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Necroptosis mediates the chronic inflammatory phenotype in neurodegeneration.

Receptor-interacting protein kinase (RIPK) plays a pivotal role in the induction of

necroptosis in various cell types, including microglia, and it is implicated in diverse

neurodegenerative diseases in the central nervous system and the retina. Targeting RIPK

has been proven beneficial for alleviating both neuroinflammation and degeneration in

basic/preclinical studies. In this review, we discuss the role of necroptosis in retinal

degeneration, including (1) the molecular pathways involving RIPK, (2) RIPK-dependent

microglial activation and necroptosis, and (3) the interactions between necroptosis and

retinal neuroinflammation/degeneration. This review will contribute to a renewed focus on

neuroinflammation induced by necroptosis and to the development of anti-RIPK drugs

against retinal degeneration.
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INTRODUCTION

Neurodegenerative diseases are a complex group of disorders involving the processes of cell
death and inflammation cell death inflammation, and include Alzheimer’s and Parkinson’s disease,
amyotrophic lateral sclerosis (ALS) and retinal degeneration (Tansey and Goldberg, 2010; Heneka
et al., 2015; Ito et al., 2016; Kauppinen et al., 2016). Inflammation is a multicellular process by
which immune cells defend against pathogens and repair injury through a series of molecular and
cellular changes, including the release of pro-inflammatory cytokines, apoptosis, and necroptosis
(Wallach et al., 2014). Inflammation is strongly associated with cell death, especially that in a
necrotic form (Wallach et al., 2014). Damage associated molecular patterns (DAMPs) generated by
necrotic cells, such as interleukin-1α (IL-1α), tumor necrosis factor α (TNF-α), and high-mobility
group box 1 protein (HMGB1) (Rock and Kono, 2008; Yanai et al., 2009; Wallach et al., 2014),
strongly exacerbate inflammation.

Microglia are the first line of defense in the central nervous system (CNS), and exert both
cytotoxic and cytoprotective effects at the crossroads between homeostasis and disease (Cherry
et al., 2014; Lloyd et al., 2019; Rodríguez-Gómez et al., 2020). Persistent activation of microglia can
trigger necroptosis, a type of necrosis induced by the activation of receptor-interacting protein
kinase 1 (RIPK1)/RIPK3 (Weinlich et al., 2017; Galluzzi et al., 2018), and necroptosis in turn
induces secretion of proinflammatory DAMPs and mediates chronic inflammation (Rodríguez-
Gómez et al., 2020). It has been shown that microglial necroptosis executed by RIPK1/3 contributes
to neuronal damage as well as brain regeneration (Welser et al., 2010; Ofengeim et al., 2017; He
et al., 2021).
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This review focuses on RIPK-dependent necroptosis which
orchestrates neuroinflammation and degeneration in the CNS
and retina. We also discuss the potency of anti-necroptosis
therapy, which may inhibit excessive neuroinflammation and
promote neuronal survival and regeneration.

NECROPTOSIS AND RIPK SIGNALING

Necroptosis—A Programmed Necrotic
Cell Death
Necrosis is a type of cell death that has morphologic features
of cellular swelling, cell membrane rupture and the release

of intracellular molecules including DAMPs (Kaczmarek et al.,
2013; Galluzzi et al., 2018; Yuan et al., 2019). Although necrosis

was traditionally deemed as a passive process of cell death, it
is now known that some necrosis is molecularly regulated, and

differential mechanisms that underlie programmed necrosis have

been identified (e.g., necroptosis, pyroptosis, and ferroptosis).

Necroptosis was originally described in 2005 as necrotic cell
death mediated by the activation of RIPK1 (Degterev et al., 2005).

The stimuli that induce necroptosis include TNF-α (Degterev

et al., 2008), Fas ligand (FasL) (Holler et al., 2000), TNF-related
apoptosis-inducing ligand (TRAIL) (Holler et al., 2000), the
interferons (IFNs) (Thapa et al., 2013; Dillon et al., 2014), and

ligands for pathogen recognition receptors (PRRs), such as toll-
like receptor 3 (TLR3) (Bermejo and Rey-Bellet, 1975), TLR4 and
DNA-dependent activator of interferon regulatory factors (DAI)
(Upton et al., 2012; Wang et al., 2014; Huang et al., 2015).

Structure and Function of RIPK
RIPK1 is a multi-functional protein that regulates cell survival,

inflammation, and cell death. It is composed of three domains, an

N-terminal kinase domain for phosphorylation, an intermediate

domain containing an RIP homotypic interaction motif (RHIM)

for RIPK1/RIPK3 interaction and pro-inflammatory action, and
a C-terminal death domain (DD) for recruiting TNFα receptor

1 (TNFR1) and the TNFR1-associated death domain (TRADD)
protein (Figure 1) (Yuan et al., 2019). RIPK3, a key molecule for

RIPK1/RIPK3 phosphorylation, also has an N-terminal kinase
domain and RHIM domain, but lacks the DD in its C-terminus
(Figure 1) (Wu et al., 2014). Mixed lineage kinase domain-like
protein (MLKL) consists of an N-terminal 4-helix bundle (4HB)

FIGURE 1 | Structure of RIPK1, RIPK3 and MLKL. KD, N-terminal kinase domain; ID, intermediate domain; RHIM, RIP homotypic interaction motif; DD, death

domain; 4HB, 4-helix bundle; PsKD, pseudokinase domain.

for interacting with the membrane and the first brace helix, an
intermediate brace region with two helices involved in MLKL
oligomerization, and a C-terminal pseudokinase domain (PsKD)
for interaction with phosphorylated RIPK3 kinase domains
(Figure 1) (Murphy et al., 2013; Quarato et al., 2016; Petrie
et al., 2018, 2019). MLKL forms oligomers and the 4HB
insert into the plasma membrane through phosphatidylinositol
phosphate (PIP)-binding sites, resulting in membrane disruption
and necroptosis induction (Dondelinger et al., 2014; Su et al.,
2014; Quarato et al., 2016; Petrie et al., 2019). Therefore, the
phosphorylation of MLKL and the membrane translocation
of MLKL oligomers are the optimal markers for necroptosis
(Fricker et al., 2018).

Among several stimuli for necroptosis, TNFR1 signaling
is the most thoroughly investigated and proceeds as follows
(Figure 2) (Seo et al., 2019). First, TNF binding to its receptor
initiates the formation of complex I at the cell membrane.
TNFR1 recruits RIPK1, TRADD, TNF receptor associated factor
2 (TRAF2) and cellular inhibitor of apoptosis 1/2 (cIAP1/2).
cIAP1/2 initiates the ubiquitination process on the complex
I (Bertrand et al., 2008; Varfolomeev et al., 2008; Annibaldi
et al., 2018; Seo et al., 2019), and K63 poly-ubiquitination
(Ub) of RIPK1 links many molecules, thereby forming a larger
complex I. The TGF-β activated kinase 1 (TAK1) complex
phosphorylates inhibitor of NF-κB kinase β (IKKβ) to activate
the nuclear factor-κB (NF-κB) pathway (Jha et al., 2019; Seo
et al., 2019). The NF-κB-dependent production of pro-survival
genes, such as cIAP1, A20 and caspase-8-like inhibitory protein

(c-FLIPL), protects cells from RIPK1-independent death. A20 is

a deubiquitinating enzyme that prevents NF-κB activation and

restricts TNF-induced apoptosis (Onizawa et al., 2015). cIAP1
and c-FLIPL facilitate NF-κB activation and inhibit necroptosis.

NF-κB activation also modulates immune response via the
production of proinflammatory molecules (Jha et al., 2019;

Jensen et al., 2020).
The TNFR1-mediated signaling pathway can induce

apoptosis. Once the NF-κB pathway or complex I is inhibited
by cIAP1/2 or by the linear ubiquitination assembly complex
(LUBAC), TAK1, or TANK binding kinase 1 (TBK1), the
membrane-bound complex I is dissociated and cytosolic
complex IIa and IIb are formed. TRADD, FADD and caspase-8
form complex IIa and mediate RIPK1-independent apoptosis
(Dondelinger et al., 2016; Annibaldi and Meier, 2018). Complex
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FIGURE 2 | RIPK signaling. TNFR1 recruits RIPK1, TRADD, TRAF2, and cIAP1/2. cIAP1/2 initiates the ubiquitination process on complex I. The K63 Ub chain of

RIPK1 links molecules in the large TNF complex I. The TAK1 complex phosphorylates IKKβ to induce NF-κB activation. When NF-κB, the complex of cIAP1/2, or

LUBAC, TAK1, or TBK1 is inhibited, membrane-bound complex I is dissociated and complex II is formed. If NF-κB is inhibited, TRADD, FADD and caspase-8 form

complex IIa, inducing RIPK1-independent apoptosis. When inhibition of cIAP1/2, TAK1, TBK1, or LUBAC occurs, RIPK1, FADD, caspase-8, and c-FLIPL form

complex IIb, inducing RIPK1-dependent apoptosis. Procaspase-8/cFLIPL heterodimers prevent necroptosis. Upon caspase-8 inhibition, complex IIb initiates RIPK1-

and RIPK3-dependent necroptosis. Activated RIPK1 heterodimerizes with RIPK3 and RIPK3 phosphorylates MLKL, thereby driving the polymerization of RIPK1,

RIPK3 and MLKL. This RIPK1-RIPK3-MLKL complex is called a “necrosome.” In macrophages/microglia, LPS or poly(I:C) is recognized by TLR4 and mediates the

interaction between TRIF and RIPK3. In the presence of caspase inhibitor, the TRIF/RIPK3 complex induces ROS accumulation, and subsequently triggers

necroptosis independent of NF-κB activation. TLR4 also recruits MyD88 and cIAPs to activate the NF-κB pathway, thereby inducing pro-inflammatory cytokines.

TNF-α, tumor necrosis factor-α; TNFR1, TNFα receptor 1; RIPK1/3, receptor-interacting protein kinases 1/3; TRADD, TNFR1-associated death domain protein;

TRAF2, TNF receptor associated factor 2; cIAP1/2, cellular inhibitor of apoptosis 1/2; HOIL-1, haem-oxidized iron-regulatory protein 2 ubiquitin ligase-1; HOIP, HOIL-1

interacting protein; SHARPIN, SHANK-associated RH domain-interacting protein; NF-κB, nuclear factor-κB; NEMO, cell death-protective nuclear factor-κB essential

modulator; IKKα/β, inhibitor of NF-κB kinase α/β; TAB2/3, TAK1-binding protein 2 and 3; FADD, Fas associated via death domain; cFLIPL, the long isoform of cellular

FLICE-like inhibitory protein; MLKL, mixed lineage kinase domain-like protein; TIRF, TIR-domain containing adapter-inducing interferon-b; MYD88, myeloid

differentiation primary response gene 88; SMs, SMAC mimetics; ROS, reactive oxygen species.

IIb is composed of RIPK1, FADD, caspase-8 and c-FLIPL, and
initiates RIPK1-dependent apoptosis (Cho et al., 2009; Oberst
et al., 2011; Sun et al., 2012).

Upon caspase-8 inhibition, complex IIa contributes to
necroptotic induction by recruiting RIPK1, and complex IIb
initiates RIPK1- and RIPK3-dependent necroptosis. Activated
RIPK1 heterodimerizes with RIPK3 and RIPK3 phosphorylates
MLKL, thereby polymerizing RIPK1, RIPK3 and MLKL (Sun
et al., 2012; Zhao et al., 2012). This RIPK1-RIPK3-MLKL
complex, called a “necrosome,” triggers the subsequent cell
lysis. A20 inhibits formation of the RIPK1-RIPK3 complexes by
deubiquitinating RIPK3 (Onizawa et al., 2015; Galluzzi et al.,
2018).

The PRR family can also initiate necroptosis. TLR4 recruits

the adaptor molecules myeloid differentiation primary response
gene 88 (MyD88) and TIR-domain containing adapter-inducing
interferon-b (TRIF), while TRIF is the sole adaptor molecule

for TLR3 (Kawai and Akira, 2010). Stimulation of TLR4/TLR3
via LPS or poly(I:C) induces the formation of the TRIF-RIPK3
complex (Kaiser and Offermann, 2005; He et al., 2011). In
the presence of caspase-8 inhibitor, reactive oxygen species
(ROS) accumulation occurs downstream of the TRIF-RIPK3
complex, and the subsequent c-jun N-terminal kinase (JNK)
activation forms the RIPK1-RIPK3-MLKL complex and induces
necroptosis independent of NF-κB activation (He et al., 2011;
Kim and Li, 2013). TLR4 also recruits the adaptor molecules
MyD88 and cIAPs to induce the NF-κB pathway activation and
release of pro-inflammatory cytokines (Figure 2).

INTERACTIONS BETWEEN NECROPTOSIS
AND NEUROINFLAMMATION

Necroptosis can trigger inflammation. Activated
microglia/macrophages also induce necroptosis at the chronic

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 911430

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tao et al. Retinal Necroptosis and Neuroinflammation

inflammatory site, thereby forming a positive feedback loop. In
neurodegenerative diseases, dying or dead neuronal cells release
DAMPs and activate PRRs (Wallach et al., 2014). PRR signaling
activates microglia and transforms them to a pro-inflammatory
phenotype that produces abundant pro-inflammatory cytokines
(Fernández-Velasco et al., 2014). TNF-α and PRPs-mediated
signals activate intracellular pathways, such as the NF-κB
activation pathway, which leads to the transcription of various
pro-inflammatory molecules, and the RIPK pathway, which
mediates microglial activation and necroptosis (Granger and
Kolb, 1968; Liu et al., 2017).

Characteristics of Microglial Activation in
Neurodegeneration
Microglia are resident macrophages in the CNS and retina
that surveil the surrounding environment and maintain
tissue homeostasis (Nimmerjahn et al., 2005). Microglia can
dynamically change their morphology and function in response
to microenvironmental alterations (Choi et al., 2021). Although,
in healthy individuals, blood circulating monocytes cannot
enter the CNS and retina due to the healthy blood-brain and
retina-barrier, under disease conditions they can infiltrate and
differentiate into macrophages.

Microglia exhibit diverse functional phenotypes depending
on the disease context (Ransohoff, 2016). In the same way
that peripheral macrophages are traditionally classified into
two major phenotypes (Martinez and Gordon, 2014) (i.e., M1
and M2), microglia can also polarize into both pro- and
anti-inflammatory states at the diseased loci. Once microglia
and/or macrophages detect DAMPs, they convert to the pro-
inflammatory M1-like phenotype and form a high motility
amoeboid shape (Chen and Xu, 2015). Activated microglia
translocate to the damage site and secrete pro-inflammatory
cytokines (IL-1β, IL-6, IL-8, TNF-α, iNOS) (Kalkman and
Feuerbach, 2016; Aguzzi and Zhu, 2017). After the damaging
molecules are diminished, the microglia change their polarity
to an anti-inflammatory M2-like phenotype, improving their
phagocytotic function, secreting IL-4, IL-10, IL-13, TGF-β,
and arginase 1 and clearing the cellular debris to promote
recovery (Cherry et al., 2014; Park et al., 2016). Triggering-
receptors-expressed-on-myeloid-cells 2 (TREM2) is one kind of
microglial receptor that is highly expressed in anti-inflammatory
or pro-regenerative microglia and involved in phagocytosis
and immune regulation (Paloneva et al., 2002; Hickman and
El Khoury, 2014; Hickman et al., 2018). Overexpression of
TREM2 enhances phagocytic activity and down-regulates pro-
inflammatory responses (Han et al., 2017). In contrast, deletion of
TREM2 or the adaptor tyrosine kinase-binding protein (TyroBP
or DAP12), which binds to TREM2, leads to an excess of
the pro-inflammatory phenotype, which decreases microglial
survival and causes amyloid plaque deposition in experimental
models of Alzheimer’s disease (AD) (Ito and Hamerman, 2012).
Therefore, these findings suggest that TREM2 is a key immune
regulator that mediates the homeostatic function of microglia.
However, it should be noted that there are more diverse and
complex phenotypes in microglia and macrophages, and their

plasticity (reaction states) and diversity (subtypes) should both
be considered rather than merely the two commonly phenotypes
(Stratoulias et al., 2019). Single-cell level analyses will help
further clarify the microglia/macrophage subsets that regulate
CNS health and diseases (Ransohoff, 2016; Hammond et al., 2019;
Masuda et al., 2019; Stratoulias et al., 2019).

RIPK Modulates Microglial Activation and
Necroptosis in Neuroinflammation
Microglia recognize the DAMPs through pattern recognition
proteins (PRPs) such as TLRs. As shown in Section
2.2, TLR signaling mediates microglial activation (i.e.,
M1-like polarization) as well as apoptosis/necroptosis
through RIPK recruitment into the cell death complex.
TNF-α released from microglia may also activate RIPK
pathways in the surrounding neuronal cells as well as
microglia themselves.

Soluble oligomeric amyloid β (Aβ) has been shown to
stimulate TNF-α release from activated microglia, leading to
the induction of neuronal necroptosis in an in vitro model
of AD (Salvadores et al., 2021). Ripk3−/− and Mlkl−/− mice
favor pro- to anti-inflammatory phenotype transformation
of microglia in response to ischemic cortex injury (Yang
et al., 2018). Therefore, RIPK may regulate necroptosis
and microglia/macrophage polarization in neurodegeneration
(Table 1).

RIPK may contribute to microglia/macrophage polarization
via a mechanism that is at least partly independent of necroptosis
(Ofengeim and Yuan, 2013; Ofengeim et al., 2015, 2017;
Kondylis et al., 2017; Ueta et al., 2019). Our previous study
showed that RIPK inhibition suppresses M2-like polarization
through caspase activation and attenuates the formation of
laser-induced choroidal neovascularization (CNV) (Ueta et al.,
2019). Both in vivo and in vitro experiments have shown
that infiltrating macrophages, rather than vascular endothelial
cells, are the main target for catalytic inhibition of RIPK.
These findings suggest that RIPK has a non-necrotic function
in angiogenesis via regulation of the macrophage phenotype.
Ofengeim et al. reported a non-cell death function of RIPK1—
namely, mediation of the disease-associated microglia (DAM)
phenotype—in AD pathology (Ofengeim et al., 2017). They
showed that RIPK1 is highly expressed in the cerebral microglia
of patients with AD. In a mouse model of AD and in vitro
cultured microglia, RIPK1 inhibition was shown to attenuate
the DAM response and to enhance phagocyte activity to
clear Aβ (Ofengeim et al., 2017). Transcriptional analysis
found that RIPK1 induces Cst7 expression, which regulates
the lysosomal function of microglia, suggesting that RIPK1-
dependent transcription disturbs the homeostatic function of
microglia and leads to Aβ accumulation in AD (Ofengeim
et al., 2017). Alternatively, Vince et al. demonstrated that
RIPK3 directly regulates NLRP3 inflammasome activation and
IL-1β secretion in macrophages (Vince et al., 2012). They
showed that RIPK3 mediates IAP-antagonist-induced IL-1β
secretion prior to inducing necrotic changes (Vince et al.,
2012).
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TABLE 1 | Pharmacological and genetic interventions that manage cell death and inflammation in RIPK-related pathways in CNS diseases.

Role of the RIPK/related

pathway

Disease and model Mode of RIPK inhibition Outcome References

Mediates DAM response

and reduces the lysosomal

function of microglia

AD (APP/PS1) RIPK1 inhibitor;

Ripk1-D138N double

mutant mice

• Attenuated DAM response

• Enhanced phagocytosis of Aβ

Ofengeim et al., 2017

Activates the NLRP3

inflammasome

Bacterial encephalitis (LPS

treatment in macrophages)

Ripk3 knockout • Inhibited the IL-1 secretion induced

by LPS and IAP antagonist

Vince et al., 2012

Induces microglial

necroptosis

ICH (injection of autologous

blood from the femoral

artery into the right basal

ganglia)

Melatonin (upregulation of

deubiquitinating enzyme

A20)

• Reduced microglial necroptosis

and TNF secretion

• Suppressed neuronal necroptosis

Lu et al., 2019

Induces necroptosis and

age-related

neuroinflammation

Aging (old WT mice) RIPK1 inhibitor;

Mlkl knockout;

Ripk3 knockout

• Reduced age-associated

neuroinflammation

Thadathil et al., 2021

Promotes axonal

degeneration and

neuroinflammation

ALS (Optn-deficient mice,

SOD1 transgenic mice)

RIPK1 inhibitor;

Ripk1-D138N mutant

• Suppressed neuronal cell death

• Reduced microglial response

Ito et al., 2016

DAM, disease-associated microglia; AD, Alzheimer’s disease; APP/PS1, amyloid precursor protein/presenilin 1; Aβ, amyloid-β; ALS, amyotrophic lateral sclerosis;

ICH, intracerebral hemorrhage.

Ubiquitination in Microglia-Related
Inflammation
Ubiquitin participates in various biological processes,
including protein degradation, transcription, DNA and
immune regulation (Husnjak and Dikic, 2012; Zinngrebe
et al., 2014). Several E3 ubiquitin ligases are involved in the
regulation of MyD88- and TRIF-dependent signaling from
TLRs (Wertz and Dixit, 2010). TRAF6, one of the ubiquitin
E3 ligases, mediates K63-linked ubiquitination of the IKK
complex subunit, IKKγ, and activates MyD88- and TRIF-
dependent NF-κB signaling (Walsh et al., 2008). A20 can
modulate ubiquitination and remove K63 polyubiquitin
chains from target proteins to terminate signaling, as
shown in Figure 2 (Komander et al., 2009; Mohebiany et al.,
2020).

Kinsella et al. (2016) identified that the Bcl-2 family protein
BH3-interacting domain death agonist (Bid) strengthens the
TLR4-NF-κB pro-inflammatory response by promoting K63-
linked polyubiquitination of TRAF6 inmicroglia. In a subsequent
study, they demonstrated that Bid modulates MyD88- and TRIF-
dependent signaling by attenuating the cleavage of polyubiquitin
chains, thereby enhancing the inflammatory response (Kinsella
et al., 2018).

A study on AD demonstrated that the E3 ubiquitin ligase
COP1 inhibits the activation of microglia and the release of
pro-inflammatory factors by degrading the transcription factor
CCAAT/enhancer binding protein beta (c/EBPβ) (Ndoja et al.,
2020). These transcription factors promote gene expressions
related to microglial activation and inflammation. Increased
secretion of pro-inflammatory factors and neurotoxicity in
COP1-deficient microglia were observed in a mouse model
of tau-mediated neurodegeneration and microglia-neuronal
co-cultures. Thus, COP1 is important for suppression of
the pathogenic c/EBPβ-dependent gene expression process
in microglia.

RIPK is also involved in K63-linked Ub. IAPs are the key
E3 ubiquitin ligases that ubiquitinate RIPK1/2 and cause NF-
κB activation (Figure 2) (Jensen et al., 2020). Several studies
have shown that RIPK1-mediated inflammatory signaling can be
inhibited by second mitochondria-derived activator of caspases
(SMAC), a small-molecule antagonist of IAPs (Busca et al., 2018;
Goncharov et al., 2018). SMAC mimetics can also suppress the
pro-inflammatory response in TLR signaling (Figure 2) (Tseng
et al., 2010). Deubiquitinating enzyme is an alternative target
to modulate RIPK activation. Lu et al. recently demonstrated
that microglial necroptosis is suppressed by melatonin via the
regulation of A20 in a model of intracerebral hemorrhage
(Lu et al., 2019). Therefore, targeting ubiquitination may be a
promising anti-inflammatory strategy.

The Role of Microglial Necroptosis in
Neuroinflammation
Necroptosis can occur in neurons as well as microglial cells
in CNS diseases. Thadathil et al. investigated the expression
of p-MLKL, a marker of necroptosis, in the brains of young
and aged mice and showed that nearly 70–80% of p-MLKL
immunoreactivity is observed in neurons and <10% in microglia
(Thadathil et al., 2021). Blocking or inhibiting necroptosis
resulted in a significant reduction in neuroinflammation in
aged mice (Thadathil et al., 2021). Therefore, necroptosis may
be critically important in age-associated neuroinflammation
and neurodegeneration.

Ito et al. investigated the functional roles of RIPK in an
amyotrophic lateral sclerosis (ALS) model. Mutations in the
optineurin OPTN gene have been implicated in patients with
ALS (Ito et al., 2016). Using an ALS model of optineurin (Optn)-
deficient mice, they reported that RIPK1 inhibition reduces
the levels of proinflammatory cytokines, including IL-1α, IL-
1β, interferon-γ (IFNγ), and TNF-α, in the spinal cord (Ito
et al., 2016). RNA-sequencing analysis ofOptn−/−, andOptn−/−;
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Ripk1D138N/D138N microglia revealed that the M1-like phenotype
in Optn−/− microglia is suppressed by RIPK1 inhibition (Kigerl
et al., 2009; Ito et al., 2016). In addition, necrotic cell death
in the spinal cord of Optn−/− mice was rescued by RIPK
inhibition, which led to improved motor function (Ito et al.,
2016). In pathological spinal cord sections from patients with
ALS, increased co-immunostainings of RIPK1, RIPK3, MLKL,
RIPK1 p-Ser14/15, p-MLKL, and microglia were observed (Ito
et al., 2016). Therefore, RIPK1 may be a critical mediator
of microglial activation as well as necroptosis in the axonal
pathology of ALS.

THE ROLE OF RIPK IN RETINAL
DEGENERATION AND
NEUROINFLAMMATION

Given the significant roles of the RIPK pathway in necroptosis
induction and microglial activation in CNS disorders, it would
be natural to expect that RIPK is involved in retinal necroptosis
and inflammation. Indeed, although it was traditionally
considered that apoptosis is the main form of cell death in
retinal degeneration, our group revealed that RIPK-dependent
necroptosis is redundantly activated when caspases are inhibited
in experimental retinal detachment (RD) (Trichonas et al.,
2010). Rosenbaum et al. also demonstrated that treatment
with Nec-1 prevents retinal cell death in a rat model of retinal
ischemia (Rosenbaum et al., 2010). It is now known that RIPK
plays pivotal roles in various retinal and optic nerve disorders,
including inherited retinal diseases (IRDs), age-related macular
degeneration (AMD), and glaucoma, even in the absence of
caspase inhibition (Trichonas et al., 2010; Murakami et al.,
2012, 2014; Kataoka et al., 2015; Do et al., 2017; Kayama et al.,
2018). In the discussion below, we introduce studies addressing
the RIPK function in necroptosis, microglial activation, and
neuroinflammation in retinal degeneration (Figure 3; Table 2).

Role of RIPK in Retinal Detachment
Photoreceptor cells receive metabolic support from the
underlying retinal pigment epithelium (RPE) and choroidal
vessels, and when the neuroretina is physically detached
from the RPE, photoreceptor cells start to die. Experimental
models of RD induced by the subretinal injection of sodium
hyaluronate and human samples with RD have shown that
photoreceptor cell death is induced as early as 12 h and peaks
at around 2–3 days after RD (Cook et al., 1995; Hisatomi
et al., 2001; Arroyo et al., 2005). Hypoxia plays an important
role in this process, because oxygen therapy substantially
prevents photoreceptor cell loss in a cat model of RD (Lewis
et al., 2004). Neuroinflammation also contributes to RD-
induced retinal degeneration. Multiple cytokines/chemokines,
including TNF-α, IL-1β, and MCP-1, are substantially elevated
in the eyes in both experimental and human RD (Nakazawa
et al., 2006a; Yoshimura et al., 2009). Moreover, genetic
knockout of Mcp-1 attenuates macrophage infiltration and
prevents photoreceptor cell death in a rodent model of RD
(Nakazawa et al., 2007). Sweigard et al. suggested that hypoxia

mediates the activation of the alternative complement pathway
in the detached mouse retina, indicating a molecular link
between hypoxia and neuroinflammation (Sweigard et al.,
2015).

Apoptosis is the main form of photoreceptor cell death after
RD (Cook et al., 1995; Hisatomi et al., 2001; Arroyo et al., 2005).
Consistent with the apoptotic morphological changes, such
as pyknosis, both caspase activation in intrinsic and extrinsic
pathways and upregulated expression of death receptor ligands
(e.g., TNF-α and Fas-L) are observed in the rat retina after
RD (Zacks et al., 2003, 2004). Paradoxically, however, caspase
inhibition via intravitreal injection of pan-caspase inhibitor did
not lead to protection against RD-induced retinal degeneration,
suggesting the presence of other or redundant effectors for the
photoreceptor cell death after RD.

As described above, caspases and RIPK redundantly function
as cell death effectors in TNF-α signaling. Given the evidence
that RIPK-dependent necrosis is strongly induced when the
caspase pathway is blocked under various physiological and
pathological conditions, we hypothesized that RIPKmaymediate
photoreceptor cell death after RD in concert with caspases.
Indeed, we found that caspase inhibition in rodent models of
RD substantially reduced apoptosis of photoreceptor cells while
simultaneously increasing necrotic cell death in the detached
retina. This necrotic change was rescued by additional treatment
with Nec-1 or Ripk3 deficiency, indicating that photoreceptor
cell death after RD is redundantly regulated by at least two cell
death pathways, i.e., caspase-dependent apoptosis and RIPK-
dependent necroptosis (Trichonas et al., 2010). Consistent with
our findings, Dong et al. demonstrated that Nec-1 inhibits RIPK
phosphorylation and prevents necrotic photoreceptor cells after
experimental RD (Dong et al., 2012).

RIPK inhibition in experimental RD prevents photoreceptor
cell death, in addition to attenuating the infiltration of
CD11b-positive microglia/macrophages in the detached
retina (Trichonas et al., 2010). Kataoka et al. further investigated
the roles of RIPK in inducing neuroinflammation after mouse
experimental and human RD and showed that RIPK regulates
NLRP3/caspase-1 inflammasome activation and prevents IL-1β
secretion from subretinal microglia/macrophages (Kataoka
et al., 2015). Because Vince et al. (2012) demonstrated that
RIPK3 directly promotes IL-1β secretion in macrophages via
inflammasome-dependent and -independentmechanisms, it may
be possible that RIPK directly modulates microglia/macrophage
activation after RD, in addition to indirectly activating
neuroinflammation through the release of necrotic DAMPs.

Role of RIPK in Retinitis Pigmentosa
Retinitis pigmentosa (RP) is a set of hereditary retinal
diseases characterized by the degeneration of rod and cone
photoreceptors with genetic defects (Hartong et al., 2006).
The typical progression in patients with RP begins with night
blindness and loss of mid-peripheral visual field due to rod cell
dysfunction and death, followed by loss of peripheral and central
vision due to cone cell death (Hartong et al., 2006; Murakami
et al., 2015). Many studies have shown that multiple signaling
pathways lead to photoreceptor death, including apoptosis,
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FIGURE 3 | Microglia/Macrophages in retinal disorders. Schematic representation of necroptotic and activated microglia/macrophages in retinal necroptosis and

inflammation. Various damages and DAMPs activate innate immune cells. Activated and necroptotic microglia/macrophages via inflammasome-dependent/

-independent mechanisms secrete inflammatory and angiogenic mediators. These pro-inflammatory and angiogenic factors induce choroidal neovascularization.

Pro-inflammatory factors and DAMPs also lead to necrotic cell death of RGCs, RPE cells and photoreceptors. Moreover, activated microglia/macrophages infiltrate to

the outer retina to phagocytose dead cells and modulate inflammation.

autophagy and necroptosis (Murakami et al., 2012, 2015; Sizova
et al., 2014; Athanasiou et al., 2018; Viringipurampeer et al.,
2019). However, the specific mechanisms predominating in each
of rod and cone photoreceptor cell death in RP remain elusive.

Rod cell death in RP is induced by mutations in the causal
genes, most of which are related to rod function, structure or
homeostasis, and the dead cells exhibit apoptotic morphology.
In contrast, cone cells, which do not express deleterious genes,
remain healthy in the early stage of disease, but also degenerate
after rod cell death. The mechanisms of this secondary cone cell
death have not been fully understood; however, accumulating
evidence suggests that microenvironmental alterations such
as neuroinflammation, oxidation and metabolic imbalance
contribute to the cone cell death in RP (Yoshida et al.,
2013; Olivares-González et al., 2018, 2021; Newton and
Megaw, 2020). Interestingly, morphological analyses of the
postmortem eyes of RP patients demonstrated some necrotic
features, such as swollen cytoplasm and membrane rupture
in remaining cones (To et al., 2004). Consistent with these
anatomical features, our group demonstrated that RIPK is
essential for induction of cone necroptosis and microglia

activation in rd10 mice, a mouse model of RP induced by
a missense mutation in the Pde6β gene, and both effects
could be suppressed by Ripk3 deletion (Murakami et al.,
2012). Subsequently, we found significantly enlarged cone cells
in the macula of human RP patients using adaptive optics
technology, and observed higher levels of HMGB1, a DAMP
released from necrotic cells, in the vitreous of RP patients
(Scaffidi et al., 2002; Murakami et al., 2015).

Consistent with our findings, Viringipurampeer et al. (2014)
identified that cones expressed high levels of RIPK1 and
RIPK3, and that the dying cones could be rescued by
knockdown of Ripk3 in pde6cw59 mutant zebrafish. Yang
et al. (2017) also revealed that RIPK1 and RIPK3 were
markedly upregulated in the retinas of sigma-1 receptor
(S1R)-deficient rd10 mice, accompanied with a deteriorated
loss of cones. A recent study reported that the necroptosis
pathway is highly activated during photoreceptor death in
Pro23His (P23H) transgenic albino rats, and P23H is also
the most common mutation in autosomal dominant RP
(Kakavand et al., 2020). Increased phospho-MLKL has been
observed in the inner and outer segments of the P23H-3
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TABLE 2 | Pharmacological and genetic interventions that manage cell death and inflammation in RIPK-related pathways in retinal diseases.

Role of the RIPK-related

pathways

Disease and model Mode of RIPK inhibition Outcome References

Mediates photoreceptor

necroptosis and

neuroinflammation

RD (subretinal injection of sodium

hyaluronate), RP (rd10, rd1),

acute retinal neural injury

(NMDA-damaged mice),

achromatopsia (pde6cw59 mutant

zebrafish)

RIPK inhibitors;

Ripk3 knockout;

Ripk3 knockdown

• Rescued photoreceptor cells

• Reduced Iba1+ or

CD11b+. microglia/macrophages

Trichonas et al., 2010;

Murakami et al., 2012;

Viringipurampeer

et al., 2014; Huang

et al., 2018

Activates the NLRP3

inflammasome

RD (subretinal injection of sodium

hyaluronate)

Ripk3 knockout • Inhibited NLRP3/ IL-1β secretion

• Rescued photoreceptor cell death

Kataoka et al., 2015

Mediates RPE necroptosis

and DAMPs-mediated

neuroinflammation

Dry AMD (dsRNA-induced retinal

degeneration)

RIPK1 inhibitor;

Ripk3 knockout

• Rescued RPE and photoreceptor

cell death

• Reduced release of DAMPs and

attenuated

microglia/macrophages activation

Murakami et al., 2014

Induces microglial

necroptosis

RP (rd1), acute retinal neural injury

(NMDA-damaged mice)

RIPK1 inhibitor • Decreased cytokine production

• Rescued photoreceptor and retinal

ganglion cell death

Huang et al., 2018

Induces microglial

necroptosis

Retinal neovascularization (OIR) RIPK1 inhibitor;

Microglia-specific

Ripk3 knockout

• Decreased FGF2 release

• Suppressed angiogenic retinopathy

He et al., 2021

Activates macrophages (M2

polarization)

Wet AMD (laser CNV) RIPK1 inhibitor;

Ripk1 K45A mutant

• Suppressed M2-like polarization

of macrophages

• Attenuated

pathological angiogenesis

Ueta et al., 2019

Induces necroptosis and

neuroinflammation

Glaucoma (IR, acute high

intraocular pressure)

RIPK1 inhibitor • Reduced retinal damage and

neuroinflammation

Rosenbaum et al.,

2010; Dvoriantchikova

et al., 2014

Induces RGCs necroptosis Glaucoma (ON, optic nerve crush

model)

RIPK1 inhibitor;

Ripk3 knockout

• Promoted RGC survival and axon

regeneration

Kayama et al., 2018

RD, retinal detachment; AIF, apoptosis-inducing factor; RP, retinitis pigmentosa; DR, diabetic retinopathy; AMD, age-related macular degeneration; OIR, oxygen-induced retinopathy

model; RGCs, retinal ganglion cells; IR, ischemia–reperfusion.

mouse retina (Kakavand et al., 2020). Furthermore, Sato
et al. (2013) observed TNF-induced rod and cone necroptosis
in Irbp-deficient mice. Interphotoreceptor retinoid-binding
protein (IRBP) secreted by photoreceptors is important for
photoreceptor survival, and IRBP mutation is associated with
human RP.

Therefore, RIPK-mediated necroptosis may be a common
mechanism for cone cell death in RP, and RIPK-mediated
necroptosis may be a novel target to prevent the death of
photoreceptors in RP patients.

Cell death and inflammation are interconnected. Indeed, we
previously demonstrated that microglial activation is suppressed
by Ripk3 deficiency in rd10 mice. This anti-inflammatory effect
of RIPK inhibition may be explained by the reduced release of
DAMPs from necrotic cone cells as well as by the attenuation of
microglial activation/necroptosis.

To our knowledge, only a single report has described the
implications of microglial necroptosis in both in vitro and in
vivo (rd1 mice, pde6βrd1 and NMDA-damaged mice) models of
retinal degeneration (Huang et al., 2018). TLR4 is involved in
the activation of microglia in these models, in association with
infiltration of Iba-1+/RIPK3+ necroptotic microglia at the site of
degeneration. These necroptotic microglia secrete inflammation
mediators, e.g., TNF-α, chemokine (C-C motif) ligand 2 (CCL2),

IL-17, IL-23 and IFN-γ. Pharmacological blockade of RIPK1
has been shown to ameliorate microglial activation and retinal
degeneration in both an NMDA-induced retinal neural injury
model and murine BV2 microglial cells (Huang et al., 2018).
These findings suggest that microglial necroptosis may regulate
neuroinflammation in RP, at least in part.

Role of RIPK in Dry Age-Related Macular
Degeneration
AMD is a primary cause of central visual loss in developed
countries and affects primarily the elderly (Smith et al.,
2001). Early AMD is characterized by pathological deposits
(drusen) between the RPE and the Bruch’s membrane (Al-
Zamil and Yassin, 2017; Handa et al., 2019). RPE are monolayer
cells maintaining the functionality of overlying photoreceptors
(Boulton and Dayhaw-Barker, 2001). Widespread drusen,
various pathologies such as inflammation, and various genetic
and environmental factors promote RPE dysfunction and
photoreceptor death (Handa et al., 2019; Miller et al., 2021).
Advanced late-stage dry AMD, also known as geographic atrophy
(GA), is associated with the degradation of RPE cells in a
non-neovascular form (Handa et al., 2019; Miller et al., 2021).
Oxidative stress is implicated in the pathogenesis of both wet and
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dry AMD, and it can cause blood-retinal barrier breakdown that
triggers chronic inflammation (Barnett and Handa, 2013).

Alterations of many inflammatory cytokines have been
detected in plasma, serum or intraocular fluid in patients with
AMD, but regrettably there is no stable trend or consistency in
the reported findings (Tan et al., 2020).

Infiltration of macrophages has been detected in late advanced
dry AMD and neovascular AMD (Penfold et al., 1985; Lad et al.,
2015). Activated immune cells such as microglia/macrophages
can migrate or infiltrate to the outer nuclear layer and remove
photoreceptor debris, which is believed to be related to atrophic
AMD (Killingsworth et al., 1990; Gupta et al., 2003). Analysis of
a single-cell transcriptomic atlas of human retinas indicated that
microglia are one of the factors most predictive of AMD, which
highlights the importance of microglia in AMD pathogenesis
(Menon et al., 2019). A histological study of the human eyes
revealed that higher numbers of macrophages are concentrated
in the choroid in late dry AMD than in normal AMD (Wang
et al., 2022). Taken together, these data indicate a pathogenetic
role of inflammation and immune response in AMD. Yet there
is still controversy and debate regarding the origin of the cells
reported in histopathology as macrophages, with some studies
supporting the notion that some of these cells may not be bona-
fide immune cells but rather transdifferentiated RPE cells (Lad
et al., 2015; Curcio and Ach, 2016).

The RIPK-dependent necrotic pathway is crucial in RPE
and photoreceptor cell death in AMD. Our previous study
identified that programmed necroptosis is the main mechanism
for cell death of RPE in dsRNA-induced retinal degeneration, a
model of dry AMD (Murakami et al., 2014). Ripk3 deficiency
in this model reduced the release of DAMPs and suppressed
the inflammatory response in the retina (Murakami et al.,
2014). These findings suggest that RIPK-dependent necroptosis
amplifies neuroinflammation by regulating the release of
intracellular DAMPs (Murakami et al., 2014). Oxidative stress
is one important component of AMD pathogenesis. Hanus
et al. (2015) confirmed that RPE necroptosis is the predominant
mechanism of NaIO3-induced RPE cell death, a model of
dry AMD induced by oxidative injury. Because caspase-8 is
severely downregulated in the mature RPE (Yang et al., 2007),
RPE cells may be predisposed to undergo necroptosis under a
stressed condition.

A study by Pan et al. (2021) reported that retinal lipofuscin
activates an atypical necroptosis in RPE cells as well as
macrophages/microglia. That study provided new insights
into necroptosis activation in aged human retinas with
AMD. Interestingly, its authors demonstrated an atypical RPE
necroptotic mechanism that involves neither RIPK1 nor RIPK3,
but rather is mediated by lysosomal membrane permeabilization
(LMP) and subsequent MLKL phosphorylation (Pan et al.,
2021). In addition to RPE cells, phospho-MLKL staining was
also observed in microglia/macrophages, which phagocytosed
the sloughed RPE fragments (Pan et al., 2021). These findings
suggest the intimate interactions between necroptosis and
neuroinflammation in the pathology of dry AMD. They
also show that anti-necroptosis agents that target MLKL
phosphorylation (Nec-7) and oligomerization (NSA) prevent

light-independent lipofuscin-elicited necroptosis. Thus, targeting
lipofuscin-induced necroptosis may be a new therapeutic strategy
for dry AMD.

Role of RIPK in Wet Age-Related Macular
Degeneration
CNV is the end stage of the wet form of AMD, with growth of new
blood vessels between Bruch’s membrane and the RPE (Hobbs
and Pierce, 2021). After CNV, extravasations, hemorrhage and
fibrovascular scar formation occur in the subretinal space,
leading to the death of the neurosensory retina and vision
loss (Al-Zamil and Yassin, 2017; Hobbs and Pierce, 2021).
How does the accumulated drusen induce neovascularization?
Although vascular endothelial growth factor (VEGF) has been
established as the key factor that initiates and promotes CNV,
neuroinflammation also modulates CNV formation (Balser et al.,
2019; Uemura et al., 2021). Activated microglia/macrophages
release angiogenic and anti-angiogenic factors and work with
VEGF to regulate retinal and choroidal angiogenesis (Pollard,
2009; Welser et al., 2010).

Doyle et al. (2012) showed that isolated drusen from AMD
donor eyes can activate the NLRP3 inflammasome and secretion
of IL-1b and IL-18. In a model of wet AMD with laser-induced
CNV, IL-18 activation inhibited CNV development in Nlrp3−/−

mice (Doyle et al., 2012). This study indicates that NLRP3
and IL-18 play a protective role in angiogenesis. Some in vitro
studies have suggested that IL-18may inhibit vascular endothelial
cell proliferation (Park et al., 2001; Kim et al., 2005, 2006).
The results of numerous studies are consistent with those of
Doyle et al. (2012) that IL-18 has an antiangiogenic effect (Kim
et al., 2005, 2006). The findings of Qiao et al. support the
notion that IL-18 plays a role in suppressing angiogenesis by
promoting the regression of pathologic neovascularization (NV),
and the work of Cao et al. revealed an inhibitory effect of IL-
18 on FGF-induced NV (Cao et al., 1999; Qiao et al., 2007).
Therefore, IL-18 neuroinflammation may function in part to
repress CNV formation in AMD, though other studies have
failed to observe a significant contribution of IL-18 deficiency to
spontaneous CNVM formation in Vegfahyper mice (Malsy et al.,
2020; Marneros, 2021).

RIPK-dependent microglial necroptosis is also involved in
retinal angiogenesis. He et al. argued that microglial necroptosis
may be an important biological process in the etiology of
retinal angiogenesis. They identified a subpopulation ofmicroglia
that highly express RIPK3 and MLKL through single-cell RNA
sequencing in an oxygen-induced retinopathy (OIR) model
(He et al., 2021). This necroptotic subpopulation of microglia
promoted angiogenesis by releasing intracellular FGF2 (an
angiogenic factor). The extracellular release of FGF2 was reduced
by Nec1 treatment or conditional deletion of Ripk3. Moreover,
combined treatment with anti-RIPK1 and anti-VEGF drugs has
been shown to remarkably suppress angiogenesis in an OIR
model (He et al., 2021). Collectively, this evidence reveals a
new mechanism by which microglial necroptosis contributes to
angiogenic retinopathy.
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RIPK also regulates angiogenesis via non-necroptotic
modulation of macrophages. Ueta et al. demonstrated that
RIPK1 inhibition suppressed angiogenesis by modulating
macrophage polarization in a mouse model of laser-induced
CNV and alkali injury-induced corneal neovascularization (Ueta
et al., 2019). Mechanistically, we revealed that RIPK1 inhibition
mediates caspase activation and suppresses the pro-angiogenic
M2-like phenotype in infiltrating macrophages. Therefore,
RIPK may be a potential therapeutic target of pathological
angiogenesis that could both inhibit necroptosis and modulate
microglia/macrophage polarization.

Role of RIPK in Glaucoma
Glaucoma is characterized by the progressive loss of
retinal ganglion cells (RGCs) and is a leading cause
of irreversible blindness (Quigley and Broman, 2006).
Glaucomatous neurodegeneration is attributed to various
pathologies, such as mechanical pressure, vascular
deficiency, inflammation, oxidative stress and metabolic
dysregulation (Tezel, 2021). Elevated intraocular pressure
(IOP) is the major risk factor for the progression
of glaucoma, and pressure-induced retinal ischemia
aggravates the death of RGCs (Sellés-Navarro et al.,
1996).

While apoptosis has traditionally been considered the major
type of RGC death in glaucoma, attempts to rescue RGCs
by regulating apoptosis in glaucoma have been unsuccessful.
Accumulating evidence indicates that both apoptosis and
necroptosis participate in glaucomatous RGC death, and RIPK
also plays a crucial role (Lee et al., 2013; Dvoriantchikova et al.,
2014; Do et al., 2017; Wang et al., 2020). Dvoriantchikova
et al. demonstrated that RIPK inhibition prevented RGC
necroptosis in both an in vitro and an in vivo model of
ischemic injury (Dvoriantchikova et al., 2014). Do et al.
reported that RIPK1 was activated in a rat model of high
IOP-induced ischemic injury, and a novel RIPK1-inhibitory
compound significantly attenuated RGC death in a dose-
dependent manner (Do et al., 2017). Consistent with these
in vivo findings, Xiong et al. revealed that RIPK-mediated
necroptosis is induced by oxygen-glucose deprivation in retinal
ganglion cell line 5 (RGC-5) (Liao et al., 2017). Subsequently,
they found that p90 ribosomal protein S6 kinase 3 (RSK3)
is an upstream regulator of RIPK3 phosphorylation, and that
an RSK3 inhibitor conferred RGC protection and functional
recovery in rat with high IOP-induced ischemic injury (Wang
et al., 2020). Our previous study also revealed that the
expression of RIPK was increased in an optic nerve (ON)
crush model, and necrosis inhibitors promoted a moderate
level of axonal regeneration (Kayama et al., 2018). Collectively,
these findings suggest that RIP kinase-dependent necroptosis
is both a novel mechanism of RGC death and a suitable
therapeutic target.

As described above, neuroinflammation is one of the
pathogenic mechanisms of RGC degeneration in glaucoma
(Weinreb et al., 2014). TNF-α is elevated in the aqueous humor,
retina and optic nerve of glaucoma patients (Yan et al., 2000;

Tezel, 2008; Sawada et al., 2010) as well as in a glaucoma
mousemodel induced by chronic ocular hypertension (Nakazawa
et al., 2006b). In the latter study in mice (Nakazawa et al.,
2006b) further showed that increased IOP induces TNF-α
production in the retina and optic nerve, and ultimately causes
RGC loss via microglia activation (Figure 3). Moreover, they
found that intravitreal TNF-α injection induced RGC death
that mimics that the glaucoma, and blockade of microglial
activation rescued this RGC death induced by TNF-α (Nakazawa
et al., 2006b). Collectively, these findings of Nakazawa et al.
(2006b) highlight the importance of TNF-α and microglial
neuroinflammation in the pathology of glaucoma. Other
authors similarly showed that microglia are highly activated
in the optic nerve head in human eyes with glaucoma, in
association with the abundant expression of TNF-α, TGF-β and
matrix metalloproteinases (Neufeld, 1999; Yuan and Neufeld,
2001).

The roles of RIPK and necroptosis in the neuroinflammation
of glaucoma are still elusive. Dvoriantchikova et al. demonstrated
that RIPK inhibition attenuates the expression of pro-
inflammatory genes such as Il-1b, Ccl5, Cxcl10, Nos2, and
Cybb in a high-IOP induced ischemic injury model, suggesting
that RIPK may also mediate neuroinflammation in glaucoma
(Dvoriantchikova et al., 2014).

Using a neuroinflammatory model of glaucoma (TNF-
α induced RGC degeneration), Ko et al. revealed that a
non-canonical form of necroptosis is critical for axonal
degeneration of RGCs. They showed that sterile alpha and
TIR motif 1 (SARM1), an inducible NAD+ cleavage enzyme,
act downstream of TNF-α and activate MLKL. In this
model, MLKL does not directly induce necroptosis but rather
mediates the loss of axon survival factors NMNAT2 and
SCG10/STMN2, which leads to axon degeneration. Therefore,
inhibition of TNF-α and/or SARM1 may suppress axon
necroptosis, and these pathways may serve as alternative targets
for glaucomatous neurodegeneration.

PROSPECTS FOR
ANTI-RIPK/NECROPTOSIS TREATMENT IN
RETINAL DISORDERS

RIPK-dependent necroptosis has been proposed as a promising
target for a variety of neurodegenerative diseases that involve
both neuronal cell death and neuroinflammation. Inhibition
of the RIPK pathway has been proven effective in blocking
necroptosis and suppressing neuroinflammation in many of the
basic experiments mentioned above, and therefore, strategies to
translate these studies into clinical trials should be explored.

In preclinical studies, RIPK1 inhibitors have been the agents
most studied for the treatment of CNS diseases. Such research has
shown that Nec-1 administration controls the neuronal cell death
induced by acute neuronal injury and improvesmotor and spatial
memory (You et al., 2008). Nec-1 also promotes the ability of
microglia to degrade Aβ in APP/PS1mice (Ofengeim et al., 2017).

The RIPK1 inhibitor GSK
′

547 ameliorated the aggregation of
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lipofuscin-like lysosomal inclusions in microglia and improved
survival in a model of lysosomal storage disorder (Safaiyan
et al., 2016; Cougnoux et al., 2018). RIPK is activated under
various necrotic or non-necrotic pathological inflammatory
conditions, and thus well-designed drugs that target certain RIPK
regulation points are critical for the treatment of human CNS and
peripheral pathologies.

Indeed, Nec-1s and other RIPK1 inhibitors (e.g., GSK2982772,
DNL104, DNL747, and DNL788) are presently being assessed
in clinical trials for neurodegenerative and autoimmune diseases
(Degterev et al., 2019; Mifflin et al., 2020). A phase II study of
GSK2982772 for the treatment of psoriasis and ulcerative colitis
(UC) was completed. The authors reported that GSK2982772 was
safe and well-tolerated when dosed at 60mg t.i.d., and that it may
have ameliorated inflammation in 65 psoriasis patients (Weisel

et al., 2020). They then assessed the potential effects at higher
dosages and in patients with more active disease (Weisel et al.,
2020). However, GSK2982772 showed no significant difference in
clinical efficacy between the treatment and placebo groups in UC
patients (Weisel et al., 2021). A phase I clinical trial of DNL747
for the treatment of AD has been completed, but the results have
not been disclosed. RIPK3 inhibitors have not yet entered clinical
trials, but studies on these agents are developing rapidly (Jensen
et al., 2020).

Although the existing results of these clinical trials show the
safety of anti-RIPK drugs with currently unknown efficacy, it
will be critical to develop more secure, sustained, and effective
inhibitors of RIPK to combat chronic neurodegeneration.
Therefore, medicines with better pharmacological designs and
sustained local delivery may be required for the further
development of anti-RIPK therapy to prevent blindness in
patients with currently incurable retinal degeneration.
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