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Abstract
We report here the first families carrying recessive variants in the MSTO1 gene: compound

heterozygous mutations were identified in two sisters and in an unrelated singleton case, who

presented a multisystem complex phenotype mainly characterized by myopathy and cerebellar

ataxia. Human MSTO1 is a poorly studied protein, suggested to have mitochondrial localization

and to regulate morphology and distribution of mitochondria. As for other mutations affecting

genes involved in mitochondrial dynamics, no biochemical defects typical of mitochondrial

disorders were reported. Studies in patients’ fibroblasts revealed that MSTO1 protein levels

were strongly reduced, the mitochondrial network was fragmented, and the fusion events among

mitochondria were decreased, confirming the deleterious effect of the identified variants and

the role of MSTO1 in modulating mitochondrial dynamics. We also found that MSTO1 is mainly
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a cytosolic protein. These findings indicate recessive mutations in MSTO1 as a new cause for

inherited neuromuscular disorders withmultisystem features.
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Mitochondria are highly dynamic organelles, which undergo con-

stant fusion and fission events, and cristae remodeling. Mitochon-

drial dynamics influences several homeostatic and execution path-

ways involving the organelle and other compartments of the cell,

and is in turn controlled by intraorganellar and extraorganellar

metabolic requirements and signals, including the availability of nutri-

ents, cell cycle, and calcium homeostasis. Mitochondrial fusion allows

the exchange of damaged mitochondrial DNA (mtDNA) and proteins

between impaired and “healthy” mitochondria, whereasmitochondrial

fission facilitates their redistribution inside the cell (Okamoto & Shaw,

2005) and the isolation of faulty mitochondria, which can then be

eliminated bymitophagy. Fragmentation of themitochondrial network

is also observed just before apoptosis (Munoz-Pinedo et al., 2006).

Mitochondrial dynamics is mainly controlled by a group of proteins

belonging to the dynamin superfamily of GTPases. The typical struc-

ture of dynamin-related proteins consists of a large amino-terminal

GTPase domain, amiddle domain, and aGTPase effector domain (Prae-

fcke &McMahon, 2004). DNM1L (dynamin-1-like, MIM# 603850) is a

cytosolic GTPase that localizes to the outer mitochondrial membrane

and carries out mitochondrial fission. Other members of the dynamin

family are involved in mitochondrial fusion: mitofusins (MFN1, MIM#

608506, andMFN2, MIM# 608507) localize to and operate the fusion

of the mitochondrial outer membrane (Chen et al., 2003), whereas

OPA1 (MIM# 605290) is a multitasking protein of the inner mem-

brane, where it promotes fusion, cristae remodeling, and sealing of

cristae junctions (Alexander et al., 2000; Delettre et al., 2000). Very

recently, dynamin-2 (DNM2, MIM# 602378) has been reported to be

a fundamental component of themitochondrial fissionmachinery (Lee,

Westrate,Wu, Page, & Voeltz, 2016).

The human gene MSTO1 encodes the ortholog of misato of

D. melanogaster. Misato proteins are conserved from yeast to human.

Their function is still controversial, but they share regions homologous

to a GTPase subfamily (Miklos, Yamamoto, Burns, & Maleszka, 1997)

that includes tubulin andbacterial FtsZ, regulating segregationof chro-

mosomes, and fission of both chloroplasts and mitochondria. Human

MSTO1 is ubiquitously expressed (Kimura & Okano, 2007) and was

reported to localize mainly to mitochondria. RNAi-mediated MSTO1

knockdown causesmitochondrial fragmentation, whereas overexpres-

sion of recombinant MSTO1 induces aggregation of mitochondria at

the perinuclear region (Kimura &Okano, 2007).

Several mutations in genes-encoding factors mediating mitochon-

drial fission or fusion have been associatedwith diverse human genetic

diseases, with predominant neurological involvement. For instance,

mutations in MFN2, OPA1, DNM1L, and MFF (encoding mitochondrial

fission factor) cause Charcot–Marie–Tooth disease type 2A (MIM#

609260), dominant optic atrophy (MIM#165500), and severe infantile

encephalomyopathies (MIM#614388;617086), respectively.Here,we

report a family of four with two sisters, presenting with severe con-

genital myopathy and cerebellar ataxia associatedwith skeletal abnor-

malities and mild mental retardation as corollary symptoms of a mul-

tisystem disease. Whole-exome sequencing (WES) analysis identified

a compound heterozygous genotype of two missense mutations in

MSTO1.Functional characterization ofmutant cells demonstrated pro-

found MSTO1 reduction in patients’ fibroblasts. Different compound

heterozygous variants in MSTO1 were found by WES also in a single-

ton case presenting a dystrophic myopathy and cerebellar ataxia. Our

results demonstrate thatMSTO1 is a novel disease gene causing amito-

chondrial morphology defect and leading to a muscular recessive dis-

ease (ranging from congenital myopathy to muscular dystrophy) with

multisystem involvement.

Detailedmethods for biochemical assays,molecular genetics, struc-

tural and protein analyses, fluorescence microscopy, and functional

studies in cells are reported in Supp. Information.

Informed consent for genetic and biochemical studieswas obtained

from the parents of patients, in agreement with the Declaration of

Helsinki and approved by the Ethical Committees of the Meyer Chil-

dren Hospital, Florence, Italy, and of the Health Research Authority,

NRES Committee East of England –Hatfield.

Patient A1 is the first daughter of unrelated parents (II-1, family A;

Fig. 1A). Family history is negative for neurological and skeletal dis-

orders. Pregnancy was uneventful, but was interrupted prematurely

by caesarean delivery due to acute fetal distress. The child showed

neonatal distress (Apgar 5–7), but her psychomotor development was

reported as normal in the first months after birth. However, from 8

to 9 months of age, severe growth and motor delay became progres-

sively obvious. A brain MRI at 18 months revealed severe hypotrophy

of cerebellar vermis, with an enlarged cisterna magna, and hyperin-

tense signals in the supratentorial periventricular and posterior white

matter. At 5 years of age, the patient showed severe growth impair-

ment (<3rd percentile for both weight and height), had fine tremors

and no autonomous walk, but normal muscle tone and normal cog-

nitive development. At 7 years of age, a brain MRI disclosed global

cerebellar hypotrophy, with reduction of the N-acetyl aspartate peak

at proton magnetic resonance spectroscopy ([1H+]-MRS), and abnor-

mal signal in the supratentorial peritrigonal white matter. These find-

ings were confirmed at 16 years of age (Fig. 1B and C). Ophthalmologi-

cal examination revealed the presence of pigmentary retinopathy with

papillarypallor, associatedwith concentric restrictionof thevisual field

but no abnormality of visual acuity. Electromyography (EMG) exami-

nation revealed a myopathic pattern, and a muscle biopsy confirmed

the presence of myopathic features with high variability in muscle

fiber diameter hypotrophic, polygonal fibers and hypertrophic, round
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F IGURE 1 Clinical, biochemical, and genetic features of theMSTO1mutant patients A1 and A2. A: Pedigree of the family A with the identified
MSTO1 variants. Black symbols indicate the affected siblings.B andC: BrainMRI (B: sagittal;C: coronal images) of the patient A1, taken at 16 years
of age, showing cerebellar hypotrophy. D: Skeletal abnormalities of patient A1 (17 years of age), with marked scoliosis and severe asymmetry of
the chest and pectus excavatum. Consent to publish anonymized photos was obtained from patients’ parents. E: Activities of the mitochondrial
respiratory chain (MRC) complexes (cI, cII, cIII, cIV) inmuscle homogenates frompatients A1 andA2, reported as percentages of the controlsmean.
The specific activities were normalized for citrate synthase (CS) activity. The dotted line represents the minimum value of the control range. F:
QuantificationofmtDNAamount inmuscle frompatientA1and3controls (Ct1-3). Thebars represent the amount ofmtDNAnormalized tonuclear
DNA (nDNA), comparedwith themeanvalueof controls (=1).Data are represented asmean±SDof four independent experiments.G: Dysmorphic
traits of patient A2: triangular face, with sunken eyes, severe asymmetry of the chest and pectus excavatum. H: Schematic representation of the
MSTO1 protein withmain functional domains and localization of the identifiedMSTO1mutations in family A (red variants) and B (blue variants)

fibers, and scattered fibers with intracytoplasmic microvacuolizations.

No oxidative histochemical defect in mitochondrial enzymes (COX,

SDH) was observed. Plasma CK was elevated (≈1,200 U/L, n.v. <250),

and reduced citrullin levels were consistently found in plasma. The

patient showed severe asymmetry of the chest, with enlargement of

the right hemithorax, pectus excavatum, andmarked scoliosis (Fig. 1D).

She was able to stand but could not walk autonomously. Her face is

peculiar with thick hair and a high-arched palate. Biochemical assays

of muscle homogenate showed no abnormality of the mitochondrial

respiratory chain, but citrate synthase activity, an index of mitochon-

drial mass, was markedly reduced (36 nmol/min/mg, n.v. 80–210; Fig.

1E). mtDNA amount was reduced to 27% of the mean control value

(Fig. 1F). The following genes were previously excluded by Sanger

sequencing: SPG7, FKTN, POMT1, POMT2, LARGE, POMGNT1, and SIL1.

The presence of pathogenic mtDNAmutations was also ruled out. The

patient is now 17 years old, in stable condition, with severely impaired

motor function, severe skeletal abnormalities, but no cognitive

deficiency.

Patient A2, the younger sister of patient A1 (II-2, family A; Fig.

1A), was born by cesarean section after an uneventful pregnancy. Her

clinical course has been similar to that of patient A1, including the

presence of cerebellar hypotrophy with no autonomous walk, adiado-

chokinesia, dysmetry and fine tremors; she shows muscle weakness,

pes cavus, and reduced deep tendon reflexes. An EMG revealed a
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predominantly myopathic pattern, associated with high plasma levels

of CK (1,872U/L) and low plasma levels of citrullin (14 𝜇M, n.v. 17–53).

Her cognitive development has been normal but, like her affected

sister, she showed severe growth impairment since 8–9 months of

age; facial (Fig. 1G) and hair abnormalities and asymmetry of the

thorax were similar to those of her sister, but she showed no organic

aciduria and normal acylcarnitines in plasma and urine. Ophthalmo-

logical examination revealed bilateral papillary pallor, but pigmentary

retinopathy, reduced visual acuity, and nystagmus were absent. A

muscle biopsy showed a myopathy with dystrophic features, with

vacuolization of scattered muscle fibers, increased perimysial- and

endomysial connective tissue, and partial reduction of COX histoen-

zymatic reaction. Biochemical assays revealed partial complex II defi-

ciency (52% residual activity) and severely reduced citrate synthase

activity (44 nmol/min/mg; Fig. 1E). No residualmusclewas available for

further analyses. The patient is now 13 years old, in a stable condition.

Patient B is a 7-year-old child of British Caucasian descent, born

to nonconsanguineous parents (family B); he has a healthy older sis-

ter. He presented at around 1 year of age with reluctance to stand

and walk unsupported. Subsequently, he showed difficulty walking

long distances, getting up from the floor, and frequent falls. Speech

acquisition was delayed. Gradual improvement in motor activities was

then noted and, at the age of 3.5 years, he was able to walk half

a mile, although with frequent falls, and he acquired the ability to

walk upstairs. Gowers’ time from lying was 6.4 sec. At the age of

6 years, he showed further improvement, showing less falls and a

Gower’s time of 3.6 sec. Weakness was proximal more than distal,

affecting lower limbs (MRCpowergrade3–4/5)more thanupper (MRC

power grade 4/5), with the exception of the peroneal muscles that

were MRC power grade 3+/5. He presents mild end of range tight-

ness of Achilles tendons but no other joint contractures. Deep ten-

don reflexes were present and symmetric; Babinski was negative. A

degree of poor coordination, especially of the left hand, was notice-

able from the age of 3 years. At the age of 6 years, he showed a

fine intentional tremor bilaterally at finger-nose test, dysdiachokine-

sia and difficulties with rapid hands repeated movements but no nys-

tagmus. He shows no cognitive involvement but presents problems

related to speech articulation.Hehas no cardiac or respiratory involve-

ment, and forced vital capacity was 91% of predicted values. Oph-

thalmological examinationwas normal. An EMG/NCS showed changes

compatible with a myopathic process. Brain MRI at the age of 3.5

years showed hypoplasia of cerebellar vermis and hemispheres (Supp.

Fig. S1). These findings remained static at a follow up of 2 years.

Serum CKwas 4,520 IU/L and serum lactate and transferrin were nor-

mal. Right thigh muscle biopsy at 2 years showed dystrophic changes

with nonrimmed vacuoles. Oxidative histochemistry (COX, SDH) did

not show COX- or SDH-deficient activities. Ultrastructural examina-

tion showed striking vacuolar degeneration of mitochondria (Supp.

Fig. S2).

Mutations in known genes causative of muscular dystrophies and

vacuolar myopathies were excluded first by a gene panel analysis, and

direct Sanger sequencing of a number of limb girdle muscular dystro-

phy genes was also performed. Further search of mutations in less

common neuromuscular genes was excluded by WES data analysis.

Variants were first prioritized according to a homozygous-recessive

model, but no variants were found. Therefore, variants were pri-

oritized according to the presence of compound heterozygosity

based on recessive inheritance and on the nonconsanguinity of

the parents. In the two affected siblings of family A (A1 and A2),

two novel missense mutations were identified in MSTO1, a gene

regulating mitochondrial distribution and morphology, not previ-

ously associated with human diseases (Supp. Fig. S3) (GenBank

accession no. NM_018116.3): c.1033C>T; p.R345C and c.1128C>A;

p.F376L (Fig. 1H). The R345 and F376 are highly conserved residues

(Supp. Fig. S4A), and the corresponding variants have never been

reported in publicly available databases [http://www.ncbi.nlm.nih.gov/

SNP; http://browser.1000genomes.org/index.html; http://exac.broadi

nstitute.org; ], excepting 1 out of>120,000 alleles with the c.1033C>T

(rs150075701) in ExAC database. Sanger sequencing in the probands

and their parents confirmed the presence of the (maternal) c.1033C>T

and the (paternal) c.1128C>A variants in both patients (A1 and A2), as

expected for an autosomal-recessive nonconsanguineous inheritance

(Supp. Fig. S4A; Fig. 1A). Following this finding, we searched for addi-

tional patients with pathogenic variants inMSTO1 in theWES datasets

fromcongenitalmyopathy and congenitalmuscular dystrophy patients

analysedwithin the NeurOmics project. In patient B, we identified two

heterozygous MSTO1 mutations: c.971C>T; p.T324I and a nucleotide

change c.966+1G>A affecting the consensus splice site of exon 9 (Fig.

1H). Sanger sequencing confirmed the segregation of the mutations

with the disease within the family (Supp. Fig. S5). Both varaints are

present in the ExAC database at very low frequency compatible with

rare recessive disorder (allele frequency< 0.00004).

In order to evaluate the effect of the identified MSTO1 variants

on transcript and protein, we studied available specimens from the

patients. For A1 and A2, we used skin fibroblasts: quantitative PCR

analysis of the retrotranscribed MSTO1 cDNA showed partial reduc-

tion of transcript amount (Supp. Fig. S6A) in both cell lines, but

no aberrant species were observed. Notably, the total amount of

MSTO1 protein detected by western blot (WB) analysis was drasti-

cally reduced in patients’ fibroblasts compared with controls (∼15%
residual amount; Fig. 2A); a strong reduction in MSTO1 was also

observed in immortalized fibroblasts from A1 (Supp. Fig. S6B). These

findings confirmed the deleterious effect of these two MSTO1 vari-

ants, probably affecting the stability of the protein. For patient B, we

analyzed skeletal muscle: transcript analysis of cDNA obtained from

retrotranscribed RNA showed the presence of an aberrant transcript

that was found to lack exon 9. This finding confirmed the deleteri-

ous effect of the c.966+1G>A on splicing (Supp. Fig. S7). Then, we

tested the antibody on total lysate, but no immunoreactive signal was

observed at the expected molecular weight even in control samples

(Supp. Fig. S7), suggesting that the antibody does not work on muscle

homogenate.

Given the predicted role of MSTO1 in regulating mitochondrial

morphology (Kimura & Okano, 2007), we evaluated the functional

consequences of the MSTO1 variants by assessing the mitochondrial

network in patients’ fibroblasts. Fibroblasts grown in either stan-

dard glucose or galactose medium were stained with a mitochondrial

dye (Mitotracker) and examined by fluorescence microscopy. Patients’

http://www.ncbi.nlm.nih.gov/SNP
http://www.ncbi.nlm.nih.gov/SNP
http://browser.1000genomes.org/index.html
http://exac.broadinstitute.org
http://exac.broadinstitute.org
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F IGURE 2 Characterization of fibroblast cell lines. A: MSTO1 protein amount in patients’ (A1 and A2) and control (CT1 and CT2) fibroblasts,
obtained using an anti-MSTO1 antibody. An anti-GAPDH antibody was used as a loading control. B: Mitochondrial morphology, assessed in pri-
mary and pRNS1-immortalized fibroblasts from patient A2 and controls (Pt and CT, iPt and iCT, respectively), was scored as follows: “Fragmented”,
mainly small and round; “Partly fragmented”, intermediate, mixture of round and shorter tubulated; “Normal”, tubulated, long and higher intercon-
nectivity; “Elongated”, very long, tubulated. The percentage of cells with indicatedmitochondrial morphologies was determined as a percentage of
the total number ofMitoTracker Green loaded cells counted (number of cells: CT= 145, Pt= 160; iCT= 191; iPt= 220).C: Representative images
of mitochondrial morphology (obtained with MitoTracker red), showing the filamentous mitochondrial network of fibroblasts from a control (CT),
and the fragmented network in patients’ (A1 and A2) cells, grown in glucose medium. Scale bar: 25 𝜇m.D: Mitochondrial continuity in primary and
pRNS1-immortalizedfibroblasts. The time course of theF ratio ofmtPA-GFP (G-Gbase/Gmax-Gbase) for the regionof photoactivation (RPA) (left); the
decay of the fluorescence ratio in the RPA at 500 sec (right). (Number of imaged cells: CT= 20; Pt= 21; iCT= 23; iPt= 25; from three experiments
per each cells). Stars indicate significant differences (P<0.05)
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cells showed a clear fragmentation of the mitochondrial network

compared with controls. Altered mitochondria were also more abun-

dant in immortalized fibroblasts from patient A1 than from controls

(Fig. 2B and C). To evaluate whether the fragmented mitochondrial

morphology in patient and control fibroblasts can result from sup-

pressed mitochondrial fusion activity, cells were cotransfected with

a mitochondrial marker (mtDsRed) and a mitochondrial photoactivat-

able GFP (mtPA-GFP). The diffusion of the photo-activatedmtPA-GFP

was reduced in patients’ cells, indicating a decrease in the combined

activity of mitochondrial network formation, mitochondrial fusion,

and mitochondrial movements (Fig. 2D). The fusion events, validated

by reciprocal spreading of mtPA-GFP and mtDsRed, were fewer and

lasted slightly longer in patients’ cells than in controls (Supp. Fig. S8).

Thus, suppression of mitochondrial fusion is likely a cause of the frag-

mented mitochondrial morphology in MSTO1 patients. Since some of

the proteins involved in mitochondrial dynamics (e.g., DNM1L, MFF)

are also involved in peroxisomal morphology, we did check this aspect

by immunofluorescence using an antiperoxisomal antibody (PMP70):

in patients’ cells, we observed a normal morphology and distribution

of peroxisomes that had only a slightly, not significantly, reducedmean

area comparedwith control cells (Supp. Fig. S9A and B).

In accordance with the reduced mtDNA content observed in mus-

cle fromA1, the amount ofmtDNA in total DNAextracted fromfibrob-

lasts, assessed by quantitative PCR, was also lower in the patients than

in controls (39% and 68% of the mean control value for A1 and A2,

respectively); nevertheless, by Picogreen staining, we did not observe

any evident alteration (e.g., perinuclear clustering) in mitochondrial

nucleoid distribution (Supp. Fig. S9C). Respiratory capacity, assessed

by SeaHorsemicro-oxygraphy, aswell as citrate synthase activity,were

normal in patients’ fibroblasts (not shown).

MSTO1 was previously suggested to be a mitochondrial protein,

localized in the outer membrane (Kimura & Okano, 2007), but sev-

eral bioinformatics tools for prediction of the subcellular localization

indicated MSTO1 as a cytosolic protein, not targeted to mitochon-

dria (Supp. Table S1). Moreover, in our WB experiments, the intensity

of the anti-MSTO1 immunoreactive band was lower in mitochondrial-

enriched preparations compared with total lysates; hence, we decided

to investigate the localization of MSTO1 by WB immunodetection on

HeLa cell subfractions. This analysis revealed thatMSTO1was present

in the 13,000g supernatant, corresponding to the postmitochondrial

fraction, but not in the mitochondria-containing 13,000g pellet. Ultra-

centrifugation of the postmitochondrial supernatant at 100,000g indi-

cated thatMSTO1 is a soluble protein present in the 100,000g (cytoso-

lic) supernatant but absent in the corresponding (microsomal) pellet

(Supp. Fig. S10). Notably, the distribution of MSTO1 upon differential

centrifugation is similar to that of DNM1L (also known asDRP1). Since

the antibody againstMSTO1was not suitable for immunofluorescence

studies, we expressed a HA-tagged MSTO1 protein (MSTO1-HA) in

HeLa cells. The HA signal was distributed throughout the cytoplasm

with only partial colocalization with a mitochondrial marker, whereas

no signal was detected in the nucleus (Supp. Fig. S10), thus confirm-

ing the results of the immunoblot experiments. The same pattern

was observed also in COS7 cells transfected with MSTO1-HA (Supp.

Fig. S11).

Next, we tested whether the expression of wild-type MSTO1 could

recover the fragmented mitochondrial network observed in mutant

fibroblasts. To avoid artifacts caused by fixation, we analyzed the

effect ofMSTO1 expression on mitochondria in live cells. MSTO1 was

cotransfected with a GFP targeted to mitochondria (mtGFP) in order

to easily identify cells expressing the exogenous proteins (Supp. Fig.

S12). After transient overexpression of wild-type MSTO1 in mutant

and control fibroblasts, we observed that the mitochondrial network

was unaffected at 24 hr, but at 48 hr, most of the cells with green sig-

nal collapsed, detached from the plate or floating in the medium; only

a few cells were still adherent but showed fragmentation and perinu-

clear aggregation of mitochondria, both in patients and control cells

(Supp. Fig. S13). At 72 hr, no cells with green signal were found. Con-

trariwise, the single transfection of mtGFP had no major effect on the

viability of fibroblasts and on the mitochondrial network even after

>96 hr (not shown). These findings suggest that the overexpression

of MSTO1 is deleterious, as already reported by Kimura and Okano

(2007),whoobserved reducedvitality andperinuclear clusters ofmito-

chondria after overexpression ofMSTO1-GFP in COS7 cells.

TheWES analysis in our familieswithmyopathy and ataxia revealed

that mutations of MSTO1 can be a new genetic cause for rare human

disease, impairing themitochondrial dynamicmaintenance circuit. The

fragmented mitochondrial network observed in mutant cells and vac-

uolar degeneration of mitochondria are in agreement with the pro-

posed role of MSTO1 in mitodynamics. In fact, RNAi-driven MSTO1

depletion leads to mitochondrial fragmentation, whereas overexpres-

sion of human EGFP-tagged MSTO1 causes alterations in mitochon-

drial morphology and aggregation of mitochondria in the perinuclear

region (Kimura & Okano, 2007). This was supported also by evidence

from studies on S. cerevisiae, where expression of DML1, the bona

fide yeast ortholog of MSTO1, leads to mitochondrial dispersion and

abnormalities in cell morphology (Gurvitz, Hartig, Ruis, Hamilton, & de

Couet, 2002). Taken together, these findings suggest that MSTO1 is

either a profusion protein, which promotes the formation of the tubu-

lar network, or anantifission factor,which inhibits the activity of profis-

sion proteins such as DNM1L. Our data indicate thatMSTO1 is largely

cytosolic: this result is in contrast with those of Kimura and Okano

(2007), who reported a loose association with the mitochondrial outer

membrane. However, it is possible that MSTO1 may have the same

behavior of DNM1L, which is a cytosolic protein that translocates to

the outer membrane to carry out mitochondrial fission (Bleazard et al.,

1999; Smirnova, Griparic, Shurland, & van der Bliek, 2001).

Given its homology with eukaryotic tubulin and prokaryotic FtsZ

(Gurvitz et al., 2002; Miklos et al., 1997), MSTO1 was initially pro-

posed to regulate chromosome segregation and cell division; accord-

ingly, Misato mutations in D. melanogaster were associated with

irregular chromosome segregation during mitosis (Miklos et al., 1997).

Some clinical features in our patientsA1 andA2, such as skeletal devel-

opmental abnormalities (e.g., pectus excavatum) and mild dysmorphic

features do suggest a possible involvement of nuclear chromosomal

DNA, whereas other abnormalities, such as cerebellar hypotrophy,

leukodystrophy, and myopathic/dystrophic changes, possibly leading

to additional skeletal deformities such as scoliosis, are often associated
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with mitochondrial impairment. However, considering that the lar-

vae of MSTO1 mutant flies showed severe morphological abnormali-

ties and early death, the phenotype presented by our patients seems

milder, suggesting a hypomorphic effect of the identifiedMSTO1 vari-

ants. Another possibility is that the function of the proteinmay diverge

between arthropoda and humans.

Most of the patients with mutations in genes related to mitody-

namics presented a neurological phenotype; our MSTO1-mutant sub-

jects have indeed amyopathy associatedwith cerebellar ataxia, under-

lined by hypotrophy of the cerebellar vermis; the sisters A1 and A2

also present amultisystem conditionwith developmental delay, partic-

ularly motor impairment with ataxia and dysmorphisms.

Our biochemical analyses were not indicative of a mitochondrial

disorder: patients showed normal lactate levels, and hardly any defect

of MRC complex activities or cell respiration, as frequently seen in

other defects of mitodynamics, such as OPA1 (Mayorov et al., 2008)

and DNM1L mutations (Nasca et al., 2016). However, we detected

markedly low activity of citrate synthase and reducedmtDNA amount,

suggesting a reduction in mitochondrial mass. Although these alter-

ations can be due to dystrophic changes in the muscle biopsies, the

lowmtDNA content observed in patients’ fibroblasts supports the pre-

vious hypothesis. Interestingly, reduced plasma citrullin was found in

both siblingsA1 andA2: hypocitrullinemiawas reported in some inher-

ited disorders affectingmitochondrial function andwas suggested as a

biomarker of oxidative stress (Atkuri et al., 2009).

Our study confirms the proposed role for MSTO1 in regulat-

ing mitochondrial morphology, favoring fusion versus fission events,

despite itsmainly cytoplasmic localization.We showed that compound

heterozygous recessive mutations in MSTO1 lead to impairment of

mitochondrial dynamics, and are associated, in our affected patients,

with a disease characterized by neurological, muscular, and sometimes

skeletal involvement. Notably, a family with an autosomal-dominant

mutation in MSTO1 was recently identified (Gal et al., 2016), with the

affected subjects presenting symptoms partly overlapping those of our

patients, for example,myopathy, ataxia, skeletal alterations, in addition

to psychotic features, for example, schizophrenia or autism, which are

not present in our cases. Certainly, investigation on further patients is

required to better define themode of inheritance and the clinical spec-

trum ofMSTO1-related disease.
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