)
𝜕t = 𝜕

𝜕x (
𝛾x

1 + kx
pSC(x, t)) +

𝜆
𝛽 ∫

x

0
e–(x–y)/𝛽pSC(y, t)dy – 𝜆pSC(x, t), (21)

the solution of which is provided in S1 Text Sect 1.
To extend the model to the population level, we describe the cell cycle mechanism, where

at the end of the cycle, a mother cell is replaced by two daughter cells. The daughters inherit
the mother’s protein concentration and half of her cell volume, leading to a sequence of
Markov processes; the model for each individual cell remains as described previously. We also
introduce the net rate of particle generation (population growth), G(x,t), which captures the
combined effects of all birth-death processes. Here, we further assume that the net growth rate
is proportional to the number of particles in state x, i.e. G(x, t) = 𝛾(x, t)h(x, t).

The time evolution of the population is governed by the population balance equation:

𝜕
h(x, t)

𝜕t = 𝜕𝜕x (
𝛾x

1 + kx
h(x, t)) + 𝛾

1 + kx
h(x, t)

+ 𝜆𝛽 ∫
x

0
e–(x–y)/𝛽h(y, t)dy – 𝜆h(x, t),

(22)

where h(x,t) is the expected population density and describes the number of cells with con-
centration x at time t. We assume that h(x,t) can be separated as h(x, t) = e𝜇tpPop(x), where 𝜇
is the population growth rate and pPop(x) is the protein distribution at the population level.
The solution of (22) is provided in S1 Text Sect 2.
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Simulation methods
To estimate protein statistics considering partitioning, we use an agent-based algorithm,
modeling protein levels within each cell over time. For the single-cell perspective, only one
descendant is chosen during each division, while in the population model, a new cell is
added after each division, allowing the population to grow. We used two methods of simu-
lation. Simulations for the case of feedback in dilution were performed using the tau-leaping
algorithm [131]. For the section of partitioning noise, we used a modification of the Gille-
spie method [132]. Each cell tracks the time to the next burst and division, with burst times
exponentially distributed and division times gamma distributed. During each iteration, the
minimum time until the next reaction is selected, and the respective reaction occurs. Pro-
tein levels evolve according to a differential equation, with distinct behaviors for bursty and
non-bursty protein synthesis. Additional details of the algorithm are shown in the S1 Text,
Sect 11.

Artificial intelligence
The authors declare that they did not use generative AI or AI-assisted technologies in the
writing process.
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