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Abstract: Lung cancer is one of the malignancies with higher morbidity and mortality. Imaging
plays an essential role in each phase of lung cancer management, from detection to assessment of
response to treatment. The development of imaging-based artificial intelligence (AI) models has the
potential to play a key role in early detection and customized treatment planning. Computer-aided
detection of lung nodules in screening programs has revolutionized the early detection of the disease.
Moreover, the possibility to use AI approaches to identify patients at risk of developing lung cancer
during their life can help a more targeted screening program. The combination of imaging features
and clinical and laboratory data through AI models is giving promising results in the prediction
of patients’ outcomes, response to specific therapies, and risk for toxic reaction development. In
this review, we provide an overview of the main imaging AI-based tools in lung cancer imaging,
including automated lesion detection, characterization, segmentation, prediction of outcome, and
treatment response to provide radiologists and clinicians with the foundation for these applications
in a clinical scenario.

Keywords: artificial intelligence; lung cancer; deep learning

1. Introduction

With more than 2 million cases per year in the USA, lung cancer is one of the malignant
tumors with the fastest rate of morbidity and mortality growth, and the leading cause of
cancer-related death [1,2]. Since most lung cancers are detected in the middle and late
stages of the disease, when few treatment options are still available, the 5-year survival rate
for individuals is only 10–20% in most countries [3].

Lung cancer is clinically classified into two main histological groups: small-cell lung
carcinoma (SCLC) and non-SCLC (NSCLC). NSCLC, which accounts for roughly 85–90%
of cases and is the most common type of lung cancer, includes several subtypes: adenocar-
cinoma, squamous cell carcinoma, large cell carcinoma, and squamous adenocarcinoma [4].
The International Association for Lung Cancer Research classifies lung cancer into I–IV
stages based on tumor diameter, lymph node metastasis, and distant metastasis, with stage
I–II being the early stage and stage III–IV being advanced lung cancer [5]. The majority of
lung cancers are diagnosed at an advanced stage and have a poor prognosis. Furthermore,
limitations in treatment selection and prognosis evaluation have presented challenges
to clinicians.
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To reduce the mortality rate of lung cancer, early diagnosis and appropriate treatment
are key factors. So far, lung cancer has mainly been diagnosed with computed tomogra-
phy (CT) and tissue biopsy, but the information provided on the patient’s prognosis and
response to therapy is limited. For these reasons, early diagnosis through individualized
screening programs and non-invasive characterization of the lesions thanks to new imaging
biomarkers are essential for planning the most appropriate management [6].

In this scenario, the application of artificial intelligence (AI) algorithms has gained
popularity in various tasks related to lung cancer imaging such as the improvement of
screening programs, lesion detection, characterization, and the prediction of response to
therapy and prognosis. Together, these efforts converge toward offering patients truly
tailor-made management [7].

A Quick Introduction to Artificial Intelligence, Machine Learning, and Radiomics

Generally defined as the technology that mimics human intelligence and cognitive
processes, such as learning, reasoning, problem-solving, decision-making, and creativity,
AI already has a revolutionary but often hidden impact in everyday life. In this section, we
will go over the definitions and theoretical frameworks of the most important AI-related
concepts in biomedical imaging.

Along with the awareness that radiological images should be considered numerical
data rather than mere pictures, AI-based applications in radiology have grown in popularity
over the last few decades [8,9]. Within this scenario, the so-called radiomic paradigm is
based on the extraction of quantitative and ideally reproducible information from diagnostic
images, including complex patterns that are difficult to recognize or quantify by the human
eye [10]. According to this definition, radiomics can be considered synonymous with
quantitative imaging [11].

The radiomic approach exploits sophisticated AI-based algorithms to extract and
analyze large quantitative metrics from medical images that, alone or in combination with
demographic, histological, genomic, or proteomic data, can be used for clinical problem-
solving [10]. Radiogenomics could be considered a subset of radiomic applications, aiming
to link imaging and biology, correlating lesion imaging phenotype (“radio“) to the genotype
(“genomics”), based on the assumption that phenotype is the expression of genotype [12].

In the very general context of AI, machine learning (ML) represents the backbone
of the radiomics approach. ML is a learning paradigm, a set of models and algorithms
structured within a precise theoretical framework, aiming for the automated detection of
meaningful patterns in data [13–16]. There are four main types of ML, depending on the
level of data pretreatment and the nature of the “feedback” available for the system to
infer the relationship between data: supervised learning (SL), unsupervised learning (UL),
semi-supervised learning (SSL), and reinforcement learning (RL) (Table 1). Each approach
can be used to address different clinical tasks. We will focus mainly on the first two, which
are the most used in radiomics research [13].

To explain how the SL works, let’s start by considering a practical problem. Much
of the radiologist’s activity consists of very general classification tasks (for example, in
lung cancer screening, deciding whether a nodule is benign or malignant). SL is a common
ML approach particularly suited to tackling “simple” classification tasks in which data
could easily be categorically tagged [13–16]. To do so, SL algorithms draw inspiration from
human learning in a very simple way: learning from examples.

Usually, a computer is programmed to perform a function (f) on input (x) to obtain
output (y). To do this, it is necessary to know exactly (1) the type of operation that the
computer has to perform and (2) how to translate this information into a language that the
machine can understand (coding) [13–16]. Hence the problem, from a computational point
of view, of the impossibility of translating step by step into the code the extremely complex
cognitive process that underlies the diagnostic process of a radiologist. This challenge
can be addressed through an ML approach, that is, by leveraging a form of AI. In SL, the
learning phase of the model would require a dataset of tuples (x, y) that includes typical
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examples of inputs (e.g., chest X-rays) and corresponding outputs already labeled by an
expert (e.g., chest X-rays already classified by an experienced radiologist as “positive” or
“negative”) [13–16]. By feeding the model with enough examples, the algorithm can infer
the relationship that maps the data with a required level of accuracy. After being trained
and validated with an external dataset, the model can be used to assist the radiologist in
a new diagnostic task: providing the raw unlabeled data (x), it will return a probability
estimate that (y).

Table 1. The table describes the different types of ML, the mechanism on which they are based,
some examples of possible applications, as well as some operating models for each type [13,14,16,17].
ANNs = artificial neural networks, DBSCAN = density-based spatial clustering of applications with
noise, SARSA = state–action–reward–state–action.

Type of ML Mechanism Type of Data Provided Problems that
Can Solve Examples of Models

Supervised
learning (SL)

The algorithm is provided
with tuples of input and

output (x,y) and the
algorithms infer the
relation that maps

the dataset

Labeled data

Classification task
(discrete variable)

Regression task
(continuous variable)

Logistic regression
Decision Tree

Random Forest
ANNs

Unsupervised
learning (UL)

The algorithm exhibits
self-organization to capture

hidden patterns in data
Unlabeled data

Clustering
Association

Anomalies detection

Hierarchical clustering
K-mean

DBSCAN
ANNs

Semi-supervised
learning (SSL)

Falls between
unsupervised learning

(with no labeled training
data) and supervised

learning (with only labeled
training data; a mix of SL

and UL

Mostly unlabeled data,
with a small amount of

labeled data

Transductive task (infer
the correct labels for
the given unlabeled

data) or inductive tasks
(infer the correct

mapping from x to y).

Generative model
Self-training model
Co-training model

Transductive model
Graph-based model

Reinforcement
learning (RL)

The algorithm is
programmed with a goal
and a set of rules. It tends
to a nearly optimal policy

that maximizes the
“reward function” or
reinforcement signals

Not needing labeled
input/output pairs to
be presented, only a

numerical performance
score is given as

guidance.

Economics and game
theory under bounded

rationality, control
theory

Monte Carlo methods
Q-learning

SARSA methods

Considering images as a set of numerical data means making them available for formal
processing that would be otherwise impossible with a human-based qualitative approach.
UL relies solely on the intrinsic structure of data that has not been labeled, classified, or
categorized by an expert [16]. In this kind of ML, the naive dataset is given to the learning
algorithm which is then asked to extract knowledge from it, discovering hidden patterns
in data, as in clustering tasks, where the aim is to divide the dataset into groups based on
specific feature characteristics, or association task, where the aim is to find association rules
within the dataset. In contrast to supervised learning, UL exhibits self-organization.

SSL approach works mostly on unlabeled data, with a small amount of labeled data,
thus this type of ML falls between UL (with no labeled training data) and SL (with only
labeled training data). This type of ML addresses the problem of low data availability by
taking advantage of the abundant amount of accessible but unlabeled (undiagnosed) data
in order to train precise classifiers [17]. Finally, RL is a more complex and challenging
method and it is not currently used in medical imaging. It learns how to solve a task via
interaction and feedback, or in other words by trial and error. Basically, the algorithm
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is programmed with a goal and a set of rules, and it tends to maximize the rewards or
reinforcement it receives from the environment.

Each ML approach comprises different algorithmic strategies, or models, to map the
relations within data, which can be probabilistic methods or neural network (NN)-based
methods. Each model represents a different set of rules for manipulating inputs according
to a different approach to the problem and a different theoretical background. Popular
examples of models used in SL are decision trees, random forest, logistic regression, and
support vector machines. Some models can be applied with some modifications, in both SL
and UL tasks.

Among different models available, artificial neural networks (ANNs) can be used
with some modifications in both SL and UL, depending on the task. ANNs have proved
to be particularly suitable for image analysis, including computer-aided detection (CAD)
tools, image segmentation, image generation, etc. [18]. ANNs consist of a biologically
inspired programming paradigm in which information is analyzed by several layers of
interconnected “nodes” or “cells”.

Deep learning (DL) is a subdomain of ML that exploits particularly complex ANNs
architectures such as convolutional neural networks (CNN), the method of choice for
processing visual data. These networks are made of many hidden intermediate layers
representing an increasing level of abstraction. CNN could discover intricate patterns in
large data sets going beyond the features extracted by radiologists [19]. DL algorithms are
often at the base of the radiomic and radiogenomic approaches in cancer imaging. When
compared to most ML algorithms, the DL model performance increases dramatically when
analyzing large amounts of data, making them particularly suitable for exploratory data
analysis and image processing [20].

Contrastive learning is a programming paradigm used to train deep classification
models for image recognition activities that have seen a resurgence in recent years [21].
There are basically two forms of contrastive learning: supervised contrastive learning
and self-supervised contrastive learning. The common idea of these models is to contrast
a reference image called an “anchor” and one or more “positive” examples, to a set of
“negative” samples. The self-supervised contrastive learning contrasts a single positive
example for each anchor (i.e., an augmented version of the same image) against a set of
negatives. The supervised contrastive method, on the other hand, contrasts the set of all
samples from the same class as positives, against the negatives from the remainder of
the batch.

In this narrative review, we provide an overview of AI contributions to lung cancer
radiology, concerning both imaging tasks as automated lesions detection, characterization,
and segmentation, and clinical tasks as an imaging-based prediction of outcome and treat-
ment response, to provide radiologists and clinicians the foundation for their applications
in a clinical scenario.

2. Lung Cancer Screening and Detection

Due to the subtle or no symptoms caused by early-stage lung cancers, the risk of
diagnostic delay is high and leads to a poor prognosis, with a 5.2% 5-year survival rate
for advanced stages [22]. Early diagnosis, on the other hand, is proven to dramatically
reduce lung cancer-related mortality, with a 5-year survival rate of 57.4% [23]. Several
randomized controlled trials based on chest X-rays, with or without sputum cytology, have
been conducted to screen the population at high risk of developing lung cancer, showing
that screening led to early diagnosis but not a reduction in cancer-related mortality [24–29].
In contrast, low-dose CT (LDCT) screening has established itself as an effective screening
test, capable of reducing lung cancer mortality [30–32].

Based on this evidence, the United States Centers for Medicare & Medicaid Services
(CMS) established that patients aged 55–77 with a 30-pack-year smoking history are eligible
for CT screening programs, although new guidelines suggest that the target populations
should be expanded further [33,34]. In 2006, the European Union approved a position
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statement in support of a risk-based implementation of LDCT lung cancer screening [35];
however, population-scale screening programs are lacking and, in clinical practice, only
a small proportion of eligible patients are screened, due to the excessive workload and
difficulties in documenting actual tobacco exposure [36–38]. AI techniques can allow for
processing and integrating large volumes of data and extracting meaningful information to
direct the screening decision process [39].

Using data from electronic patient records (chest X-ray image, age, sex, current smoke),
Lu et al. created a CNN model for the prediction of the long-term incidence of lung
cancer. The model demonstrated superior discrimination for incident lung cancer than
CMS eligibility criteria when compared to screening groups of the same size (area under
the curve (AUC), 74.9% vs. 63.8%, p = 0.012), and 30.7% fewer tumors were missed [40].

In another study, Gould et al. developed an ML model to predict a diagnosis of
lung cancer based on clinical and laboratory data. Its accuracy was compared to the
modified version of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial
risk model (mPLCOm2012). The model showed higher accuracy than the mPLCOm2012
in detecting NSCLC 9–12 months before clinical diagnosis (p <0.001) and higher accuracy
than standard eligibility criteria for lung cancer screening and mPLCOm2012 when applied
to a screening-eligible population [41].

Although promising, the use of AI in risk stratification is still in its early stages, and
more studies are needed to determine its true clinical impact.

The development of CAD systems represents a valuable contribution of AI to lung
cancer screening, and several tools have been validated and are currently available on the
market (Figure 1) [42,43]. Automatic nodule detection is performed to identify structures
within the lung that may be malignant nodules. DL models emerged as particularly well-
suited for screening applications, but they must be trained and tested on high-quality
datasets in order to realize their full potential. Some open-source image repositories for
lung cancer are available and partially meet this need [44]. The most used databases are The
Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI),
which comprises 1018 CT scans and 36,378 lung nodules [45], the extensive Lung Nodule
Analysis 16 (LUNA 16) dataset, derived from LIDC-IDRI, which includes 888 selected CT
scans and 13,799 lung nodules [46], and the Ali Tianchi dataset, which includes information
on 1000 CTs and 1000 nodules.
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Many studies explored the performances of DL-based tools for pulmonary nodule
detection (Table 2). Chi et al. [47] developed a new deep CNN framework made up of three
cascaded networks for detecting pulmonary nodules in chest CT scans. Its performance
was tested on the LUNA16 and Ali Tianchi datasets [45] as the training and testing samples,
with precision, sensitivity, and specificity of 0.8792, 0.8878, and 0.9590, respectively.

Nasrullah et al. [48] used two deep three-dimensional customized mixed link network
(CMixNet) models for lung nodule detection and classification. The system was evaluated
on the LIDC-IDRI dataset with high sensitivity (94%) and specificity (91%).

Kopelowitz et al. [49] implemented the MaskRCNN model, a system for 2D object
detection and segmentation, to handle three-dimensional images for nodule detection and
segmentation on CT scans, with a sensitivity of 93%.

Ding et al. [50] developed a modified Faster R-CNN for the detection of malignant
pulmonary nodules. The performance on the LUNA 16 dataset demonstrated a sensitivity
of 94%.

Khosravan et al. [51] applied a 3D CNN called S4ND based on the Single-Shot Single-
Scale Lung Nodule Detection system to detect lung nodules without further processing,
with a sensitivity of 95.2 %. Cai et al. [52] used Mask R-CNN architecture as a backbone and
applied a feature pyramid network to extract feature maps. A region proposal network was
then used to generate bounding boxes for candidate nodules from the generated feature
maps. The results were validated through the LUNA16 dataset, achieving a sensitivity
of 88.70%.

When deciding whether to include models in standard clinical practice, the potential
economic impact of AI systems is a key consideration. A study by Ziegelmayr et al.
investigated a previously proposed 3D-CNN developed by Ardila et al. [53] for the analysis
of LDCT in a baseline lung cancer screening and demonstrated the possibility of costs
reduction and increased effectiveness through the use of AI [54].
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Table 2. The table lists the characteristics of different studies aiming at lung nodules screening and classification.

Authors Country Imaging
Modality

Patient
Number Study Model AI

System Validation Main Theme Strengths Weakness

Nasrullah et al.
[48] China LDCT LIDC-IDRI dataset Retrospective

Two deep 3D
customized mixed

link network
architectures for

lung nodule
detection and
classification

LIDC-IDRI and
LUNA 16 dataset

Lung nodule
detection and
classification

The system achieved
promising results in the form

of sensitivity (94%) and
specificity (91%)

Validation only in
pre-clinical

settings

Kopelowitz et al.
[49] U.K. CT LUNA 16 dataset Retrospective

Modified
MaskRCNN to

handle 3D images
LUNA 16 dataset

Lung nodule
detection and
segmentation

All-in-one system for
detection and segmentation

Validation only on
the LUNA 16

dataset

Ding et al. [50] China CT LUNA16 dataset retrospective

Faster R-CNN for
detection and

three-dimensional
DCNN for the

subsequent false
positive reduction

LUNA16 dataset Lung nodule
detection

Good detection performance
on nodule detection ranking

the 1st place of Nodule
Detection Track (NDET)

in 2017

Needs validation
on bigger datasets

Khosravan
et al. [51] U.S.A. CT LUNA16 dataset retrospective

3D densely
connected CNN LUNA16 dataset Lung nodule

detection

single-shot single-scale fast
lung nodule detection

algorithm without the need
for additional FP removal

Validation only on
the LUNA
16 dataset

Tran et al. [55] Vietnam,
France CT LUNA16 dataset retrospective

15-layer 2D deep
CNN architecture

(LdcNet)
LUNA16 dataset

automatic feature
extraction and
classification of

pulmonary
candidates as

nodule or
non-nodule

High-quality classifier with
an accuracy of 97.2%,

sensitivity of 96.0%, and
specificity of 97.3%.

Only validated in
one preclinical

dataset

Wu et al. [56]
China, U.S.A.,

Australia, U.K.,
Germany

CT LIDC-IDRI dataset Retrospective 50-layer deep
residual network LIDC-IDRI dataset Lung nodule

classification

The lung nodule image can be
used as the input data of the
network directly, avoiding

complicated feature
extraction and selection.

Long training time
is needed when
dealing with a

large number of
lung CT images
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Table 2. Cont.

Authors Country Imaging
Modality

Patient
Number Study Model AI

System Validation Main Theme Strengths Weakness

Mastouri et al.
[57] Tunisia CT LUNA16 dataset Retrospective

Three
bilinear-CNN
followed by a

linear SVM
classifier

LUNA16 dataset Lung nodule
classification

The system was validated
on the LUNA16 dataset and
compared to the outcomes

of conventional CNN-based
architectures showing

promising and satisfying
results

The bilinear
pooling requires

massive
calculation and
storage costs,
making this
algorithm

impractical

Al-Shabi et al. [58]
Malaysia,
Singapore,

U.S.A.
CT LIDC-IDRI dataset Retrospective Gated Dilated(GD)

network LIDC-IDRI dataset

Classification of
pulmonary

nodules as benign
or malignant

Better discrimination
whether benign or

malignant for mid-sized
nodules

Requires an object
detector model to

identify the
nodule locations
before classifying

them as be-
nign/malignant

Liu et al. [59] China, U.S.A. CT LIDC-IDRI dataset Retrospective

multi-model
ensemble learning
architecture based

on 3D
convolutional

neural network
(MMEL-3DCNN)

LIDC-IDRI dataset
Benign/malignant

lung nodule
classification

Image enhancement on the
input data to improve the
contrast of lung nodules

with low contrast to
surrounding tissues

Validation only in
pre-clinical setting
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3. Lung Nodule Classification

One of the main limitations of CAD systems is the high false positive rate related to
the presence of blood vessels and other soft tissue structures, which results in reduced
accuracy and efficacy of CAD screening tools in large populations [60].

Adopting effective classification techniques can reduce false positives and significantly
improve the accuracy of nodule identification.

Tran et al. [55] used a novel 15-layer 2D deep CNN model for automatic feature
extraction and classification of pulmonary candidates as nodules or non-nodules, with an
accuracy of 97.2%, sensitivity of 96.0%, and specificity of 97.3%.

Wu et al. [56] developed a deep residual network to classify lung nodules that was
built by combining residual learning and migration learning. The proposed approach was
verified on lung CT images from the LIDC-IDRI database, reaching an average accuracy of
98.23% and a false positive rate of 1.65%.

Mastouri et al. [57] proposed a bilinear CNN (BCNN) consisting of two-stream CNNs
(VGG16 and VGG19) as feature extractors combined with a support vector machine classi-
fier for false positive reduction. They found that the BCNN (VGG16 + VGG19) combination
with and without support vector machine surpassed the single VGG16 and 19 models,
achieving an accuracy rate of 91.99% and an AUC of 95.9%.

Once the nodularity has been identified as a proper nodule, the next step is represented
by the differentiation between benign and malignant pulmonary nodules, improving
overall diagnostic efficiency. For this purpose, CNNs are applied to extract and analyze
different features of lung nodules, such as shape, growth rate, and morphology [44].

Zhang et al. [61] explored the use of the DenseNet architecture with 3D filters and
pooling kernels. The performance of the proposed nodule classification was evaluated on
the LUNA16 dataset achieving 92.4% classification accuracy.

Al-Shabi et al. [58] proposed a novel CNN architecture called Gated-Dilated to classify
nodules as malignant or benign. The system was evaluated with the LIDC-LDRI showing
accuracy of 92.57% and an AUC of 0.95.

Liu et al. [59] developed a multi-model ensemble learning architecture based on a 3D
CNN, which was tested on LIDC-IDRI with a sensitivity of 90% and false positivity of 30%.
The features of the reported studies are outlined in Table 2.

4. Segmentation

Lung CT image segmentation (Figure 2) is a critical process in many applications,
including lung cancer diagnosis, accurate disease burden definition, correct and repro-
ducible extraction of radiomic features, and objective evaluation of treatment response. The
automated identification and segmentation of lung nodules have a significant impact on
lung cancer treatment and patient survival [62]. The most important segmentation task is
the figure/background resolution [63,64]. Despite not being provided to radiologists in real
scenarios, an accurate lung mask is essential for the development of clinical support tools
to avoid the inclusion of noise and non-relevant background information [65]. Segmenting
the lung fields is challenging due to the inhomogeneity of the lung volumes [66]. The
most popular lung segmentation approach uses so-called hand-crafted characteristics to
successfully differentiate the regions of interest from each other. Segmentation techniques
can be classified into the following types: threshold, edge-detection, region growing, de-
formable boundary, and deep learning models. The threshold-based method is based on
the principle that normal lung tissue has a lower density than other tissues; thus, the lung
can be distinguished by applying a mask with a specific density threshold [67]. Although
this is the most commonly used method, it has several limitations, including the inability
to remove the trachea and main bronchi, and the heterogeneity of acquisition protocols,
which makes it impossible to set a universal gray-level threshold for segmentation [68,69].
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Figure 2. Example of automated segmentation of a pulmonary lesion located in the upper lower lobe,
with automated calculation of the lesion volume, visible also as a 3D reconstruction.

The edge detection technique uses image processing to define boundaries between dif-
ferent regions based on distinct gray surface properties. The main drawbacks of this method
are its sensitivity to noise and its inability to work on images with smooth transitions and
low contrast [63].

The region-based segmentation groups pixels/voxels with homogeneous properties
according to a predefined criterion. The most common segmentation method belonging
to this technique is the region-growing method which begins with the positioning of a
“seed” by the reader that gradually grows and automatically adds neighboring pixels that
respect a similarity criterion such as color, intensity, or texture [70]. The advantages are low
computational complexity and high speed, whereas the main disadvantages are sensitivity
to noise or variation in intensity. Moreover, this method does not allow to segment nodules
attached to the pleura [71].

The deformable boundary method takes into account the entirety of object margins
and can include prior information about the object’s shape. An active contour model or
snake is the most commonly used tool. These models frequently require human interaction
during the initial contour construction [72].

The last segmentation method assigns each pixel/voxel to a specific class for different
areas of the image. In this method a natural dataset can be processed in its raw form by seg-
mentation techniques based on DL algorithms, overcoming the limitations of hand-crafted
features. A relevant example of fully automatic segmentation is the system proposed by
Long et al. based on a fully convolutional network in which transposed convolutional
layers replace the last fully connected layers of CNNs. Ronneberg et al. developed the
U-shape Net (U-Net) for biomedical segmentation tasks based on this concept [73]. U-Net
is made up of two processes: a contracting path for capturing context and a symmetric
expanding path for accurate localization. The U-Net model has several important advan-
tages; in particular, it works with very little data, it can use global location and context
information at the same time, and it ensures that the input images have full texture. The
main disadvantage of the U-Net model is the two-stage process, which involves applying
separate processing steps to each group feature map before concatenating the feature maps.
Various extensions of U-Net have been developed in recent years [74], with the ResNet34
pre-training model being used in its contraction path. The most significant benefit of this
modification is increased training speed and network extension power. In another study,
U-Net was extended to a network called BCDU-Net [75], which outperformed modern
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alternatives for medical image segmentation. Bhattacharyya et al. recently proposed a new
method based on U-Net for lung nodule segmentation, a weighted bidirectional feature
network employed to create a modified U-Net architecture, called DB-NET: in this way, they
obtained better performance in the segmentation of cavitations, ground glass opacities, tiny,
and juxta-pleural nodules with a Dice coefficient of 88.89 ± 11.71, superior to compared
methods [76].

5. Prediction

In recent years, oncology has seen an ever-increasing variety of therapeutic options and
an attempt to gradually transition toward personalized medicine. In particular, lung cancer,
owing to its high prevalence and extensive research, can boast a number of active and
up-and-coming targeted treatment options. As a result, it becomes increasingly important
to match the right patient to the right treatment through detailed characterization of both
the tumor and the patient.

The identification of prognostic biomarkers that provide information about the like-
lihood of a disease-related endpoint can allow establishing of the patient’s risk profile
based on tumor characteristics and identifying patients with a poor prognosis who may be
candidates for therapy escalation and/or enrollment in experimental trials [77,78].

AI-enhanced radiology assessment of qualitative and quantitative features provides a
continuously increasing contribution to this in-depth assessment.

Characterization of gene expression patterns of lung tumors is one of the mainstays
of profiling for targeted therapy choice. The most frequently mutated oncogenes and
primary molecular targets in NSCLC include epidermal growth factor receptor (EGFR),
Kirsten rat sarcoma viral oncogene (KRAS), and anaplastic lymphoma kinase (ALK) [79].
Tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, are effective in treating
EGFR-mutated tumors, but not KRAS-mutated tumors, despite being part of the same
signaling pathway. ALK rearrangement tumors, however, are sensitive only to TKIs that
specifically target ALK, such as crizotinib.

Targeted TKIs improve survival and reduce drug-induced toxicities in patients with
NSCLC compared to standard chemotherapeutic agents [80]. Some of these genetic al-
terations can be inferred through standard imaging characteristics. For example, the
proportion of ground–glass opacity is predictive of EGFR mutations in lung adenocarcino-
mas [81,82].

With the use of AI algorithms, EGFR status could be predicted by combining clinical
and CT features such as smoke history, tumor size, bubble-like lucency, enhancement
pattern, presence of pleural retraction, and thickened adjacent bronchovascular bundles
(AUC = 0.778) [83].

Radiomics and radiogenomics allow for further bridging of the gap between imaging
data and the biological characteristics they represent [84,85]. Radiomics allows non-invasive
assessment of tumor behavior and phenotype that goes beyond what can be directly
identified by human operators. Radiogenomics focuses on the extraction of quantitative
imaging features that correlate to tumor expression patterns and identify target genes
and pathways. As opposed to biopsy, radiogenomic assessment is not limited by tumors’
location or heterogeneity of bioptic material and can assess multiple neoplastic lesions
at different time points. As such, radiogenomics represents an attractive non-invasive,
repeatable, and cost-effective alternative to traditional methods of genetic and molecular
profiling of tumors [80,86]. A radiomics feature extracted from the pretreatment CT scan
of NSCLC patients showed a strong association with the presence of sensitizing EGFR
mutations (AUC = 0.67, p = 0.03); in contrast, tumor volume and maximum diameter were
both not significantly predictive of EGFR mutations (p > 0.27) [80]. Another radiomics
model reliably predicted EGFR mutations in NSCLC based on the presence of emphysema,
airway abnormalities, the percentage of the ground glass component, and the type of
tumor margin (AUC = 0.89) [87]. A combined radiomic and clinical model reached an
AUC of 0.76 to predict the most common subtype of EGFR mutation (L858R) [88]. A
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radiogenomic CT-based biomarker consisting of tumor location, pleural effusion, and
pleural tail sign showed a strong correlation with ALK rearrangements with a sensitivity
of 83.3% and specificity of 77.9% [89]. A DL model based on CT data combined with
clinicopathological information assessed the ALK fusion status in NSCLC patients with
an AUC of 0.8481 and predicted response to ALK-specific TKI therapy [90]. Another ML
model with integrated radiomics features predicted ALK mutation status with an AUC of
0.83. The addition of conventional CT and clinical information to the model did not result
in significant performance improvement [91]. A complex prediction model using clinical
data and radiomics features from CT and PET studies identified ALK/ROS1/RET fusion-
positive status associated with an important response to ALK inhibitors in pulmonary
adenocarcinomas [92].

Radiomics signatures can also allow the optimization of other therapies. In SCLC
patients, a complex radiomics signature was significantly associated with the efficacy of
first-line chemotherapy consisting of etoposide and cisplatin (p < 0.05). The performance
of the radiomics signature to predict the chemotherapy efficacy (AUC = 0.797) was better
compared with the model using clinicopathological parameters (AUC = 0.670) [93]. Simi-
larly, radiomics signatures can predict the response to neoadjuvant chemotherapy based
on pre-treatment CT in NSCLC patients [94,95]. In lung cancer patients who underwent
radiotherapy, radiomic features obtained from 3D maps allowed the prediction of acute
and late pulmonary toxicities [96].

Immunotherapy is a novel approach to cancer treatment that exploits the tumoral en-
vironment through targeted activation of immunological synapses. Although immunother-
apy has shown the potential to improve the prognosis of lung cancer patients with re-
markable survival outcomes, its use is still limited by high costs and toxicities. Moreover,
its clinical benefit has so far been limited to only a subset of patients, most notably to
those with PDL-1-positive expression. It is thus important to guarantee comprehensive
pretreatment assessment and correctly identify early responders in order to optimize the
cost-effectiveness and clinical impact of immunotherapy [97]. The expression of PDL-1
on immunohistochemistry is a biomarker routinely used to select immunotherapy candi-
dates [98]. However, bioptic samples can be limited by the spatial and temporal hetero-
geneity of the tumors, as well as the feasibility and invasiveness of the biopsy. AI markers
based on integrated imaging data provide a complementary solution for baseline evalu-
ation of immunotherapy candidates and assessment of response on follow-up imaging.
The expression of PDL-1 level can be assessed using various radiomics features [99,100].
Changes in a CT radiomic indicator associated with the density of tumor-infiltrating lym-
phocytes throughout the immunotherapy could identify early responders with an AUC
of 0.88 ± 0.08 [101]. Another model could predict a response to anti-PD-1 immunother-
apy based on pre-treatment CT in NSCLC with an AUC up to 0.83 [102]. Prediction of
immunotherapy-related toxicity represents another area of the potential application of AI
algorithms in lung cancer. For example, Mu et al. developed a radiomics model that could
predict immune-related adverse events among patients with advanced NSCLC treated with
immunotherapy. The model included a radiomics score based on FDG-PET/CT images, a
type of immune checkpoint inhibitor, and a dosing schedule [103].

AI prediction models can successfully estimate the prognosis of lung cancer patients
through the identification of complex imaging biomarkers and their integration with clin-
ical data. Pre-treatment radiomic signatures were significantly associated with survival
in patients with NSCLC. In particular, features describing tumoral heterogeneity were
associated with worse survival in all datasets [104]. In another study, quantitative features
associated with lower convexity (i.e., presence of speculated margins) and higher entropy
gradients (i.e., intratumor density variation) in lung adenocarcinomas were strongly asso-
ciated with worse prognosis in patients with early-stage lung cancer [105]. A prediction
model combining pretreatment radiomics tumor parameters with immune parameters
such as PDL-1 expression and density of tumor-infiltrating lymphocytes and CD3 expres-
sion identified a favorable outcome group characterized by a favorable immune-activated
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state [106]. A CT-based DL system predicted progression-free survival and identified fea-
tures associated with the TKI-resistant EGFR genotype [107]. A model with DL radiomics
features and integrated circulating tumor cell count could predict the recurrence of early-
stage NSCLC patients treated with stereotactic body radiation therapy [108]. Moreover, in
NSCLC patients with brain metastases, radiomics features allow distinguishing subgroups
with different survival durations [109]. Although less information is available on SCLC, one
study identified a radiomics model that combined 11 features from lung and mediastinal
CT windows and allowed for predicting the progression-free survival of small cell lung
cancer patients with an AUC of 0.8487. Another algorithm based on CT radiomics features
did not show a correlation with overall and progression-free survival of SCLC patients, nor
did it correlate with the expression of immunohistochemical markers [110]. Lian et al., in a
population study of 1705 patients with lung cancer in stages I and II, used clinical (e.g., age,
histologic type, tumor location) and imaging data to develop an effective model, able to
predict overall and recurrence-free survival in early lung cancer stages [111].

The main characteristics of the above studies are listed in Table 3.
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Table 3. Characteristics of different studies on the use of AI in outcome prediction and response to treatment, including strengths and limitations.

Authors Country Imaging
Modality

Patient
Number Study Nature AI System Validation Main Theme Strengths Limitations

Aerts et al. [104] USA CT 47 Prospective
Prognostic
radiomics
signature

Yes

Radiomic data could define a
response phenotype for NSCLC

patients treated with
Gefitinib therapy

Strong
associations

- Limited sample size
- Only 11 independent

radiomic features

Gevaert et al. [87] USA CT 186
Predictive

radiogenomics
decision model

Association between ground glass
opacity and the presence of

EGFR mutations
Need for validations

Zhao et al. [88] China CT 637 Predictive
radiomics model Yes

Radiomics-based nomogram,
incorporating clinical characteristics,
CT features and radiomic features,
can non-invasively and efficiently
predict the EGFR mutation status

Sample size
- Different CT scanning

parameters
- Single center study

Yamamoto et al.
[89] USA CT 172 Retrospective

Predictive
radiogenomics

model
Yes

ALK+ tumors have a CT
radiophenotype that distinguishes

them from tumors with other NSCLC
molecular phenotypes

Multi-
institutional,
international
study cohort

- Limited sample
- No treatment response

validation

Song et al. [90] China CT 937 Retrospective
Three blocks deep

learning neural
network

DLM trained by both CT images and
clinicopathological information could

effectively predict the ALK fusion
status and treatment response

- Small size of the
ALK-target therapy cohort

(n = 91)

Chang et al. [92] China PET/CT 526 Prospective Three predictive
radiomics models

PET/CT-clinical model has a
significant advantage to predict the

ALK mutation status

- Images acquired and
processed in the same way

- Single medical center

Wei et al. [93] China CT 134 Prospective

Predictive
radiomics

signature model
via binary logistic
regression model

The radiomics model (21 features)
was superior to clinical model in

predicting the efficacy of
chemotherapy in patients with SCLC

Bourbonne et al.
[96] France 167 Retrospective

Three predictive
radiomics models

via neural
network training

In patients with lung cancer treated
with RT, radiomic features extracted
from 3D dose maps seem to surpass

usual models based on clinical
factors and DVHs in predicting APT

and LPT
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Table 3. Cont.

Authors Country Imaging
Modality

Patient
Number Study Nature AI System Validation Main Theme Strengths Limitations

Jiang et al. [99] China PET/CT 399

Predictive
radiomics models

via logistic
regression and
random forest

classifiers

Yes,
five-fold

cross-
validation

Imaging-derived signatures could
classify expression rate of specific

PD-L1 type

- Stage IV NSCLC patients
composed a very small

proportion
- PET/CT data were

obtained in clinical routine
through two different
manufacture-derived

machines with different
scanning parameters

Yoon et al. [100] South Korea CT 153 Retrospective

Two predictive
radiomics model
via multivariate

logistic regression

Quantitative CT radiomic features
can help predict PD-L1 expression

- Patients were identified
only from those having

PD-L1 testing results
- Proposed prediction

model did not undergo
external validation

- PD-L1 test lacks universal
reference standards

Khorrami et al.
[112] USA CT 139 Prospective

Machine
learning-based

radiomics texture
features

(DelRADx)

Yes

DelRADx features were (1) predictive
of response to ICI therapy, (2)

prognostic of improved overall
survival, and (3) associated with TIL
density on corresponding diagnostic

biopsy samples

- Validation in two
independent test

sets
- Radiomic

features extracted
also from the

annular
perinodular

regions

- The sizes of cohorts, both
for discovery and

validation, were relatively
small

- Radiomic feature
expressions might be

sensitive to lesion
annotation accuracy

Trebeschi et al.
[102] Netherlands CT 203

Machine
learning-based

radiomics model
Yes

Higher levels of
surface-area-to-volume ratio in
nonresponding lesions in both

cancers suggest that more compact
and spherical profiles are associated

with better response

Individual
lesion-based

approach,
avoiding the issue
of mixed response

Need for validation in
larger cohorts
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Table 3. Cont.

Authors Country Imaging
Modality

Patient
Number Study Nature AI System Validation Main Theme Strengths Limitations

Grove et al. [105] USA CT 109 Retrospective

Predictive
CT-based features:

convexity
morphological

feature and

Quantitative imaging biomarkers can
be used as an additional diagnostic

tool in management of lung
adenocarcinomas.

Development of
imaging features

that were
descriptive and

reproducible
using

retrospectively
acquired clinical

scans

- Cohort sample sizes
- The two cohorts are likely
not comparable (different

overall survival trend)

Tang et al. [106] USA CT 190 Retrospective
Immunopathology-
informed model

(IPIM)
Yes

First radiomics model to leverage
immunopathology features (CD3+
cell density and percent tumor cell

PDL1 expression) to obtain
immune-informed radiomics model
yielded subtypes associated with OS

- Conducted at a single
institution

Wang et al. [107] USA/China CT 18232 Prospective

Fully automated
artificial

intelligence
system (FAIS)

Yes
FAIS learned to identify patients with
an EGFR mutation who are at high

risk of having TKI resistance

- Other genes are relevant
to targeted therapy (e.g.,

ALK, KRAS)
- Combined method

(whole lung +
tumor-based) wasn’t

studied

Jiao et al. [108] USA CT 421

Convolutional AE
DL model with
three layers of

CNNs

Integrating DL radiomics models and
CTC counts improves patient

stratification in predicting recurrence
outcomes for patients treated with

SBRT for ES-NSCLC
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6. Challenges

The advent of AI in biomedical imaging may have a potentially revolutionary impact
on a variety of activities, ranging from early diagnosis to prognosis and lung cancer
treatment planning. Once implemented in clinical practice, this will lead to a significant
improvement in patient management. However, the widespread adoption of AI-based
tools in the daily work routine is currently hampered by several obstacles.

The development of AI-based tools needs a large amount of high-quality data. Al-
though lung cancer datasets are widely available, imaging, clinical, and laboratory data
should be collected in a highly standardized and well-organized manner to allow the
development of robust algorithms [113]. The collection of data from multiple institutions
is therefore desirable, hence the importance of collaboration and data sharing in research.
Open-access image repositories such as “The Cancer Imaging Archive”, which includes
a large dataset on cancer, are still expanding and represent a useful aid for researchers in
order to validate local studies [114].

Collaboration is a key theme in AI research for medical purposes, as the development
of effective models with a real impact on daily clinical practice requires the effort of multi-
disciplinary teams, including radiologists, physicians, engineers, and software developers,
who share their knowledge in a mutually beneficial multidirectional manner.

Another important limitation is related to the study design. In particular, a number
of studies investigating outcome prediction in lung cancer only analyzed small cohorts of
patients [115–120]. The results of AI models trained with small case series are difficult to
generalize and therefore not applicable in real-life clinical practice. Further validation in
external cohorts is required to determine the reliability and clinical usefulness of the results.
Similar limitations are applied to models developed through retrospective data, which
must be tested in a prospective scenario before they can be used as clinical diagnostic aids.

Furthermore, when designing an AI model, researchers should be aware that multiple
data sources would have to be incorporated to fully characterize lung cancer. To create a
more comprehensive model, the guidelines recommend performing multivariable analysis
with non-imaging features, including family history and clinical and genetic data to develop
holistic models [121].

Reproducibility is one of the main challenges that AI must overcome to achieve clinical
implementation, as there can be numerous differences in every aspect of the radiomics
workflow between different studies and research institutions, from image acquisition to
model validation [122]. For example, the heterogeneity of image acquisition protocols
among different institutions can affect the signal-to-noise ratio and the characteristics of ex-
tracted images. This implies that variations in imaging features and values between patients
may be due to acquisition parameters rather than variations in tissue biology [122]. The
exclusion of features strongly influenced by acquisition and reconstruction parameters can
represent a strategy to overcome this limitation [123]. Another solution could be to improve
the standardization of image acquisition, for example by using open imaging protocols.

According to Lambin et al., [121] the widespread availability of medical imaging
data has created an environment ideal for the quick development of ML and data-based
science. Radiomics-based models may represent a powerful tool for precision medicine,
but standardized data collection, evaluation criteria, and reporting guidelines, as well as
valuation of both the scientific integrity and the clinical relevance of research study, are
required for further development of radiomics–based systems. The authors, therefore,
proposed a quality score based on 16 components of the radiomics workflow to define the
robustness of radiomics studies.

Stability measures can be used to build more reproducible radiomic models: Khorrami
et al. combined stability and discriminability criteria in developing radiomic classifiers to
predict disease recurrence in early-stage NSCLC cancer on CT images from 610 patients of
four independent cohorts [112].
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The segmentation procedure can represent a confounder factor in AI protocols: ra-
diomics usually needs precise delineation of tumor boundaries and outlines to allow the
computation of lesion characteristics such as size, shape, heterogeneity, and the accurate
extraction of feature data from the segmented volumes [124]. Manual segmentation has
been proposed as the ground truth, but it is affected by high interobserver variability [125]
and is a time-consuming procedure, unfeasible for large image data sets. The development
of accurate semiautomatic segmentation procedures with minimal user interaction, repro-
ducibility, and time efficiency can represent a solution to this issue. Additionally, automatic
segmentation has been tested with promising results, but validation on larger series must
be conducted to obtain clinical integration [126]. Another crucial point is represented by
the algorithms’ transparency and interpretability, moving beyond the black box to ensure
the explicability and trustworthiness of the results. Many of these so-called “black-box”
approaches may be viable in the diagnostic setting (e.g., AI tools for triaging time-sensitive
scans); the issue of interpretability, however, becomes more important when it comes to
AI-enabled imaging biomarkers for treatment optimization because a biomarker-driven
treatment decision needs an explanation rooted in pathophysiology [77]. The comparison
and validation with the clinical gold standard are also needed to prove the clinical utility
of the application in everyday practice, and the benefit deriving from the use of a certain
algorithm compared to other approaches should be assessed.

These obstacles must be overcome to move toward the clinical implementation of
artificial intelligence tools for lung cancer. Guidelines should be developed to guide the de-
velopment and validation of future AI-based studies, and prospective clinical trials should
be carried out to establish the utility of AI tools in clinical practice, their impact on patient
care, and overall outcomes. Collaboration, data exchange, and extensive model validation
are crucial for AI-wide clinical translation. Legal and ethical concerns about the use of
AI in cancer imaging are also potential roadblocks to investigation and implementation.
Most research necessitates large medical datasets, involving imaging and clinical data.
This raises legal and ethical concerns about who “owns” the data and has the right to use
it, especially if commercial value is involved [127]. Explicit patient consent for data use
would be ideal, but due to the number of patients included in huge datasets, particularly in
retrospective studies, this may not be feasible.

Even if researchers are granted permission to use anonymized or de-identified data,
difficulties could arise if identifying information is included in the image or necessary for
the investigation [128]. Clearer legal and ethical frameworks, as well as input from all
stakeholders, are needed for the widespread use of AI in oncological imaging [129].

7. Future Perspectives

Every day more and more imaging and clinical data are available; however, these
data are not usually curated in terms of labeling, segmentations, quality assurance, or
pertinence with a predetermined pathology. Data curation is one of the major challenges in
developing an AI algorithm, as it requires experienced physicians and is time-consuming.
This limitation is particularly consistent in methods requiring big data, such as CNN. A
solution could be represented by unsupervised and self-supervised approaches that do not
need labeling or supervision [130].

Developments in unsupervised learning, such as variational autoencoders and gener-
ative adversarial network learning without any explicit labeling are showing promising
results [131]. For example, an unsupervised DL approach for chest CT automatic segmenta-
tion showed an accuracy of up to 98% [132], whereas a self-supervised approach developed
for the segmentation and classification of lung disorders on chest X-rays and tested on the
NIH chest X-ray dataset gave interesting results [133]. We believe that AI clinical research
will move in these directions.

The development of platforms allowing interoperability among the numerous AI
applications to create a network of powerful tools and integration of AI technology into
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picture archiving and communication systems is also needed to bring AI into clinical
everyday practice.

Artificial intelligence will make it possible to progressively move towards automating
repetitive and time-consuming tasks, such as screening for lung nodules and identifying
image-based biomarkers. These developments will optimistically allow disease characteri-
zation in a non-invasive and repeatable way, improving therapeutic management in order
to achieve the goal of personalized medicine (Figure 3) [134].
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8. Conclusions

AI has the potential to be a real game-changer in the early detection and clinical
management of lung cancer.

In terms of early lung cancer diagnosis, treatment, and follow-up, radiological imaging
is at the forefront. AI models comprising imaging data may allow the identification of new
predictive and prognostic biomarkers and enhance decision-making and outcomes for lung
cancer patients.

Multimodality integration with the collection and combination of multiple sources of
information with the creation of holistic models may allow the accurate characterization of
lung cancer.

Most published papers have shown promising results for AI in characterizing cancer
phenotypes and biology in a noninvasive and reproducible way.

To establish these systems in clinical practice, though, there are many obstacles to be
overcome.

Collaboration among institutions is more important than ever because it is well demon-
strated that AI tool development requires extensive data sets, similar to how radiologists,
clinicians, and AI experts must collaborate closely to ensure the transition into the clinical
scenario.

Guidelines should be developed to guide the structuring and ensure the reliability of
AI-based research.

AI capacities are unlimited and its progressive incorporation in the clinic may lead to
personalized medicine.

In the age of AI, radiologists and clinicians must comprehend and become familiar
with the current state, possible clinical uses, and challenges of AI in chest imaging.
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