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Abstract: The biological and clinical heterogeneity of neuroblastoma (NB) demands novel biomarkers
and therapeutic targets in order to drive the most appropriate treatment for each patient. Hypoxia is
a condition of low-oxygen tension occurring in poorly vascularized tumor tissues. In this
study, we aimed to assess the role of hypoxia in the pathogenesis of NB and at developing a
new clinically relevant hypoxia-based predictor of outcome. We analyzed the gene expression
profiles of 1882 untreated NB primary tumors collected at diagnosis and belonging to four
existing data sets. Analyses took advantage of machine learning methods. We identified NB-hop,
a seven-gene hypoxia biomarker, as a predictor of NB patient prognosis, which is able to discriminate
between two populations of patients with unfavorable or favorable outcome on a molecular
basis. NB-hop retained its prognostic value in a multivariate model adjusted for established
risk factors and was able to additionally stratify clinically relevant groups of patients. Tumors with
an unfavorable NB-hop expression showed a significant association with telomerase activation and a
hypoxic, immunosuppressive, poorly differentiated, and apoptosis-resistant tumor microenvironment.
NB-hop defines a new population of NB patients with hypoxic tumors and unfavorable prognosis
and it represents a critical factor for the stratification and treatment of NB patients.
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1. Introduction

Neuroblastoma (NB) is a common extracranial solid tumor of the developing sympathetic
nervous system, which accounts for roughly 5% of all diagnosed pediatric cancers [1]. Patients with
localized tumors, defined as low or intermediate risk, do not require intensive therapeutic treatment,
as, in most cases, the tumor regresses spontaneously. For such patients, surgery is performed
when possible and chemotherapy is only considered for symptomatic tumors or for tumor masses
growing after surgery [1,2]. On the contrary, patients with disseminated tumors, defined as high-risk,
undergo intensive treatment that includes different phases: induction based on chemotherapy at
maximally tolerated doses, local treatment with surgery and radiotherapy, consolidation with high dose
chemotherapy and peripheral blood stem cells rescue, maintenance based on a differentiating agent
(cis-retinoic acid) and, more recently, on immunotherapy targeting the expression of disialoganglioside
(GD2) on NB cells. Despite this aggressive treatment, almost 50% of high-risk NB patients are refractory
to therapy, relapse, and die [1].

Efforts to identify prognostic biomarkers from the genomic interrogation of NB tumors have been
made with the aim of improving patient stratification and providing novel therapeutic targets [1,2].
Molecular signatures are becoming increasingly important tools for assisting clinicians in prognosis
assessment and therapeutic decisions, because they can be used for accurately predicting patient
outcome, relapse, or response to therapy, and also be instrumental for refining patient risk stratification,
optimizing treatment, and reducing unnecessary therapy related toxicity [3–6]. For these purposes,
the gene expression profiles of a large number of primary tumor specimens of NB patients have
been published in distinct data sets becoming available to the scientific community [6–13]. However,
a large-scale expression study of NB tumors has not been previously carried out because different
technologies use different proprietary annotations to identify transcripts. The integration of the distinct
data sets into one merged data set would enable an unbiased and robust prediction analysis because
data set may be split into two large training and test sets. As a consequence, the availability of a large
number of gene expression profiles coupled with patient characteristics may enable the stratification of
subgroups of patients that are notoriously difficult to analyze with a low number of cases.

The importance of hypoxia in conditioning the aggressiveness of tumors, including NB,
is documented by an extensive literature [14–17]. A variety of techniques have been described
to measure intratumor hypoxia including polarographic electrodes, fiber-optic probes, and positron
emission tomography, but there is no consensus on the most appropriate approach to use [18].
The identification of an accurate hypoxia predictor may be instrumental for discriminating diagnosis
patients who will potentially benefit of an anti-hypoxia therapy, thus preventing treatment-associated
damage elicited by unnecessary therapies. We have previously used a biology-driven approach to
assess the hypoxic status of NB tumors, consisting in the analysis of the gene expression profile of NB
cell lines cultured under hypoxic and normoxic conditions, and identified an 11-probe set hypoxia
signature that was able to accurately predict NB patient outcome [19]. However, application of this
signature in a large multiplatform study in NB has never been evaluated.

The tumor microenvironment (TME) is a heterogeneous milieu that is composed by neoplastic,
stromal, endothelial, and infiltrating immune cells [20]. The functional interaction among different
TME components is critical to determine the development and progression of several types of cancers,
including NB [21,22]. Unmasking the altered molecular mechanisms in a hypoxic NB TME may
be instrumental to identify novel therapeutic targets and pathways that are involved in NB tumor
progression and to design novel personalized therapies for NB patients who have low probability to
survive with actual treatment strategies. Hypoxia was reported to strongly affect the TME by altering
important biological processes, including tumor cell differentiation, survival, migration, and resistance
to therapy, and influencing the nature and function of the immune cell infiltrate [14,23]. However,
the molecular mechanisms and biological effectors that are involved in NB hypoxic TME have been
only partially elucidated.
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Telomere maintenance mechanisms (TMM) are adopted by tumor cells to prevent telomere
shortening and acquire immortality and they represent a malignant hallmark of several cancer cells [24].
Telomerase is a complex ribonucleic reverse transcriptase that is responsible for telomere maintenance
by synthesizing telomeric DNA repeats at the 3′ ends of linear chromosomes [24]. The catalytic subunit
of the human telomerase reverse transcriptase (TERT) is a key component of the telomerase complex
and it is detectable in over 90% of human cancers [25]. Alternative lengthening of telomeres (ALT)
is an intra-telomeric recombination mechanism that may be employed by tumor cells to maintain
telomere lengthening independently by telomerase activation [24]. Alterations found to be responsible
for TMM in tumor cells include TERT rearrangement, somatic mutations of the TERT promoter, ALT,
epigenetic changes, and amplification of TERT gene [24]. Despite the large number of publications
reporting the critical role of TMM in different diseases, the mechanisms of telomerase regulation remain
mostly unknown [26,27]. Ackermann and coworkers have recently shown the unfavorable prognostic
impact of TMM in combination with RAS and/or p53 pathway mutations in NB and the correlation of
high expression levels of the TERT gene with TMM in a large set of NB specimens [13].

In this study, we aimed at assessing the role of hypoxia in the pathogenesis of NB by analyzing the
molecular mechanisms and biological effectors that are involved in NB hypoxic TME and at dissecting
the prognostic value of a new hypoxia-based predictor in a large multicenter and multiplatform study.
Our results show the unfavorable prognostic value of hypoxia in a large number of patients and
the ability of hypoxia to additionally stratify clinically relevant groups of NB patients. Furthermore,
our results reveal the deregulation of specific biological processes and pathways affecting NB TME.

2. Results

2.1. Collection of the Gene Expression Profile of NB Primary Tumors and Patient Characteristics

Analyses were carried out using the 11-probe set signature to assess the role of hypoxia in the
pathogenesis of NB and to dissect the prognostic value of a new hypoxia-based predictor in a large
multicenter and multiplatform study [19]. To these aims, we collected the gene expression profile
of 1882 NB tumor specimens covering the entire spectrum of the disease included into four publicly
available data sets (RNA-seq498, Affymetrix413, Agilent709, and Agilent262) [6–13]. Figure 1 shows
the schematic representation of the analyses carried out in the present study.

The relative percentage of patient outcome was comparable among the four data sets.
Table 1 summarizes platform information, clinical, and molecular characteristics of patients.

Age at diagnosis, international NB staging system (INSS) stage, MYCN status, event overall,
and event-free data were available for all data sets. Patient follow-up was available for RNA-seq498,
Affymetrix413, and Agilent709 data sets, but not for Agilent262, whereas telomere maintenance, ALT,
documented regression, TERT rearrangement, ATRX mutation, RAS, and p53 mutation data were only
available for the Agilent262 data set.

2.2. Integration of Gene Expression Profiles of NB Primary Tumors Using the COMBAT Batch-Effect
Removal Method

The gene expression profiles of RNA-seq498, Agilent709, and Affymetrix413 data sets were
integrated into a single data set to achieve a large-scale genomic data analysis. 577 patients were
filtered out from the analysis either because of missing information about outcome or of follow-up
shorter than five years (Figure 1). Furthermore, 257 patients that were profiled with both Illumina
and Agilent technologies were removed from the Agilent709 data set to have independent data sets.
Proprietary identifiers of each platform were mapped into gene symbols for comparability. The new
merged and filtered data set comprised 786 patients that included 288 patients from Agilent709,
367 from RNA-seq498 and 131 from Affymetrix413.
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Figure 1. Schematic representation of the procedure used in the study. Workflow of the procedures 
used to build and test the neuroblastoma (NB)-hop classifier. The gene expression profile of 1620 NB 
tumors were collected from three different gene expression datasets. Datasets were purged of 
incomplete and unreliable samples. COMBAT adjusted the data for batch effect removal. The 
resulting dataset of patients was divided into training and test sets. LibSVM was used to build the 
NB-hop classifier in the batch-adjusted and Agilent262 data sets. The performance of the NB-hop 
classifier was then assessed in the test set. Survival analysis evaluated the clinical relevance of the NB-
hop classifier. Differential expression analysis (DEA) and pathway analysis explored the molecular 
mechanisms altered between favorable and unfavorable NB-hop tumors. Microenvironment cell 
populations (MCP)-counter method estimated the abundance of immune and stromal cell 
populations. Network analysis assessed the functional association among genes. Correlation analysis 
estimated the strength of relationship between the expression of two genes. An additional data set 
composed by 262 gene expression profiles from untreated primary NB tumors coupled with patient 
status was used for investigating the link between hypoxia and TMM and/or telomerase activity. FU: 
Follow-up. NB-hop: Neuroblastoma hypoxia outcome predictor. SVM: Support vector machine. DEA: 
Differential expression analysis. MCP-counter: Microenvironment cell populations-counter. 

 

Figure 1. Schematic representation of the procedure used in the study. Workflow of the procedures used
to build and test the neuroblastoma (NB)-hop classifier. The gene expression profile of 1620 NB tumors
were collected from three different gene expression datasets. Datasets were purged of incomplete
and unreliable samples. COMBAT adjusted the data for batch effect removal. The resulting dataset
of patients was divided into training and test sets. LibSVM was used to build the NB-hop classifier
in the batch-adjusted and Agilent262 data sets. The performance of the NB-hop classifier was then
assessed in the test set. Survival analysis evaluated the clinical relevance of the NB-hop classifier.
Differential expression analysis (DEA) and pathway analysis explored the molecular mechanisms altered
between favorable and unfavorable NB-hop tumors. Microenvironment cell populations (MCP)-counter
method estimated the abundance of immune and stromal cell populations. Network analysis assessed
the functional association among genes. Correlation analysis estimated the strength of relationship
between the expression of two genes. An additional data set composed by 262 gene expression profiles
from untreated primary NB tumors coupled with patient status was used for investigating the link
between hypoxia and TMM and/or telomerase activity. FU: Follow-up. NB-hop: Neuroblastoma hypoxia
outcome predictor. SVM: Support vector machine. DEA: Differential expression analysis. MCP-counter:
Microenvironment cell populations-counter.

It is known that the batch effect may be introduced when data sets from different gene expression
platforms are integrated [28]. Batch effect can be estimated using principal variance component analysis
(PVCA). PVCA uses the weighted average proportion variance (WAPV) to estimate the magnitude of
any source of variability using biological, clinical, and batch variables [28]. Thus, the presence of a
potential batch effect in the merged data set was assessed by PVCA. The PVCA results showed a WAPV
of platform of 0.79, indicating that data integration introduced a measurable batch effect (Figure S1).
Several computational methods have been proposed to remove batch effect from the data [28]. COMBAT
is a well-known method to remove batch effect in the data applying an empirical bayes approach [28].
The application of the COMBAT technique to the gene expression profiles of RNA-seq498, Agilent709
and Affymetrix413 data sets removed the batch effect introduced by integrating the data from three
different platforms (WAPV of Platform = 0.0; Figure S2). Furthermore, analysis evidenced the variance
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explained by the biological and clinical variables (WAPV > 0, Figure S2). The 786 gene expression
profiles of the batch-adjusted data set are available in Table S1.

Table 1. Platform information and clinical and biological characteristics of NB patients within the four
cohorts used in the study.

Platform RNA-seq498 (n = 498) Affymetrix413 (n = 413) Agilent709 (n = 709) Agilent262 (n = 262)

Name Illumina HiSeq 2000
RNASeq

Affymetrix HG-U133
plus 2.0

Agilent 44 K
oligonucleotide array

Agilent 44 K
oligonucleotide array

Probe set Annotation RefSeq Proprietary Proprietary Proprietary
Number of Probe Sets 43,827 40,352 43,290 43,290

Patients’ Characteristics

Age at Diagnosis
<18 months 300 (60.2%) 201 (48.6%) 431 (60.7%) 146 (55.8%)
≥18 months 198 (39.8%) 160 (38.7%) 276 (39.3%) 116 (44.2%)

na 0 (0%) 52 (12.7%) 0 (0%) 0 (0%)

INSS Stage
1 121 (24.3%) 88 (21.3%) 158 (22.2%) 30 (11.5%)
2 78 (15.7%) 56 (13.5%) 116 (16.3%) 37 (14.1%)
3 63 (12.7%) 63 (15.2%) 92 (12.9%) 33 (12.6%)
4 183 (36.7%) 153 (37%) 259 (36.0%) 130 (49.6%)
4s 53 (10.6%) 44 (10.6%) 80 (11.2%) 32 (12.2%)
na 0 (0%) 9 (2.4%) 4 (1.4%) 0 (0%)

MYCN Status
normal 401 (80.5%) 329 (79.6%) 581 (80.5%) 191 (72.9%)

amplified 92 (18.5%) 76 (18.4%) 122 (18.5%) 70 (26.7%)
na 5 (1.0%) 8 (2%) 6 (1.0%) 1 (0.4%)

Event Overall
no 393 (78.9%) 282 (68.3%) 548 (77.3%) 202 (77.1%)
yes 105 (21.1%) 81 (19.6%) 161 (22.7%) 60 (22.9%)
na 0 (0%) 50 (12.1%) 0 (0%) 0 (0%)

Event-free
no 315 (63.2%) 216 (52.3%) 439 (60.3%) 148 (56.5%)
yes 183 (36.8%) 96 (23.2%) 249 (36.8%) 114 (43.5%)
na 0 (0%) 101 (24.5%) 21 (2.9%) 0 (0%)

Follow-up Duration
(Years) 5.4 (3.0–8.6) 2.1 (0.9–4.6) 5.6 (3.0–8.7) na

Telomere Maintenance
no 0 (0%) 0 (0%) 0 (0%) 99 (37.7%)
yes 0 (0%) 0 (0%) 0 (0%) 109 (41.6%)
na 262 (100%) 262 (100%) 262 (100%) 54 (20.7%)

ALT
no 0 (0%) 0 (0%) 0 (0%) 177 (67.5%)
yes 0 (0%) 0 (0%) 0 (0%) 31 (11.8%)
na 262 (100%) 262 (100%) 262 (100%) 54 (20.7%)

Documented Regression
no 0 (0%) 0 (0%) 0 (0%) 190 (72.5%)
yes 0 (0%) 0 (0%) 0 (0%) 18 (6.8%)
na 262 (100%) 262 (100%) 262 (100%) 54 (20.7%)

TERT Rearrangements
no 0 (0%) 0 (0%) 0 (0%) 231 (88.1%)
yes 0 (0%) 0 (0%) 0 (0%) 31 (11.9%)
na 262 (100%) 262 (100%) 262 (100%)

ATRX Mutation
- 0 (0%) 0 (0%) 0 (0%) 75 (28.7%)

Deletion 0 (0%) 0 (0%) 0 (0%) 7 (2.8%)
Non sense 0 (0%) 0 (0%) 0 (0%) 1 (0.1%)

na 262 (100%) 262 (100%) 262 (100%) 179 (68.4%)

RAS Mutations
no 0 (0%) 0 (0%) 0 (0%) 5 (1.9%)
yes 0 (0%) 0 (0%) 0 (0%) 43 (16.4%)
na 262 (100%) 262 (100%) 262 (100%) 214 (81.7%)

RAS Mutations
no 0 (0%) 0 (0%) 0 (0%) 36 (13.7%)
yes 0 (0%) 0 (0%) 0 (0%) 12 (4.6%)
na 262 (100%) 262 (100%) 262 (100%) 214 (81.7%)

Data are relative to the patients within the four datasets RNA-seq498, Affymetrix413, Agilent498, and Agilent262
used in the study. In each subdivision, data show the total number of patients and the relative percentage within
brackets. na indicates not available. NB: neuroblastoma. INSS: International Neuroblastoma Staging System. ALT:
Alternative lengthening of telomere.



Cancers 2020, 12, 2343 6 of 45

The expression profiles of 236 randomly selected tumors out of 786 (30%) served to build a
classifier and the profiles of the remaining 550 tumors (70%) were used to test its prognostic value in a
validation data set. The clinical and molecular characteristics of patients in the training and test sets
are summarized in Table S2 and listed in Table S3.

2.3. Identification of a New Multiplatform Hypoxia Biomarker

We have previously used a biology-driven approach in order to assess the hypoxic status of NB
cells identifying a 11 probe set signature that was able to accurately predict NB patient outcome [19].
This signature could not be used in the present study because the probe identifiers used were specific
of the Affymetrix U133 plus 2.0 gene expression platform. Hence, we refined the signature by mapping
the probe sets into gene symbols to obtain a multi-platform biomarker. 9 out of the 11 probe sets
were annotated with a gene symbol, whereas two were not associated with a gene symbol and were
excluded from subsequent analysis. Seven out of nine gene symbols were unique. Therefore, a new
seven-gene biomarker named NB-hop (NB-hypoxia outcome prediction) was defined. Table 2 lists the
main characteristics of NB-hop genes.

Table 2. NB-hop gene signature used in the prognostic model.

NB-hop Gene Title Affymetrix
Probe Sets Chromosome Band Hazard Ratio

(95% CI) p Value

High Expression is Associated with Poor Prognosis

PGK1 phosphoglycerate
kinase 1

200738_s_at,
17356_s_at X q21.1 6.5 (3.9–10.7) <0.0001

PDK1
pyruvate

dehydrogenase
kinase, isozyme 1

206686_at,
226452_at 2 q31.1 1.8 (1.4–2.4) <0.0001

MTFP1 mitochondrial
fission process 1 223172_s_at 22 q12.2 2.4 (1.8–3.1) <0.0001

FAM162A
family with

sequence similarity
162, member A

223193_x_at 3 q21.1 1.9 (1.3–2.8) <0.0001

EGLN1 egl nine homolog 1
(C. elegans) 224314_s_at 1 q42.2 1.0 (0.5–2.0) >0.05

AK4 adenylate kinase 4 230630_at 1 p31.3 1.1 (0.7–1.6) >0.05

High Expression is Associated with Good Prognosis

ALDOC aldolase C,
fructose-bisphosphate 202022_at 17 q11.2 0.7 (0.5, 0.8) <0.001

Univariate analysis was carried out by Cox regression using overall survival in the batch-adjusted training set.
Significant p-values are depicted in bold. Genes with a hazard ratio greater than 1 were associated with poor
prognosis. Genes with a hazard ratio smaller than 1 were associated with good prognosis. CI: confidence interval;
NB: neuroblastoma.

These genes encode for proteins that are involved in metabolic response to hypoxia. Univariate
analysis of overall survival in the batch-adjusted training set based on the NB-hop genes showed
that high expression of PGK1, PDK1, MTFP1, and FAM162a genes was associated with a significantly
higher risk of death (hazard ratio (HR) > 1 and p-value < 0.05; Table 2), while a high expression of
ALDOC was associated with a lower risk of death (HR < 1 and p-value < 0.05; Table 2).

2.4. Generation and Validation of a NB-hop Classifier for Predicting NB Patient Prognosis

The classifier was built from the expression of NB-hop genes and patient outcome in the training
set using the LibSVM library and the leave one-out cross validation (LOOCV) technique (Section 4).
The predictive power of the NB-hop classifier was then estimated in the test set. NB-hop classifier
predicted 414 out of 550 patients (75%) at favorable prognosis (F) and 136 out of 550 patients (25%)
at unfavorable prognosis (UF). Moreover, it was able to stratify patients into subgroups that had a
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significantly different overall survival (OS) and event-free survival (EFS) (OS: HR 5.2 95% confidence
interval (CI) 7.3–16.3 and EFS: HR 3.3 95% CI 3.8–7.5, both p < 0.0001; Figure 2A).Cancers 2020, 12, x 10 of 46 
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Figure 2. Kaplan–Meier estimates of Overall survival (OS) and Event-free survival (EFS) and prediction
performances of the NB-hop classifier (A). The OS (left plot) and the EFS (right plot) of the two
populations of NB patients predicted by the NB-hop classifier in the test cohort (n = 550) are shown.
The classifier was built from the expression of NB-hop genes and patient outcome in the training
set using the LibSVM library and leave one-out cross validation (LOOCV) technique. Blue and red
curves represent the F and the UF classifications, respectively. Curves were compared by log-rank
test. Log rank p value, number of patients classified by NB-hop (brackets), and number of deaths
or events in each group of patients (square brackets) are reported. The number of patients at risk is
displayed under the Kaplan–Meier plots. Each plot reports the hazard ratio (HR) and 95% of confidence
interval (95% CI). (B) The NB-hop classifier prediction performances, measured by accuracy, sensitivity,
precision, specificity, NPV, and MCC are shown. A brief description of the performance measures
and the confusion matrix appear under the table. OS: Overall survival; EFS: Event-free survival;
F: Favorable; UF: Unfavorable; HR: hazard ratio; CI: confidence interval; NPV: negative predictive
value; MCC: Matthew’s correlation coefficient.

Our classifier obtained a significant overall performance of 44% of Matthew’s correlation coefficient
(MCC) (78% of Accuracy) in the test set (Figure 2B and Table S3). For comparison, we trained and tested
four alternative machine learning algorithms on the batch-adjusted data set. The performance of each
of these methods was lower than that of libSVM (MCC < 44%, Table S4). To assess the significance of the
NB-hop classifier performance, we applied the ConfusionMatrix function that was implemented in the
Caret R Package [29] to NB-hop prediction and event overall in the batch-adjusted test set. We found
that the no information rate was 0.709 and the difference of accuracy between NB-hop classifier and no
information rate was significant (p value < 0.0001). These findings support our conclusion that the
NB-hop classifier is an accurate predictor of NB patients’ outcome.
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Patients predicted as UF by NB-hop had a clear different expression profile with respect to those
predicted as F NB-hop, demonstrating that NB-hop was able to distinguish two groups of patients at
the gene expression level (Figure 3).

HIF-1a and HIF-2a are hypoxia inducible factor α-subunits that mediate the cellular response to
hypoxia [16]. We compared the distribution of HIF-1a and EPAS1/HIF-2a mRNA expression of NB
patients grouped by NB-hop prediction in batch-adjusted test set. Box plots displayed in Figure S3 show
a significant up-regulation of HIF-1a and a significant down-regulation of EPAS1/HIF-2a expression
in the group of UF NB-hop tumors (p < 0.0001). These data indicate that UF NB-hop tumors are
more hypoxic than F NB-hop tumors. We also correlated the HIF-1a gene expression and that of each
NB-hop marker by Pearson correlation. We found a significant correlation between HIF1a and NB-hop
markers (p < 0.05).

The prognostic power of the NB-hop classifier was compared with that of established markers
utilizing NB-hop classifier predictions (UF vs. F), INSS stage (4 vs. 1, 2, 3, 4 s), age at diagnosis
(age ≥ 18 months vs. < 18 months), and MYCN status (amplified vs. single copy) in the test set.
UF NB-hop, advanced stages 4, age≥ 18 months, and MYCN amplification were significantly associated
with a higher risk of death or undergoing an event according to a univariate analysis (HR > 1 and
p < 0.0001; Table 3).

Importantly, the NB-hop classifier maintained a significant prognostic effect in the model adjusted
for these clinical covariates in multivariate analysis (OS: HR 1.8 95% CI 1.2–2.6, p = 0.004 and EFS:
HR 1.7 95% CI 1.2–2.5, p = 0.001; Table 3). We concluded that NB-hop is an independent prognostic
biomarker of unfavorable prognosis in NB.

We evaluated the distribution of the two populations of patients with F and UF prognosis in the
subsets defined by age at diagnosis, INSS stage, MYCN status, and risk group. The number of patients
predicted with UF NB-hop was greater than zero in all subsets, but it was higher in patients with age
greater than 18 months, INSS stage 4, amplified MYCN, and high-risk disease (Figure 4).

These results indicate that UF patients are associated with unfavorable clinical characteristics and
suggest that NB-hop may additionally stratify clinical groups of patients. We assessed the stratification
of sub-cohorts defined by known prognostic markers in order to test this hypothesis (Table 4).

The NB-hop classifier significantly stratified patients with tumor stage 1, 2, 3, and 4, patients
with age < 18 months, patients with age > 18 months, and patients with not amplified MYCN tumor
(p < 0.05). The NB-hop classifier was not able to significantly stratify patients with amplified MYCN or
stage 4s tumors (p > 0.05).

Next, the prognostic value of our predictor was assessed in additional clinically relevant subgroups
of patients defined by combination of established prognostic markers. The group of high-risk patients
older than 18 months with stage 4 tumors is a group traditionally difficult to stratify [1]. NB-hop classifier
identified two subgroups of patients with significantly different OS and EFS (OS: HR 1.8 95% CI 1.3–2.8,
p = 0.002 and EFS: HR 1.7 95% CI 1.2–2.5, p = 0.008; Figure 5A).

The NB-hop classifier achieved a significant prediction performance of 21% MCC
(Fisher p-value = 0.009). In the subgroup of low and intermediate-risk patients with stage 4 tumors
lacking MYCN amplification and age < 18 months, NB-hop classifier identified two groups of patients
with significant different EFS (EFS: HR 4.6 95% CI 2.5–69.5, p = 0.006; Figure 5B), but did not significantly
discriminate patients who died from disease in this subgroup (OS: HR 4.1 95% CI 0.9–55.7, p = 0.1;
Figure 5B).
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Table 3. Univariate and multivariate analysis of overall and event-free survival in the batch-adjusted
test set.

Univariate
Analysis

Multivariate
Analysis

Covariate HR 95% CI p Value HR 95% CI p Value

Overall survival
NB-hop (UF vs. F) 5.4 (3.9–7.4) <2.0 × 10−16 1.8 (1.2–2.6) 4.20 × 10−3

Age at diagnosis (≥18
months vs. <18 months) 7.4 (5.0–10.9) <2.0 × 10−16 3.6 (2.3–5.5) 8.50 × 10−9

INSS stage (4 vs. 1, 2, 3, 4 s) 5.9 (4.0–8.5) <2.0 × 10−16 2 (1.3–3.1) 8.60 × 10−4

MYCN status (Amplified
vs. normal) 6.8 (5.0–9.4) <2.0 × 10−16 2.7 (1.8–3.9) 3.70 × 10−7

Event-free survival
NB-hop (UF vs. F) 3.4 (2.6–4.5) <2.0 × 10−16 1.7 (1.2–2.5) 1.40 × 10−3

Age at diagnosis (≥18
months vs. <18 months) 3 (2.2–3.9) 7.11 × 10−15 1.8 (1.3–2.5) 2.20 × 10−4

INSS stage (4 vs. 1, 2, 3, 4 s) 2.9 (2.2–3.8) 2.83 × 10−14 1.6 (1.1–2.2) 4.60 × 10−3

MYCN status (Amplified
vs. normal) 3.4 (2.6–4.5) <2.0 × 10−16 1.6 (1.1–2.3) 4.40 × 10−3

Univariate and multivariate analysis of overall and event-free survival assessed by Cox regression in the test set.
Significant p-values are depicted in bold. HR: Hazard ratio. CI: Confidence interval. UF: unfavorable. F: favorable.
INSS: international neuroblastoma staging system.Cancers 2020, 12, x 12 of 46 
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Figure 4. Bar plots of the distribution of NB-hop predictions in the batch-adjusted test set. The bar plots
shows the number of patients with unfavorable prognosis (UF) NB-hop (red) and F NB-hop (blue) on
the y-axis and one of the reference variables (age at diagnosis, INSS stage, MYCN status, and risk group)
on the x-axis. Age at diagnosis was split into two groups, one >18 months and the other <18 months.
Risk group was divided into low, low/intermediate, and high risk on the basis of International NB risk
group (INRG) pre-treatment risk stratification schema. Na stands for not accessible value. NB-hop
prediction labels are displayed on top of each bar plot.
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Table 4. Summary of Kaplan-Meier estimates of OS and EFS based on the NB-hop prediction after
subdividing patients of the batch-adjusted test set into sub-cohorts.

F NB-hop UF
NB-hop

Population Survival
Probability SEM No. of

Patients
Survival

Probability SEM No. of
Patients p

Stage 1 (n = 95) 91 4
5-year OS 0.98 0.01 0.5 0.2 <0.0001
5-year EFS 0.95 0.02 0 0 <0.0001

Stage 2 (n = 85) 78 7
5-year OS 0.96 0.02 0.57 0.18 <0.0001
5-year EFS 0.75 0.05 0.33 0.19 0.06

Stage 3 (n = 73) 56 17
5-year OS 0.87 0.04 0.29 0.11 <0.0001
5-year EFS 0.65 0.06 0.23 0.1 0.008

Stage 4 (n = 231) 133 98
5-year OS 0.63 0.04 0.32 0.04 <0.0001
5-year EFS 0.5 0.04 0.25 0.04 <0.0001

Stage 4s (n = 66) 56 10
5-year OS 0.89 0.04 0.9 0.09 ns
5-year EFS 0.72 0.06 0.77 0.13 ns

Age at diagnosis
<18 months

(n = 321)
279 42

5-year OS 0.94 0.01 0.61 0.07 <0.0001
5-year EFS 0.79 0.02 0.46 0.07 <0.0001

Age at diagnosis
>=18 months

(n = 229)
135 94

5-year OS 0.62 0.04 0.27 0.04 <0.0001
5-year EFS 0.51 0.04 0.2 0.04 <0.0001

MYCN single
copy (n = 436) 382 54

5-year OS 0.88 0.01 0.5 0.06 <0.0001
5-year EFS 0.72 0.02 0.32 0.06 <0.0001

MYCN amplified
(n = 111) 29 82

5-year OS 0.31 0.08 0.3 0.05 ns
5-year EFS 0.33 0.09 0.25 0.04 ns

SEM indicates the standard error of mean. ns stands for not significant result. Survival curves have been compared by
approximate log-rank test or exact log-rank test when approximate log-rank p value < 0.0001 or >0.0001, respectively.

In the subset of patients with stage 1, 2, 4s tumors lacking MYCN amplification, who are
notoriously at low-risk of dying of disease [2], our classifier was able to discriminate patients who
underwent an event from those who did not (EFS: HR 5.1 95% CI 6.8–220.6, p < 0.0001 Figure 5C).
On the contrary, NB-hop was not able to significantly stratify patients who died, even though we
observed a positive trend (OS: p > 0.05, Figure 5C). Patients that were older than 18 months with
stage 3 and not amplified MYCN tumor constitute a group of localized tumors at intermediate risk,
whose stratification remains a challenge [30]. NB-hop classifier was able to additionally stratify this
population of patients (OS: HR 3.9 95% CI 1.3–42.9 and EFS: HR 4.2 95% CI 1.5–52.4, p ≤ 0.05 Figure 5D).
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Figure 5. OS and EFS of clinically relevant sub-groups of patients stratified by the NB-hop classifier.
Kaplan-Meier curves show OS and EFS of NB patients in the test set predicted by NB-hop classifier.
Plots are relative to (A) high-risk patients, stage 4, and age > 18 months, (B) intermediate-risk patients,
stage 4, age < 18 months, and with not amplified MYCN tumors, (C) low-risk patients with stages 1, 2,
4s and no MYCN amplification tumor, (D) intermediate-risk patients, age > 18 months, stage 3 with not
amplified MYCN tumors. Plots are entitled with the characteristics of the patients in the sub-population.
F NB-hop (blue) and UF (red) curves were compared by approximate log-rank test or exact log-rank
test when approximate log-rank p value <0.0001 or >0.0001, respectively. Each plot reports the HR
and 95% CI. Number of patients classified as F or UF (brackets), and the number of patients who
succumbed to disease or underwent an event (square brackets) are reported. OS: Overall survival;
EFS: Event-free survival; HR: hazard ratio; CI: confidence interval; F: favorable; UF: Unfavorable.

These findings highlight the ability of NB-hop to stratify NB patients that are difficult to stratify
with actual risk assignment, indicating the potential prognostic significance of this classifier in NB.
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2.5. Comparative Transcriptome Analysis of Primary Tumor Specimens between NB-hop Unfavorable and
Favorable Patients

Microarray and RNA-seq platforms provide expression quantification of several transcripts in
parallel from a sample. We compared the tumor transcription profile between F and UF populations of
NB patients predicted by NB-hop classifier in the test set in order to investigate the key molecular
mechanisms altered in NB hypoxic TME. Expression differences≥1.5 or≤−1.5 and Benjamini–Hochberg
q-value ≤0.05 were considered to be statistically significant. Using these selection criteria, we identified
2377 differentially expressed genes (DEGs) (Table S5). Among them, 926 were up-regulated and 1451
were down-regulated in UF NB-hop with respect to F NB-hop tumors.

Pathway analysis is a well-known bioinformatic tool that is used to explore the biological processes
and pathways associated with a list of differentially expressed genes using curated ontologies [31].
The list of DEGs was analyzed by the STRING-DB software using Gene ontology (GO), KEGG,
and REACTOME ontologies (see Materials and Methods). Pathway analysis of up and down-regulated
genes identified 546 and 705 significantly enriched biological processes and pathways in UF NB-hop,
respectively. Table S6 reports the complete list of significant processes and pathways for every analysis.
Table 5 presents a selection of significantly enriched functional terms.

Up-regulated genes were mainly involved in the cellular response to hypoxia,
telomere maintenance, chromatin remodeling, DNA damage response, P53 mediated cell cycle
arrest, cellular senescence, cell cycle, and proliferation. Down-regulated genes were mainly
involved in immune response, cell differentiation, motility, inflammation response, cell death,
and angiogenesis. These results showed that patients with UF NB-hop tumor are characterized
by a hypoxic, immune suppressive, poorly differentiated, and apoptosis-resistant TME.

Table 6 lists DEGs whose role has been previously reported in NB.
The up- or down-regulation of these genes have been previously associated with an unfavorable

prognosis of NB patients, in accordance with our results. Among the up-regulated genes, several were
involved in glycolysis (GAPDH, HK2, PGK1, PKM, LDHA, LDHB, and SLCO4A1), pH regulation
(SLC16A1), and homeostasis (PDK1), indicating a metabolic reprogramming typical of hypoxic cells.
In addition, a prominent set of up-regulated genes coding for proteins with a primary role in telomere
maintenance (FEN1, PCNA, and TERT), DNA damage response (BRCA1, BRCA2, CHEK1, CHEK2,
and TPX2), P53 mediated cell cycle arrest (CDK1, CDK2, and TP53), and proliferation (AURKA, ERBB4,
LIN28B, LMO3, MYCN, ODC1, and RAN). On the contrary, we demonstrated the down-regulation
of genes coding for proteins that are involved in immune responses (CADM1, CCL19, CCL2, CCR7,
CD226, and CXCL12), cell differentiation (CAMTA1, DNER, NTRK1, and PTN), cell motility and
invasion (CD44, CD9, CDH1, ERBB3, L1CAM, NRP1, and SRCIN1), and angiogenesis (EPAS1). We also
found the down-regulation of genes coding for proteins that are involved in chromatin remodeling
(ARID1A and CHD5) and of the MYC gene and the up-regulation of genes involved in cell differentiation
(ALK, PROM1, and RET), and coding for proteins that are involved in apoptosis and cell death (BIRC5
and TWIST1).
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Table 5. Summary of the biological processes and pathways significantly modulated in the UF respect
to F NB-hop patients of the test set.

Biological
Process a Gene Set Id b Pathway or Process

Description c
Number of

Genes d
FDR

q-Value e
Type of

Regulation f Ontology g

Response to
hypoxia

GO: 0071456 Cellular response to
hypoxia 19 1.00 × 10−3 UP GO BP

GO: 0001666 Response to hypoxia 26 2.00 × 10−2 UP GO BP

Telomere
Maintenance

HSA-180786 Extension of
Telomeres 17 1.68 × 10−10 UP RCTME

HSA-157579 Telomere
Maintenance 21 1.64 × 10−9 UP RCTME

HSA-174417
Telomere C-strand
(Lagging Strand)

Synthesis
13 5.90 × 10−8 UP RCTME

GO: 0000723 Telomere
maintenance 22 1.00 × 10−6 UP GO BP

GO: 0032201

Telomere
maintenance via

semi-conservative
replication

11 2.77 × 10−6 UP GO BP

Chromatin
remodeling

GO: 0031497 Chromatin
assembly 31 9.97 × 10−9 UP GO BP

GO: 0031055
Chromatin

remodeling at
centromere

15 2.02 × 10−6 UP GO BP

GO: 0006325 Chromatin
organization 66 3.32 × 10−6 UP GO BP

GO: 0006338 Chromatin
remodeling 26 5.45 × 10−6 UP GO BP

DNA
damage
response

GO: 0051276 Chromosome
organization 143 3.32 × 10−27 UP GO BP

GO: 0007059 Chromosome
segregation 67 5.21 × 10−24 UP GO BP

HSA-73886 Chromosome
Maintenance 32 1.86 × 10−14 UP RCTME

GO: 0006281 DNA repair 77 4.27 × 10−16 UP GO BP

HSA-73894 DNA Repair 47 9.85 × 10−11 UP RCTME

GO: 0006302 Double-strand break
repair 29 1.88 × 10−6 UP GO BP

hsa03410 Base excision repair 10 4.00 × 10−4 UP KEGG

GO: 0006284 Base-excision repair 9 5.00 × 10−3 UP GO BP

hsa03430 Mismatch repair 6 2.00 × 10−2 UP KEGG

P53 mediated Cell cycle arrest
and cellular senescence
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Table 5. Cont.

Biological
Process a Gene Set Id b Pathway or Process

Description c
Number of

Genes d
FDR

q-Value e
Type of

Regulation f Ontology g

HSA-6791312
TP53 Regulates

Transcription of Cell
Cycle Genes

14 6.62 × 10−6 UP RCTME

HSA-6804756
Regulation of TP53
Activity through
Phosphorylation

18 1.99 × 10−5 UP RCTME

GO:0006977

DNA damage
response, signal

transduction by p53
class mediator
resulting in cell

cycle arrest

14 1.00 × 10−4 UP GO BP

HSA-6804116

TP53 Regulates
Transcription of

Genes Involved in
G1 Cell Cycle Arrest

7 2.40 × 10−4 UP RCTME

HSA-6804114

TP53 Regulates
Transcription of

Genes Involved in
G2 Cell Cycle Arrest

7 7.50 × 10−4 UP RCTME

hsa04218 Cellular senescence 20 2.00 × 10−3 UP KEGG

hsa04115 p53 signaling
pathway 12 4.00 × 10−3 UP KEGG

Cell cycle
and

proliferation

GO: 0007049 Cell cycle 196 6.38 × 10−43 UP GO BP

GO: 0000278 Mitotic cell cycle 136 4.17 × 10−42 UP KEGG

GO: 0051301 Cell division 87 1.15 × 10−21 UP GO BP

GO: 0008283 Cell population
proliferation 64 1.07 × 10−5 UP GO BP

Immune
response

GO: 0046649 Lymphocyte
activation 63 1.87 × 10−7 DOWN GO BP

GO: 0042110 T cell activation 45 1.27 × 10−6 DOWN GO BP

GO: 0002250 Immune response 168 7.98 × 10−6 DOWN GO BP

Cell
differentiation

GO: 0030154 Cell differentiation 365 2.59 × 10−11 DOWN GO BP

GO: 0022008 Neurogenesis 193 6.90 × 10−11 DOWN GO BP

GO: 0030182 Neuron
differentiation 134 3.75 × 10−10 DOWN GO BP

GO: 0002521 Leukocyte
differentiation 51 2.60 × 10−5 DOWN GO BP

GO: 0030217 T cell differentiation 29 4.39 × 10−5 DOWN GO BP

GO: 0030098 Lymphocyte
differentiation 39 1.30 × 10−4 DOWN GO BP

Cell motility

GO: 0048870 Cell motility 108 7.41 × 10−5 DOWN GO BP
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Table 5. Cont.

Biological
Process a Gene Set Id b Pathway or Process

Description c
Number of

Genes d
FDR

q-Value e
Type of

Regulation f Ontology g

HSA-1474244 Extracellular matrix
organization 45 1.00 × 10−3 DOWN RCTME

GO: 0007155 Cell adhesion 141 5.55 × 10−15 DOWN GO BP

hsa04514 Cell adhesion
molecules (CAMs) 40 3.14 × 10−9 DOWN KEGG

Inflammation
response

GO: 0006954 Inflammatory
response 71 6.87 × 10−6 DOWN GO BP

GO: 0071345 Cellular response to
cytokine stimulus 111 9.18 × 10−5 DOWN GO BP

GO: 0050727
Regulation of
inflammatory

response
44 6.70 × 10−3 DOWN GO BP

hsa04062 Chemokine
signaling pathway 24 2.00 × 10−2 DOWN KEGG

Cell death

GO: 0042981 Regulation of
apoptotic process 153 7.90 × 10−4 DOWN GO BP

GO: 0043067
Regulation of

programmed cell
death

154 0.00086 DOWN GO BP

Angiogenesis

GO: 0001568 Blood vessel
development 61 0.00065 DOWN GO BP

GO: 0001525 Angiogenesis 42 2.30 × 10−3 DOWN GO BP

GO: 0045766 Positive regulation
of angiogenesis 25 1.20 × 10−2 DOWN GO BP

a Significant GO biological processes, Reactome terms, and KEGG pathways. GO, Reactome and KEGG enrichment
analysis was carried out on genes whose expression in UF NB-hop compared with F NB-hop prediction was
significantly modulated. b Official identifier of a GO biological process, Reactome or KEGG pathway. c Official name
of a GO biological process, Reactome term or KEGG pathway. d Number of genes of a GO biological process
or Reactome term or KEGG pathway whose expression was significantly modulated in UF NB-hop tumors.
e FDR q-value estimates the significance of the enrichment of a biological process or a pathway. FDR q-value <= 0.05
are considered acceptable. f Type of regulation of the genes involved in a process or a pathway. g Name of the
ontology defining a biological process or pathway. GO BP stands for gene ontology biological process. KEGG stands
for Kyoto Encyclopedia of Genes and Genomes. RCTME stands for Reactome.

Table 6. Summary of selected genes whose modulation was significant in the UF NB-hop patients.

Biological
Process a

Gene
Symbol b Gene Name c Locus d OMIM e Type of

Regulation f Function g References h

Response
to hypoxia

GAPDH
glyceraldehyde-3-

phosphate
dehydrogenase

12p13.31 138400 UP

GAPDH is a gene encoding a
key enzyme in glycolysis and
it is a hypoxia-induced gene

in NB.

[32]

HK2 hexokinase 2 2p12 601125 UP

HK2 is a gene encoding a
protein that plays a key role
in maintaining the integrity
of the outer mitochondrial

membrane. HK2 is a
hypoxia-induced gene in NB

and its up-regulation was
associated with unfavorable

prognosis in NB.

[3]
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Table 6. Cont.

Biological
Process a

Gene
Symbol b Gene Name c Locus d OMIM e Type of

Regulation f Function g References h

LDHA lactate
dehydrogenase A 11p15.1 150000 UP

LDHA is a gene encoding an
important component of the

lactate dehydrogenase
tetramer enzyme crucial for
aerobic glycolysis. Increased

expression of LDHA is
associated with decreased

survival and aggressive
disease in NB including
amplification of MYCN,
older age, stage 4 and

undifferentiated histology.

[33]

LDHB lactate
dehydrogenase B 12p12.1 150100 UP

LDHB is a gene encoding an
important component of the

lactate dehydrogenase
tetramer enzyme crucial for
aerobic glycolysis. LDHB

contributes to aggressiveness
of NB.

[33]

PDK1
pyruvate

dehydrogenase
kinase 1

2q31.1 602524 UP

PDK1 is a gene encoding a
mitochondrial multienzyme
complex that catalyzes the

oxidative decarboxylation of
pyruvate. PGK1 is a

hypoxia-induced gene in NB
and its up-regulation was

associated with unfavorable
prognosis in NB.

[5]

PGK1 phosphoglycerate
kinase 1 Xq21.1 311800 UP

PGK1 is a gene encoding an
enzyme that catalyzes one of

the two ATP producing
reactions in the glycolytic

pathway. PGK1 is a
hypoxia-induced gene in NB

and its up-regulation was
associated with unfavorable

prognosis in NB.

[5]

PKM pyruvate kinase
M1/2 15q23 179050 UP

PKM encodes a protein
involved in glycolysis and
lactate production. PKM2

expression is elevated in high
stage NB.

[34]

SLC16A1 solute carrier family
16 member 1 1p13.2 600682 UP

SLC16A1 gene encodes a
proton-linked

monocarboxylate transporter
that catalyzes the movement
of several monocarboxylates

including lactate and
pyruvate across the plasma
membrane. High SLC16A1

mRNA expression is
significantly associated with

worse prognosis in NB.

[35]

SLCO4A1

solute carrier
organic anion

transporter family
member 4A1

20q13.33 612436 UP

SLCO4A1 is a gene encoding
a membrane transporter of
which the only currently
known solute is thyroid
hormone. SLCO4A1 is a

hypoxia-induced gene and its
up-regulation was associated
with unfavorable prognosis

in NB.

[3]

Telomere
Mantainance

FEN1
flap

structure-specific
endonuclease 1

11q12.2 600393 UP

FEN1 is a DNA repair and
replication endonuclease and

exonuclease that has been
shown to play a critical role

for maintaining genomic
integrity. FEN1 is a potent
MYCN target gene in NB.

[36]
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Table 6. Cont.

Biological
Process a

Gene
Symbol b Gene Name c Locus d OMIM e Type of

Regulation f Function g References h

PCNA proliferating cell
nuclear antigen 20p12.3 176740 UP

PCNA is a gene coding a
protein that acts as the initial
sensor of telomere damage.

PCNA levels are increased in
tumors with an amplified

N-myc gene and in metastatic
stage tumors in NB.

[37]

TERT telomerase reverse
transcriptase 5p15.33 187270 UP

TERT is a gene encoding a
key component of the

telomerase complex. TERT
plays a key role in telomere
maintenance in NB. High

expression levels of TERT is
an unfavorable prognostic

markers in NB.

[13]

Chromatin
remodeling

ARID1A AT-rich interaction
domain 1A 1p36.11 603024 DOWN

ARID1A is a
chromatin-remodeling gene
required for transcriptional

activation of genes. ARID1A
is a tumor suppressor gene in

NB. ARID1A gene
knockdown promotes NB
migration and invasion.

[38]

CHD5
chromodomain
helicase DNA

binding protein 5
1p36.31 610771 DOWN

CHD5 is a
chromatin-remodeling gene
that maps to 1p36.31 and is a
tumor suppressor gene in NB.

Low or absent CHD5
expression is associated with

a 1p36 deletion and an
unfavorable outcome in NB.

[39]

DNA
damage
response

BRCA1 BRCA1 DNA repair
associated 17q21.31 113705 UP

BRCA1 is a gene encoding a
nuclear phosphoprotein.
BRCA1 protein keeps NB
cells alive by cooperating

with MYCN. BRCA1
expression closely correlated

with MYCN amplification
and was a strong indicator of

poor prognosis in NB.

[40]

BRCA2 BRCA2 DNA repair
associated 13q13.1 600185 UP

BRCA2 is a gene encoding a
protein involved in

double-strand break repair
and/or homologous

recombination. BRCA2 is one
of the genes for which

somatic mutations have been
identified in primary NB.

[41]

CHEK1 checkpoint kinase 1 11q24.2 603078 UP

CHK1 is a protein-coding
gene belonging to

serine/threonine-protein
kinase. CHK1 performs a

central role in DNA damage
response and in preserving
genomic integrity. CHK1

overexpression is thought to
contribute to NB

aggressiveness and poor NB
patient survival.

[42]
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Table 6. Cont.

Biological
Process a

Gene
Symbol b Gene Name c Locus d OMIM e Type of

Regulation f Function g References h

CHEK2 checkpoint kinase 2 22q12.1 604373 UP

CHK2 is a protein-coding
gene belonging to

serine/threonine-protein
kinase. CHK2 plays a role in
DNA damage response and

maintenance of chromosomal
stability. CHK2

overexpression is thought to
contribute to NB
aggressiveness.

[43]

TPX2 TPX2 microtubule
nucleation factor 20q11.21 605917 UP

TPX2 is a protein-coding
gene involved in spindle

apparatus assembly. TPX2
plays a principal function in
the DNA damage response

pathway. High TPX2
expression is significantly

associated with poor
prognosis in NB patients.

[44]

P53 mediated Cell cycle
arrest and cellular

senescence

CDK1 cyclin dependent
kinase 1 10q21.2 116940 UP

CDK1 is a gene encoding a
protein involved in the

control of the eukaryotic cell
cycle. CDK1 plays an

essential role in NB tumor
cell survival. CDK1

overexpression is associated
with low survival for NB

patients independently from
MYCN status.

[45]

CDK2 cyclin dependent
kinase 2 12q13.2 116953 UP

CDK2 is gene encoding a
member of a family of

serine/threonine protein
kinases that participate in cell
cycle regulation. High CDK2

expression is strongly
correlated with a bad

prognosis.

[46]

TP53 tumor protein p53 17p13.1 191170 UP

TP53 is a gene encoding a
transcription factor that plays
a critical role in the cellular
defense against malignant

transformation by promoting
cell-cycle arrest, DNA

damage repair, apoptosis,
and senescence in response to

stress signals. TP53 is a
hypoxia-inducible gene.

[47,48]

Cell cycle
and

proliferation

AURKA aurora kinase A 20q13.2 603072 UP

AURKA is a gene encoding a
member of a family of mitotic

serine/threonine kinases.
AURKA is a critical regulator
of hypoxia-mediated tumor

progression in NB.
Overexpression of AURKA

has been associated with
poor prognosis in NB.

[49,50]

ERBB4 erb-b2 receptor
tyrosine kinase 4 2q34 600543 UP

ERBB4 gene encodes a
member of the Tyr protein

kinase family and the
epidermal growth factor

receptor subfamily. HER4
functions as a cell cycle
suppressor, maintaining

resistance to cellular stress in
NB. High HER4 expression
significantly correlates with

reduced survival in NB.

[51]
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Table 6. Cont.

Biological
Process a

Gene
Symbol b Gene Name c Locus d OMIM e Type of

Regulation f Function g References h

LIN28B lin-28 homolog B 6q16.3–q21 611044 UP

LIN28B is an RNA binding
protein that blocks the

maturation of let-7. LIN28B
is an oncogene in NB. High
LIN28B expression induces

an increased cell proliferation.
High LIN28B expression is
associated with poor NB

patient survival.

[52]

LMO3 LIM domain only 3 12p12.3 180386 UP

LMO3 encodes a protein that
belongs to the rhombotin

family of cysteine-rich LIM
domain oncogenes. LMO3
acts as an oncogene in NB.

LMO3 induces marked
tumor growth in nude mice.

Increased expression of
LMO3 is significantly
associated with a poor

prognosis in NB.

[53]

MYCN

MYCN
proto-oncogene,

bHLH transcription
factor

2p24.3 164840 UP

MYCN is one of the most
important oncogenes in NB.
MYCN plays multiple roles

in malignancy and
maintenance of stem-like

state. Amplification of
MYCN correlates with

high-risk disease and poor
prognosis in NB.

[54]

ODC1 ornithine
decarboxylase 1 2p25.1 165640 UP

ODC1 is a bona fide
oncogene that encodes the

rate-limiting enzyme in
polyamine synthesis.

Up-regulation of ODC1
induces a rapid tumor cell

proliferation in NB. Elevated
ODC1 is associated with
reduced survival of NB

patients.

[55]

RAN RAN, member RAS
oncogene family 12q24.33 601179 UP

RAN encodes a small GTP
binding protein belonging to
the RAS superfamily. RAN

promotes cell proliferation in
neuroblastoma. High RAN

expression is associated with
a lower NB patient survival.

[56]

Immune
response

CADM1 cell adhesion
molecule 1 11q23.3 605686 DOWN

CADM1 encodes a protein
that mediates homophilic

cell-cell adhesion in a
Ca(2+)-independent manner.
CADM1 down-regulation is
associated with unfavorable

prognosis in NB. Inhibition of
CADM1 in tumor cells

enables immune evasion and
promotes metastasis.

[57,58]

CCL19
C-C motif

chemokine ligand
19

9p13.3 602227 DOWN

CCL12 is a cytokine involved
in immunoregulatory and

inflammatory processes. NB
induces profound functional

impairments in
CCR7/CCL19-mediated
dendritic cell migration

in vitro and in vivo.

[59]

CCL2 C-C motif
chemokine ligand 2 17q12 158105 DOWN

CCL2 is an
immunoregulatory

chemokine. MYCN represses
expression of CCL2

inhibiting natural killer T cell
chemoattraction in NB.

[60]
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Symbol b Gene Name c Locus d OMIM e Type of

Regulation f Function g References h

CCR7
C-C motif

chemokine receptor
7

17q21.2 600242 DOWN

CCR7 encodes a member of
the G protein-coupled

receptor family. Murine NB
inhibits mature dendritic cell

function decreasing
antitumor immunity via
down-regulating CCR7

expression. CXCR7
expression was low in

undifferentiated NB tumors.

[61–63]

CD226 CD226 molecule 18q22.2 605397 DOWN

CD226 encodes a
glycoprotein expressed by

virtually all human NK cells,
T cells, and monocytes.

[64,65]

CXCL12
C-X-C motif

chemokine ligand
12

10q11.21 600835 DOWN

CXCL12 encodes a stromal
cell-derived alpha chemokine

member of the intercrine
familyCXCL12

down-regulation in bone
marrow samples from NB

patients was strongly
associated with worse EFS

and OS.

[66]

PVR PVR cell adhesion
molecule 19q13.31 173850 UP

PVR encodes a
transmembrane glycoprotein
that is widely expressed on
normal neuronal, epithelial,
endothelial, and fibroblastic
cells and at high density on

tumors of different histotype.

[64,65]

Cell
differentiation

ALK ALK receptor
tyrosine kinase 2p23.2–p23.1 105590 UP

ALK is a receptor tyrosine
kinase involved in neuronal
differentiation in NB. High
ALK expression correlates

with an adverse NB
phenotype. ALK is an

oncogene in NB.

[67]

CAMTA1
calmodulin binding

transcription
activator 1

1p36.31–p36.23 611501 DOWN

CAMTA1 encodes a
transcriptional activator
protein. Low CAMTA1

expression inhibits
neuroblastoma cell
differentiation. Low

CAMTA1 expression is
significantly associated with

markers of unfavorable
tumor biology and poor

outcome in NB.

[68]

DNER delta/notch like EGF
repeat containing 2q36.3 607299 DOWN

DNER is a protein involved
in the activation of the

NOTCH1 pathway. DNER is
a marker of neural

differentiation. Low DNER
expression is associated with
a low differentiation in NB.

[69]

NTRK1
neurotrophic

receptor tyrosine
kinase 1

1q23.1 191315 DOWN

NTRK1 encodes a member of
the neurotrophic tyrosine

kinase receptor family. Low
NTRK1 expression is

associated with a poorly
neuronal differentiated state

and a significant worse
outcome in NB.

[70,71]
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PROM1 prominin 1 4p15.32 604365 UP

PROM1 encodes a pentaspan
transmembrane glycoprotein.

PROM1 represses NB cell
differentiation and is
decreased by several

differentiation stimulators.
High PROM1 expression was
significantly associated with

a decreased probability of
patient survival in NB.

[72,73]

PTN pleiotrophin 7q33 162095 DOWN

PTN encodes a secreted
heparin-binding growth

factor. PTN is a marker of
neural differentiation. Low

PTN expression is associated
with a lower patient survival

in NB.

[69,74]

RET ret proto-oncogene 10q11.21 164761 UP

RET is an oncogenic receptor
tyrosine kinase involved in

NB cell proliferation and
differentiation. High

expression of RET correlates
with poor outcomes in

patients with NB.

[71,75]

Cell
motility

and
invasiveness

CD44
CD44 molecule
(Indian blood

group)
11p13 107269 DOWN

CD44 encodes a cell-surface
glycoprotein involved in
cell-cell interactions, cell

adhesion and migration Lack
of CD44 expression has been

associated with MYCN
amplification and predicts
risk of disease progression
and dissemination in NB.

[76]

CD9 CD9 molecule 12p13.31 143030 DOWN

CD9 encodes a member of
tetraspanin family. Low CD9

expression enhances
inhibited migration and

invasion in NB cells. Low
CD9 expression in primary
neuroblastomas correlates
with a low probability of
patient survival in NB.

[77]

CDH1 cadherin 1 16q22.1 192090 DOWN

The CDH1 gene encodes the
epithelial cell adhesion

molecule, which forms the
core of the adherence

junctions between adjacent
epithelial cells. Low

expression levels of CDH1
promote NB cell migration

and invasion and poor
patient survival.

[78]

ERBB3 erb-b2 receptor
tyrosine kinase 3 12q13.2 190151 DOWN

ERBB3 encodes a member of
the epidermal growth factor
receptor family of receptor

tyrosine kinases. The
decreased expression of

ERBB3 was highly correlated
with invasiveness in NB cell
lines. The NB patients with

low expression of ERBB3
showed significantly worse

overall survival.

[79]
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L1CAM L1 cell adhesion
molecule Xq28 308840 DOWN

L1CAM is a gene encoding a
protein of the

immunoglobulin superfamily
of cell adhesion molecules.
L1CAM plays a key role in

the development of the
nervous system. Low
L1CAM expression is

associated with a worse
survival in NB patients.

[80,81]

NRP1 neuropilin 1 10p11.22 602069 DOWN

NRP1 encodes a
transmembrane glycoprotein.
NB cells in which NRP1 was

knocked down exhibited
increased migratory and
invasive abilities. Lower

levels of NRP1 expression
were significantly associated

with a shorter survival
period of patients with NB.

[82]

PLK4 polo like kinase 4 4q28.1 605031 UP

PLK4 is one of the polo-like
kinase family members.

Up-regulation of PLK4 in NB
cells induces EMT through

the PI3K/Akt signaling
pathway. High expression of

PLK4 was negatively
correlated with clinical
features and survival.

[83]

SRCIN1 SRC kinase
signaling inhibitor 1 17q12 610786 DOWN

SRCIN1 is protein-coding
gene that acts as a negative

regulator of SRC. Low
SRCIN1 expression correlates

with increased metastatic
recurrences in NB patients.
Low SRCIN1 expression is

associated with a poor
prognosis in NB.

[84]

Cell death

BIRC5 baculoviral IAP
repeat containing 5 17q25.3 603352 UP

BIRC5 is a member of the
inhibitor of apoptosis gene
family. The over-expression
of BIRC5 correlates with an

unfavorable prognosis in NB.

[85]

MYC

MYC
proto-oncogene,

bHLH transcription
factor

8q24.21 190080 DOWN

MYC encodes a nuclear
phosphoprotein that plays a
role in cell cycle progression,

apoptosis and cellular
transformation. MYC is a

proto-oncogene in NB. MYC
and MYCN expression is

inversely correlated in
primary NB.

[86]

TWIST1
twist family bHLH
transcription factor

1
7p21.1 601622 UP

TWIST1 encodes a basic
helix–loop–helix–ZIP

transcription factor with
crucial functions during
embryogenesis. TWIST1

plays a crucial role in
inhibition of apoptosis and

differentiation in NB.

[87]

Angiogenesis

EPAS1 endothelial PAS
domain protein 1 2p21 603349 DOWN

EPAS1 encodes a
transcription factor, which

plays a key role during
chronic hypoxia. Low level

of EPAS1 expression is
associated with higher NB

patient survival.

[88]

We performed a network analysis using STRING-DB software in order to assess the biological
connection between HIF-1a and genes reported in Table 6 [89]. The resulting network that is shown
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in Figure S4 displayed significantly more interactions than expected for a random set of proteins of
similar size drawn from the genome (PPI enrichment p-value < 1.0 × 10−16). Our findings establish a
connection between HIF-1a and genes reported in Table 6 and indicate that those protein-coding genes
are biologically connected as a group.

2.6. Correlating Immune Markers with NB-Hop Prediction and HIF1 Signature

The estimation of the abundance of immune and stromal cell populations in the TME may
uncover their role in tumor development/progression [90]. Differential expression analysis provides
useful information regarding deregulated genes, but it is not suitable for estimating the abundance
of different tumor-infiltrating cells. For this purpose, we applied the microenvironment cell
populations (MCP)-counter method using the expression profile of NB tumors in the batch-adjusted
test set. MCP-counter is a very well-known and widely used bioinformatic tool. Furthermore,
transcriptome-based cell-type quantification methods for immuno-oncology are valuable tools with
several successful applications [91]. MCP-counter returned an abundance score for each cell type and
tumor sample in the test set. Figure 6 depicts the heat map of the scores for each patient grouped by
NB-hop prediction.

The heat map shows a clear tendency to a lower abundance of T cells, CD8+ T cells, NK cells,
cytotoxic lymphocytes, B cell lineage, monocytic lineage cells, myeloid dendritic cells, endothelial cells,
and fibroblasts in patients with UF NB-hop tumors than in F NB-hop tumors, suggesting the association
between an immunosuppressive TME and UF NB-hop tumors.

We carried out additional analyses to provide more links between MCP-counter analysis and
hypoxia. For each cell type MCP-counter defines a set of characteristic genes that we refer to as
MCP-counter markers [90]. Overlap between MCP-counter markers and genes in the HIF-1a interaction
network may provide relevant evidence of a direct involvement of HIF-1a in the regulation of immune
or non-immune cell population activity. To this end, we assessed the overlap between the list of
MCP-counter markers and the list of genes in the HIF-1a interaction network. BioGRID is a public
curated gene interaction repository [92]. Three-hundred and eighty-nine HIF-1a interactor genes
were retrieved from the BioGRID repository. The resulting HIF-1a interaction network is shown
in Figure S5. Venn diagram showed that none of the MCP-counter markers were in the HIF-1a
interaction network. Network analysis is a valuable tool for assessing the functional interaction among
a set of genes. We performed a network analysis for HIF-1a and MCP-counter markers using the
STRING-DB software [89]. Interestingly, we found that HIF-1a was functionally associated with
MCP-counter markers (Figure S6). These results showed a significant functional association among
HIF-1a and MCP-counter markers, raising the question of the possible correlation between HIF-1a and
MCP-counter markers in NB. Thus, we carried out a correlation between the expression of HIF-1a and
that of each MCP-counter marker in the batch-adjusted test set using Pearson’s correlation method.
The results reported in Table S7 showed that high HIF-1a expression is negatively correlated with most
of the markers of T cells, CD8 T cells, cytotoxic lymphocytes, NK cells, myeloid dendritic cells cell
types (Pearson r < 0 and p value < 0.05, Table S7), and positively correlated with most of the makers
of monocytic lineage, neutrophils, endothelial cells and fibroblasts (Pearson r > 0 and p value < 0.05,
Table S7). Within the set of significantly correlated immune markers in Table S7, we found that MAL,
BANK1, CXCR2, and KCNJ15 genes have been previously reported to play a tumor suppressive role in
different types of cancer [93–96]. These findings support the results shown in Figure 6.
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The presence of specific immune regulatory cell populations is associated with poor outcome in
different types of cancer, including NB [97]. Tumor infiltrating macrophages (TAMs) often display
an immunosuppressive M2-phenotype in aggressive NB tumors [97]. Gene expression analysis of
primary human NB tumors without MYCN amplification has revealed that high-level expression of
TAM-specific genes, including CD14, CD16, IL6, IL6R, and TGFB1, was associated with poor five-year
event-free survival [98]. We assessed the correlation between the expression of HIF-1a and that of
TAM-specific genes in the batch-adjusted test set with not amplified MYCN tumors in order to find
additional associations between hypoxia and immune suppressive TME in NB. The results reported in
Table S8 showed a significant positive correlation between HIF-1a and CD14, IL6, and IL6R, while no
significant correlation was found between HIF-1a and TGFB1. CD16/FCGR3A was absent in the
batch-adjusted data set and it was excluded from the analysis. These findings suggest that hypoxia is
associated with the presence of TAMs in NB without MYCN amplification supporting our conclusion
that hypoxia is an unfavorable prognostic marker and is associated with an immune suppressive TME
in NB.

One of the main mechanisms exploited by tumors for immune system escape is modulating
immune checkpoints, inhibitory pathways that physiologically maintain self-tolerance, and limit the
duration and amplitude of immune responses [99]. We focused on the immune checkpoint ligands
PD-L1 (CD274), PD-L2 (PDCD1LG2), and B7-H3 (CD276), which are recognized by inhibitory receptors
that are expressed by T and NK cytolytic immune effectors [99]. Because no PD-L2 gene expression
was detected in the batch-adjusted data set, a comparison between UF and F NB-hop tumors was
carried out for B7-H3 and PD-L1 expression. The results presented in Figure S7 showed that B7-H3 was
significantly up-regulated, whereas PD-L1 was significantly down-regulated in UF NB-hop tumors,
thus indicating a differential mRNA expression modulation of these immune checkpoints in NB tumors.

2.7. Validation of the NB-hop Classifier for Predicting TERT Gene Over-expression in an Independent Cohort of
NB Patients

We used the gene expression profiles of 262 untreated primary NB tumors (Agilent262), for the
majority of which we had information on the TMM activation in addition to other patient clinical and
molecular data, such as age at diagnosis, ALT activation, event overall, event-free, TERT rearrangement,
INSS stage, MYCN status, p53/RAS gene mutations, and spontaneous regression, in order to evaluate
the association between hypoxia and TMM in NB [13]. Patients included in the data set did not overlap
with the 786 patients in the batch-adjusted data set. Similarly to that described for the batch-adjusted
data set, a classifier based on the expression of the 7 NB-hop genes and patient outcome was built in the
training set (54 patients equal to 21%) using the LibSVM library and LOOCV technique. The predictive
power of the NB-hop classifier was validated in the test set (208 patients equal to 79%). NB-hop
classifier predicted a favorable prognosis for 138 out of 208 patients (66%) and an unfavorable prognosis
for 70 out of 208 patients (33%). The clinical and molecular characteristics and NB-hop predictions of
patients are reported in Table S9.



Cancers 2020, 12, 2343 27 of 45

We, then, analyzed the distribution of TERT mRNA expression in the profiles of patients belonging
to the Agilent262 test set that was grouped by NB-hop predictions. We found that TERT mRNA
expression was significantly elevated in patients with UF prognosis with respect to those predicted
with F prognosis (p < 0.00001, Figure 7).
Cancers 2020, 12, x 29 of 46 

 

 

Figure 7. Distribution of telomerase reverse transcriptase (TERT) mRNA expression in NB patients 
grouped by NB-hop prediction in the Agilent262 test set. Violin plot show the distribution of TERT 
expression in mRNA profiles of NB patients grouped by NB-hop prediction. Data are relative to 
Agilent262 test set (n = 208). Significance of the expression differences between F and UF NB-hop 
groups of patients was assessed by unpaired t test. p-value is reported on the top. F: Favorable; UF: 
Unfavorable; NB: Neuroblastoma. 

2.8. Univariate Regression Analysis for Assessing the Association between Hypoxia and Telomere 
Maintenance Mechanisms in NB 

We investigated the association between hypoxia, TMM, and other available clinical and 
molecular prognostic factors for NB [13] in the Agilent262 test set by univariate logistic regression 
analysis. This analysis showed that patients with UF expression of the NB-hop biomarker had higher 
odds of having an age > 18 months, of undergoing an event or relapse/progression, INSS 4 stage 
tumor, MYCN amplification, p53/RAS gene mutations, or TMM (odd ratio > 1 and p-value < 0.05, 
Table 7). The association between NB-hop and TMM is still significant even excluding amplified 
MYCN tumors from the data set (Odd ratio > 1 p < 0.05).  

On the contrary, patients with documented tumor regression were associated with a lower odd of 
UF NB-hop prognosis (odd ratio < 1 and p-value < 0.05, Table 7). No significant odd ratio was found 
between NB-hop prediction and ALT or TERT rearrangements, which indicated that NB-hop prediction 
is not related to these factors (p-value > 0.05, Table 7). Heat map visualization of NB-hop gene expression 
and established prognostic factors for NB showed that UF NB-hop patients had a clear different 
expression profile with respect to F NB-hop ones, confirming that NB-hop was able to distinguish two 
distinct groups of patients with different prognosis at the gene expression level (Figure 8). 

Figure 7. Distribution of telomerase reverse transcriptase (TERT) mRNA expression in NB patients
grouped by NB-hop prediction in the Agilent262 test set. Violin plot show the distribution of TERT
expression in mRNA profiles of NB patients grouped by NB-hop prediction. Data are relative to
Agilent262 test set (n = 208). Significance of the expression differences between F and UF NB-hop
groups of patients was assessed by unpaired t test. p-value is reported on the top. F: Favorable;
UF: Unfavorable; NB: Neuroblastoma.

These findings confirmed the association between hypoxia and telomerase activity/expression,
raising the question of the importance of hypoxia for TMM in NB.

2.8. Univariate Regression Analysis for Assessing the Association between Hypoxia and Telomere Maintenance
Mechanisms in NB

We investigated the association between hypoxia, TMM, and other available clinical and molecular
prognostic factors for NB [13] in the Agilent262 test set by univariate logistic regression analysis.
This analysis showed that patients with UF expression of the NB-hop biomarker had higher odds
of having an age > 18 months, of undergoing an event or relapse/progression, INSS 4 stage tumor,
MYCN amplification, p53/RAS gene mutations, or TMM (odd ratio > 1 and p-value < 0.05, Table 7).
The association between NB-hop and TMM is still significant even excluding amplified MYCN tumors
from the data set (Odd ratio > 1 p < 0.05).
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On the contrary, patients with documented tumor regression were associated with a lower odd
of UF NB-hop prognosis (odd ratio < 1 and p-value < 0.05, Table 7). No significant odd ratio was
found between NB-hop prediction and ALT or TERT rearrangements, which indicated that NB-hop
prediction is not related to these factors (p-value > 0.05, Table 7). Heat map visualization of NB-hop
gene expression and established prognostic factors for NB showed that UF NB-hop patients had
a clear different expression profile with respect to F NB-hop ones, confirming that NB-hop was
able to distinguish two distinct groups of patients with different prognosis at the gene expression
level (Figure 8).

Table 7. Univariate logistic regression analysis of known covariates on the Agilent262 test set.

Covariate OR 95% CI p Value

Age at diagnosis (≥18 months vs. <18 months) 3.1 (1.6–5.7) 3.03 × 10−4

ALT (Yes vs. No) 0.6 (0.2–1.5) 3.00 × 10−1

Event Overall (Yes vs. No) 8.4 (3.9–18.4) 7.77 × 10−8

Event-free (Yes vs. No) 4.3 (2.3–7.8) 2.12 × 10−6

TERT Rearrangement (Yes vs. No) 1.8 (0.7–4.4) 1.00 × 10−1

INSS stage (4 vs. 1, 2, 3, 4 s) 3.8 (2.1–6.9) 1.11 × 10−5

MYCN status (Amplified vs. Normal) 31.9 (13.2–73.9) 1.21 × 10−14

P53/RAS gene mutations (Yes vs. No) 3.7 (1.9–7.3) 8.18 × 10−5

Spontaneous regression (Yes vs. No) 0.1 (0.02–0.7) 2.00 × 10−2

Telomere.Maintenance (Yes vs. No) 16.70 (7.3–38.2) 2.80 × 10−11

Analysis was assessed by Logistic regression analysis using BayesGLM method. Covariates are sorted in alphabetic
order. NB-hop prediction was used as reference class for the analysis. Significant p-values are depicted in bold.
Odd ratio indicates the constant effect of hypoxia on the likelihood that one outcome will occur. OR: Odd ratio.
CI: Confidence interval. UF: unfavorable. F: favorable. INSS: international neuroblastoma staging system;
ALT: Alternative lengthening of telomeres.

Furthermore, heat map graphically showed the association between the UF NB-hop subgroup
and the worse clinical and molecular characteristic of NB patients, in accordance with the univariate
regression analysis. These findings provide an indication that hypoxia is associated with telomerase
activity, thus representing a potential critical factor for the classification and treatment of NB patients.
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3. Discussion

Novel prognostic markers and therapeutic targets are urgently needed in the clinical settings to
improve prognosis of NB patient and design more effective treatments and better-tailored therapies
addressing NB heterogeneity [1]. Here, we propose a new seven-gene hypoxia biomarker, referred to
as NB-hop, as an unfavorable prognostic marker for NB patients.

The NB-hop biomarker was defined by gene expression analysis carried out on 1620 tumor
specimens belonging to three available data sets, whose expression was measured by three different gene
expression platforms, which included Agilent, Illumina, and Affymetrix technologies. The RNA-seq498,
Agilent709, and Affymetrix413 data sets were homogeneous on the basis of patient clinical and molecular
data and they were used for dissecting the prognostic value of the new NB-hop hypoxia biomarker.
Analysis of the gene expression profile of NB primary tumors to find prognostic factors is an active
research field, and several prognostic signatures have been reported [5,6,100]. However, a large-scale
expression study of NB tumors has not been previously carried out because different technologies
used different proprietary annotations to identify transcripts. Meta-analysis is traditionally used
in retrospective studies to overcome this problem [28]. However, meta-analysis must be replicated
independently in each data set, limiting the statistical power of the study [28]. Here, we used a novel
approach that is based on the application of the batch effect removal methods [28] for integrating the
RNA-seq498, Agilent709, and Affymetrix413 data sets [28]. Data integration raises the question of the
presence of the so-called batch effect [28]. Our analysis evidenced that the simple integration of the NB
datasets introduces a measurable batch effect, which could hinder subsequent analysis. Several batch
effect removal methods have been described in the literature [28]. In the present study, we used
COMBAT, a well-known technique to remove batch effect for data integration [28]. The application of
this method to integrate gene expression data of NB tumor samples profiled by different platforms
allowed us to build up one single multiplatform and multicenter cohort of 786 patients, with at least
five years of follow-up, representing the largest data set described so far in a gene expression study of
NB patients.

The expression profiles of 30% NB tumor samples served to build a classifier and the profiles
of the remaining 70% were used to test its prognostic value in a validation data set. Split a data set
into a training set and a test set is a standard machine learning procedure for computing an unbiased
estimation of the performances of a classifier. In the test set, the NB-hop classifier distinguished
two groups of patients at the gene expression level. The UF NB-hop group was composed by
25% of samples and was referred as the group with hypoxic tumor and unfavorable prognosis.
F NB-hop was composed by 75% of samples and referred as the group with normoxic tumor and
favorable prognosis. OS and EFS were significantly lower for UF NB-hop respect to F NB-hop patients.
UF NB-hop tumors were associated with unfavorable clinical characteristics including age > 18 months,
INSS stage 4, amplified MYCN, or high-risk disease, which confirmed the unfavorable prognosis
of UF NB-hop patients. We demonstrated that NB-hop retains its independent prognostic effect
in multivariable analysis that included age at diagnosis, INSS stage, and MYCN status, which are
considered the strongest prognostic clinical and molecular variables for prediction of OS and EFS in
NB [2]. Analysis was focused on established risk factors in NB, such as age at diagnosis, MYCN status,
and INSS stage, whose data were available in the original data sets, but not on other known risk
factors, such as chromosomal aberration, ploidy, grade of differentiation, or histological category [2],
because these data were not reported in the original publications.

The clinical value of novel prognostic factors is often evaluated in selected groups of patients
defined by combination of established NB risk factors [5,6,100]. In this study, we assessed the
prognostic value of our biomarker in clinically relevant groups of NB patients whose stratification
was not previously reported. The groups included patients with metastatic (INSS stage 4) disease and
age > 18 months, patients with age < 18 months, metastatic disease (INSS stage 4) and not amplified
MYCN, and patients with localized (INSS stage 1, 2) or metastatic (INSS stage 4s) tumors with not
amplified MYCN, and patients with age > 18 months, stage 3 and not amplified MYCN that are
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classified as high, intermediate, and low risk according to INRG schema [1,2,30]. We demonstrated that
NB-hop additionally stratified these groups of patients, making of NB-hop a new potentially eligible
biomarkers for inclusion in upcoming NB pre-treatment risk schema.

NB-hop classifier is a valuable tool with potential direct application in the clinical management
of children that are affected by NB. A classifier may be used to discriminate at diagnosis patients
with hypoxic and unfavorable tumor from those with normoxic and favorable one. For patients
with hypoxic and unfavorable tumor, classifier may be used for additionally refining patient risk
stratification, optimizing treatment, and reducing unnecessary therapy related toxicity that remain
among the most relevant open questions in the clinical discussion [3–6]. Nowadays, the inclusion
of new prognostic biomarkers into the clinical practice is limited, probably because of the relatively
small number of patients used so far in similar studies and the consequent limited reproducibility of
the analyses. Our classifier is robust, because it was trained and tested using a large number of gene
expression profiles measured with different platforms. Still, a potential limitation of the applicability of
our classifier may depend on NB tumor samples that are available for gene expression profile necessary
to determine the hypoxic status of these tumors. In fact, it is often difficult to surgically obtain tumor
samples from young children.

NB-hop genes are known from the literature to be modulated by hypoxia and encode proteins
that are involved in key biological processes associated with the response to hypoxia [3,17,101–109].
Expression of these genes has been previously reported to represent a marker of hypoxia in NB cell
lines [3,102,105] and tumors [102], and to correlate with NB bone marrow metastases and poor patient
outcome [3,101]. The expression of NB-hop genes correlates with HIF-1a expression, which is one of
the most important regulators of the cellular response to hypoxia [16].

Low oxygen levels are known to induce remarkable transcriptional changes that affect the entire
TME [20]. Several scientific publications have evidenced the effects of NB cells adaptation to the
hypoxic stress in terms of cell cycle arrest, cell differentiation, cellular stemness, resistance to cell
death, genomic instability, cellular motility, invasiveness, and proliferation [14,23,110]. However,
the molecular mechanisms mediating the NB tumor response to the hypoxic TME in NB have been only
partially understood [23]. Our study is the first one assessing the hypoxia-deregulated transcription
program in a large set of NB tumors.

A comparison of the expression profiles between UF and F NB-hop tumors showed the significant
modulation of a large number of genes. Two distinct types of analysis were used in order to identify
the pathways and cellular processes associated with the expression of these genes. Firstly, we utilized
a pathway analysis based on three public ontologies. This approach was instrumental to identify
the most affected biological processes and pathways associated with UF NB-hop tumors. Secondly,
we performed a bibliographic search to identify the genes whose role in the pathogenesis and
prognosis of NB had already been reported. Our findings evidence that the UF NB-hop tumors display
up-regulation of genes that are known to be induced by hypoxia and to be involved in the glycolytic
pathway, pH regulation, and homeostasis [3,5,32–35]. Importantly, among the up-regulated genes
in UF NB-hop tumors, we also identified HIF-1a. An elevated HIF-1a expression fits with hypoxic,
aggressively growing, and necrotic NB tumors, thus confirming that NB-hop is able to predict the
hypoxic status of NB.

We found distinct evidences of the association between hypoxia and TMM in NB. The enrichment of
various pathways and processes that are involved in telomere maintenance as well as the up-regulation
of TERT gene was, in fact, observed in the group of UF NB-hop tumors. The aberrant expression
of TERT has been described to be closely associated with tumorigenesis [111], and the activation of
telomerase through over-expression of TERT is thought to represent the most common pathway for
cellular immortalization [25]. The expression of the TERT gene has been shown to correlate with
telomerase activity in experiments involving NB tumor tissues [112] and to be a prognostic marker in
various adult and pediatric tumors, including NB, where high levels of telomerase expression/activity
were found to predict poor outcome [113,114]. Telomere lengthening to achieve immortalization is
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also obtained through ALT [24,115], a telomerase-independent mechanism that accounts for 10–15%
of NB tumors that has been associated with unfavorable prognosis in NB [24]. We did not find an
association between hypoxia and ALT mechanism for telomerase lengthening, while our findings
support the conclusion that hypoxia induces telomere maintenance in NB through activation of
telomerase-dependent mechanisms.

Although telomerase regulation by hypoxia through the HIF-1α, the main regulator of gene
transcription by hypoxia, has been described in both cancer and normal cells [116–120], the association
between hypoxia and telomerase-dependent telomere maintenance has never been described in
NB tumors. Thus, here we show, for the first time, that hypoxia may drive a novel potential
telomerase-dependent mechanism for telomere maintenance in NB.

More than 60% of NB tumors are metastatic, and secondary tumor sites can be found in bone,
bone marrow, liver, lymph nodes, or, less commonly, in the skin, lung, or brain [121]. Metastasis is
the main cause of NB-related deaths, making the investigation of the processes involved in tumor
metastasization mandatory [122]. Cell adhesion is the process by which cells interact and attach to
neighboring cells through specialized glycoproteins of the cell surface called cell adhesion molecules
(CAMs) [123]. The loss of cell adhesion allows malignant cells to detach and escape from the primary
mass gaining a more motile and invasive phenotype [124]. CAMs, such as cadherin, integrins, selectins,
immunoglobulins, and CD44, are known to play a key role in each step of the metastasization process
and are expressed in NB tumor cells [125]. Hypoxia promotes invasion and metastasization in NB by
regulating CAMs expression [121]. Our data highlight a clear association between hypoxic tumors and
metastatic disease (INSS stage 4), and provide evidences of the down-regulation of a large set of genes
that are involved in cell adhesion within the group of UF NB-hop tumors. Furthermore, the loss of
cell adhesion may also occur as a consequence of down-regulation of the CD44, CDH1, and L1CAM,
which are well known CAMs in NB [76,78,81].

An important enhancer of cancer invasion and metastasis is epithelial-to-mesenchymal transition
(EMT), a process that allows epithelial cells to adopt a more mesenchymal state with stem-like
properties [123]. EMT involves expression modulation of several genes, including CHD1, which encodes
E-cadherin, one of the most important markers of EMT in several types of cancer, including NB [126].
Other genes that are implicated in EMT in NB are TWIST1 [127,128], PLK4 [83], KRT19 [79],
and ERBB3 [79]. In addition, the down-regulation of NRP1, CD9, and SRCIN1 encoding genes
was reported to induce metastasis and invasion in NB [77,82,84]. Although hypoxia induces EMT in
different types of cancer by modulating the expression of specific marker genes [129], the association
between hypoxia and EMT in NB tumors has not been investigated. We found down-regulation of
CDH1, CD9, SRCIN1, NRP1, KRT19, ERBB3 expression, and up-regulation of TWIST1 and PLK4
in UF NB-hop tumors. Furthermore, our data indicate the potential poor differentiation state of
neurons associated with UF NB-hop tumors, as shown by the down-regulation of NTRK1, CAMTA1,
DNER, and PTN, as well as the modulation of the known neuronal differentiation markers of NB
RET, ALK, and PROM1 [67–70,72,74]. These data indicate that hypoxic NB tumors display gene
expression modulation compatible with a mesenchymal state with stem-like properties and an increased
invasiveness and metastasization potential.

Cellular proliferation is a hallmark of cancer [130]. A complex network of transcription factors,
kinases, and cell cycle regulators is exploited by NB cells to proliferate [130]. Up to now, the mechanisms
that mediate NB cell proliferation in response to hypoxia have not been fully elucidated [23]. In this
study, we report that UF NB-hop tumors display the expression of genes that are involved in
cellular proliferation, cell cycle, mitotic cell cycle, and cell division, among which we report AURKA,
ERBB4, LIN28B, LMO3, MYCN, ODC1, and RAN genes, whose overexpression has been previously
documented to induce proliferation in NB cells [50–56].

The abundance and composition of immune cells that infiltrate the TME is a critical determinant
of tumor development, therapy efficacy, and clinical outcome in NB [22,97]. Cytotoxic T lymphocytes,
B lymphocytes, and NK cells are responsible for the elimination of cancer cells [131–134]. Their massive
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infiltration in the TME is associated with a better clinical outcome of NB [22,135,136]. Monocytic-lineage
cells are a heterogenous population of immune cells and a key component of the innate defense
mechanisms that display a dual influence on tumor progression, having the potential to activate
immunosurveillance and exert anti-tumor responses, but becoming subverted by the tumor to support
its progression, spread, and immune evasion [137,138]. Myeloid dendritic cells (DCs) are professional
antigen-presenting cells that are central to the orchestration of innate and acquired immunity which
were described in the TME of many cancer types, and their inactivation was reported as one of the
main mechanisms by which tumors can escape from immune surveillance [139,140]. Hypoxia is one of
the critical signals conditioning the balance between immune cell anti-/pro-tumoral functions and it has
been extensively reported to contribute to immune resistance and tumor escape mechanisms favoring
an immunosuppressive TME in different types of cancer [141]. The mechanisms adopted by NB cells
to evade immune response and grow uncontested have been extensively reviewed [142,143]. However,
the association between hypoxia and immune suppression has never been investigated in NB tumors.
The data reported in this study show, for the first time, the association between an immunosuppressive
TME and hypoxic NB tumors. We demonstrated the down-regulation of a large number of genes
involved in T cell activation, lymphocyte activation and immune response and the down-regulation of
genes previously reported to induce immune suppression in NB, including CADM1, CCL19, CCL2,
CCR7, CD226, and CXCL12 [58–60,63,65,66]. Furthermore, we found low abundance of infiltrating
cytotoxic T and NK cells, DCs, and monocytic lineage cells in UF NB-hop tumors by MCP-counter
analysis [90], highlighting the presence of immunosuppressive conditions in the hypoxic TME favorable
for NB tumor growth and metastatic spread. These findings are in accordance with previous evidences
reporting a low level of infiltrated lymphocytes, monocytes, and macrophages in the population of
high-risk amplified MYCN primary metastatic NB tumors [97]. However, overlapping analysis between
the HIF-1a gene network and MCP-counter markers did not show a direct interaction between HIF-1a
and MCP-counter markers. Instead, network analysis based on public knowledge highlighted an
indirect functional association between HIF-1a and MCP-counter markers. Transcriptional regulation
by hypoxia is a complex process that involves several regulatory elements, including NF-kB, Ets-1,
C/EBPα/β, AP-1, and Egr-1 transcription factors [144]. Therefore, not every effect of hypoxia is
mediated by HIFs [144]. These considerations may potentially explain the lack of direct interaction
between HIF-1a and MCP-counter markers.

We decided to carry out a correlation analysis between HIF-1a and each MCP-counter marker in
order to investigate this association in NB. Although network, correlation and MCP-counter analyses
are based on different methodological and statistical approaches, results obtained with these methods
support the association between immune suppression and hypoxic TME in NB. Because the tumor
suppressing/promoting role of several immune markers remains controversial to date, we also assessed
the potential suppressive role of the immune markers significantly correlated with HIF-1a. Bibliographic
search evidenced that MAL, BANK1, CXCR2, and KCNJ15 genes play a tumor suppressive role in
different types of cancer, including colorectal cancer, B-cell lymphoma, and renal cell carcinoma [93–96].
However, we did not find any study reporting the tumor suppressive role of these genes in NB.

The high expression of TAM-specific genes was associated with poor five-year event-free survival
in not amplified MYCN tumors [98]. In order to find additional associations between hypoxia and
immune suppressive TME in NB, we correlated the expression of HIF-1a and that of prognostic
TAM-specific genes. The significant correlation between the expression of HIF-1a and TAMs-specific
genes supported the conclusion that hypoxia is an unfavorable prognostic marker and the potential
association between immune suppression and a hypoxic TME in NB. These results are in agreement
with previous findings that showed the association between cancer macrophage infiltration and
immune suppression and highlighted the regulatory role of HIF-1a in cancer-associated macrophages
polarization and infiltration [20].

Immune checkpoints are important pathways that are exploited by tumor cells to escape immune
system response [99]. We analyzed the expression of B7-H3 and PD-Ls, immune checkpoints known to
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limit both the NK and T cell-mediated cytolytic activity, in order to assess the link between hypoxia and
immune checkpoint expression in NB tumors. B7-H3 is highly expressed by NB and it is considered
an unfavorable prognostic factor [99,145]. Our findings reported the up-regulation of B7-H3 in UF
NB-hop tumors indicating a potential B7-H3-mediated immune regulation in this group of tumors.
PD-L1 is up-regulated in NB by immunostimulatory cytokines, such as IFN-g [99], and the effect of
its expression on patient survival is controversial [146]. Our results support an inverse correlation
between PD-L1 expression and NB patient prognosis.

Despite the therapeutic advances in the last years, a large number of NB patients still undergo a
refractory disease [147]. The mechanisms inducing resistance to therapy has gained great attention [147].
Apoptosis deregulation, the presence of cancer stem cells, alterations of drug target, augmented capacity
of DNA repair, faster drug effluence, and autophagy have been reported as the main factors mediating
NB cell acquisition of drug resistance [44]. However, little is known regarding the effects of hypoxia
on these processes. Hypoxia has been associated with treatment resistance to a number of anticancer
agents. Graham and Unger have documented the efficacy of twenty-two cancer drugs in human cell
lines of non-pediatric cancers that were cultured in vitro under varying oxygen concentrations [18].
Five out of the six therapeutic agents conventionally used in the treatment of high-risk NB patients are
among the cancer drugs whose efficacy was shown to be reduced by hypoxia [18]. Hypoxia promotes
the NB chemoresistance to etoposide, vincristine, and cisplatin, which are three chemotherapeutic
drugs used in the front-line treatment of high-risk NB patients [148,149]. Chemotherapeutic agents
induce catastrophic DNA disruption with the consequent cancer cell death. However, DNA repair
mechanisms are induced in cancer cells to overcome drugs-associated DNA damages [21]. In this study,
we provide multiple evidences that UF NB-hop tumors up-regulate genes that are involved in different
DNA damage response mechanisms, such as DNA repair, double-strand break repair, base-excision
repair, and mismatch repair. Concordantly, we report the up-regulation of genes, including BRCA1,
BRCA2, CHEK1, CHEK2, and TPX2, which play a regulatory role in the DNA damage response
in NB [40–44].

p53 is a transcription factor that is involved in cellular defense against malignant
transformation [48]. Hypoxia is a potent activator of p53 in different types of cancers [23]. However,
conflicting evidences exist on the status of activation of p53 pathway signaling in NB cells [48].
Our findings highlight the up-regulation of genes that are involved in the p53 signaling pathway,
p53-mediated cell cycle arrest, and cellular senescence, as well as the up-regulation of genes,
including CDK1, CDK2, and TP53, whose overexpression indicates the activation of cell cycle
arrest in NB [45,46,48].

Cell growth arrest promotes cellular resistance to apoptosis, which is associated with an
unfavorable prognosis [150]. Our findings indicate that UF NB-hop tumors, with respect to F NB-hop
tumors, down-regulate genes that are involved in cell death and up-regulate genes, including BIRC5
and TWIST1, whose anti-apoptotic role in NB cells has been previously documented [85–87].

Altogether, our data indicate that NB patients with hypoxic tumors are potentially more susceptible
to acquire resistance to conventional chemotherapeutic drugs than patients with normoxic tumors.
We believe that information derived from the assessment of the hypoxic status of the tumors may
potentially be used for taking chemotherapeutic decisions in order to improve treatment response and
reduce the side effects that are associated with aggressive therapies.

Hypoxia is a potential therapeutic target and may offer several therapeutic opportunities in cancer
treatment [18,151]. Therapeutic approaches targeting tumor hypoxia with hypoxia-activated prodrugs
and topotecan [152] was shown to improve tumor response and prolong survival in NB xenograft
models [153]. We believe that the combination of therapeutic agents targeting cancer cells and the TME
counteracting the effects of inadequate tumor oxygenation could provide more effective anti-tumor
immunity. The success of these new potential therapeutic advances depends on the assessment of the
hypoxic status of the tumor at diagnosis. To this end, NB-hop may be instrumental to predict those NB
patients who have a hypoxic tumor and may benefit from anti-hypoxia treatments.
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4. Materials and Methods

4.1. Study Design and Patient Population

We used the gene expression profiles of 1882 primary tumor samples from four different cohorts
of NB patients [6–13].

The gene expression profiles from 709 (Agilent709) and 498 (RNA-seq498) tumor samples
were generated by Agilent customized 4 × 44 k oligonucleotide microarray [6] and Illumina HiSeq
2000 platform [7], respectively. All of the experimental and clinical data for Agilent709 and RNA-seq498
have been previously reported [7,8] and they are publicly accessible through the Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo; accession: gse62564) and ArrayExpress (http://www.ebi.
ac.uk/arrayexpress; accession: E-MTAB-1781) databases.

The third data set cohort (Affymetrix413) consisted of 413 NB patients that belonged to six
sub-cohorts whose gene expression has been profiled using Affymetrix U133 Plus 2.0 GeneChips.
Eighty-eight patients were collected by the Academic Medical Center (AMC; Amsterdam,
The Netherlands) [9]; twenty-one patients were collected by the University Children’s Hospital,
Essen, Germany and were treated according to the German NB trials; 51 patients were collected at the
Hiroshima University Hospital or affiliated hospitals and were treated according to the Japanese NB
protocols [10]; 173 patients were collected at the Gaslini Institute and were treated according to the
Associazione Italiana Ematologia e Oncologia Pediatrica (AIEOP) or the International Society of Pediatric
Oncology Europe NB (SIOPEN) protocols; 30 patients were collected from the United Kingdom [11];
and, another 50 patients from France [12]. For the Affymetrix413 cohort overall and event-free survivals
were available for 291 patients.

Gene expression profiles from additional 262 (Agilent262) tumor samples were generated by the
Agilent customized 4 × 44 k oligonucleotide microarray [13]. Gene expression profiles were coupled
with patient clinical and molecular data. Data were reported in the original manuscript [13], or are
publicly accessible through the gene expression omnibus (GEO) at the accession GSE120572.

The identifiers of the different data sets were converted into the corresponding gene symbols to
make them comparable to each other. Probe sets with no gene symbol annotation were excluded from
the analysis because they have no multi-platform annotation. Patients that were profiled with more
than one platform were considered once in order to prevent that inclusion may introduce optimistic
and biased predictions.

Samples were obtained from primary tumors at the time of diagnosis. Tumor stage was defined
according to the INSS stage. The data were retrieved from the R2: genomic analysis and visualization
platform (http://r2.amc.nl), GEO or the BIT-Gaslini biobank.

4.2. Outcomes

The primary endpoint was the OS defined as the time (in years) from disease diagnosis to
patient death or the last follow-up if the patient survived. Alive patients with follow-up less than
five-years were filtered out to make our primary endpoint as homogeneous as possible across patients.
The secondary outcome was the EFS defined as the time (in years) from disease diagnosis to tumor
progression, relapse, or death from disease or the last follow-up if no event occurred.

4.3. Procedures

The COMBAT algorithm implemented in inSilicoMerging package [28] was used to remove batch
effects and integrate the gene expression profile of the Agilent709, RNA-seq498, and Affymetrix413
data sets into one merged data set. PVCA was used in order to assess the magnitude of any source
of variability [28]. The efficiency of batch effect removal process was measured by WAPV, and the
batch effect was considered to be removed when the WAPV of the platform was 0.0. Splitting a
data set into a training set and a test set is a standard machine learning procedure for computing an
unbiased estimation of the performance of a classifier. The batch-adjusted data set was randomly
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split into a training set (30%) and a test set (70%). The Agilent262 data were split into a training
set (21%) and a test set (79%). TMM and p53/RAS gene mutations data were arbitrarily included in
the test set for assessing their association with hypoxia. The LibSVM library implementation for the
support vector machines, included in the software WEKA 3.7.13 (University of Waikato, Hamilton,
New Zealand), was used to build the classifier [154]. Multilayer perceptron, J48, Naïve Bayes, and linear
regression algorithms implemented in the software WEKA 3.7.13 (University of Waikato, Hamilton,
New Zealand) were used for performance comparison. LOOCV assessed a gene prognostic impact
and the classifier performances. The classifier performances were estimated by Accuracy, Sensitivity,
Precision, Specificity, Negative predictive value, and MCC measures. MCC was used as a reference
measure for model selection. Fisher exact test was used to assess the significance of the association
between classifier prediction and clinical outcome. The ConfusionMatrix function implemented in the
Caret R Package [29] assessed the significance of the NB-hop classifier performance. Gene ontology
(GO), REACTOME, and KEGG analyses were carried out on the list of up or down regulated genes
in UF NB-hop tumors while using the STRING-DB software [89]. A FDR lower than 0.05 identified
significantly enriched ontology terms and pathways.

4.4. Statistical Analysis

OS and EFS curves were plotted by the Kaplan-Meier method and they were compared with the
log-rank test by GraphPad Prism version 6.0 for Windows, www.graphpad.com. Exact log-rank test
was provided when log-rank p-value was >0.0001. The univariate Cox model was used to assess the
prognostic value of the markers when patient follow-up was available. Multivariate analysis with
a Cox proportional hazards regression model was used to assess the prognostic effect of hypoxia
signature in the context of concomitant effects of other known prognostic factors (i.e., age at diagnosis,
INSS stage, and MYCN status). The patients with missing data were discarded from the survival
analysis. The Survival R package (R 3.1.2) was used for the computation of the Cox regression
models. Logistic regression analysis was carried out in order to assess the prognostic value of the
markers when only event overall was available. Univariate logistic regression was computed using the
bayesglm method implemented in the arm R package. Differential expression analysis considered
as significant gene up- or down-regulation with fold change ≥1.5 or ≤1.5 (0.58 in log2) and p value
lower than 0.05 after adjustment for multiple hypothesis testing by Benjamini–Hochberg method.
We used the MCP-counter method in order to assess the abundance of different tumor-infiltrating
immune and stromal cell populations [90]. MCP-counter defines a list of genes that are characteristic
for each cell type and uses these markers to calculate a numeric abundance score for each immune
cell population and non-immune stromal cell population [90]. Immune cell population involves
T cells, CD8+ T cells, NK cells, cytotoxic lymphocytes, B cell lineage, monocytic lineage cells, myeloid
dendritic cells, and neutrophils. The non-immune stromal populations include endothelial cells and
fibroblasts [90]. BioGRID is a public curated gene interaction repository [92]. BioGRID was used to
build gene interaction networks. Correlation was assessed by Pearson’s correlation coefficient.

5. Conclusions

In this study, we reported independent evidences of the unfavorable prognostic value of hypoxia
in NB and highlighted the role of hypoxia as a condition for the development and progression of NB.
We identified NB-hop as a new biomarker that is able to define a new population of patients with
hypoxic tumor and unfavorable prognosis, characterized by the activation of telomere maintenance
mechanisms and a deregulated hypoxic TME. We believe that hypoxia evaluation should, thus,
be considered for NB patient risk stratification and treatment. A prospective study and further in vitro
and in vivo assessment of the effects of hypoxia in NB initiation and progression may guide the future
development of hypoxia-directed therapeutic strategies.
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molecular characteristics of NB patients in the batch-adjusted data set used in the present study; Table S4:
Performance comparison among alternative machine learning methods on the batch-adjusted test set; Table S5:
Differentially modulated genes in the batch-adjusted test set; Table S6: Significant biological processes enriched in
the group of patients with NB-hop unfavorable using the batch-adjusted test set; Table S7: Correlation between
HIF1a and MCP-counter markers in the batch-adjusted test set; Table S8: Correlation between HIF-1a and
TAM-specific genes in the batch-adjusted test set without MYCN amplification; Table S9: Agilent262 data set
used in the present study; Figure S1: PVCA results based on the gene expression profile of 786 NB tumors not
adjusted for batch effect removal; Figure S2: PVCA results based on the gene expression profile of 786 NB tumors
adjusted for batch effect removal; Figure S3: Distribution of HIF1a and EPAS1/HIF2a mRNA expression grouped
by NB-hop prediction in the batch-adjusted test set; Figure S4: Network analysis among DEGs reported in Table 6
and HIF1a; Figure S5: HIF1a interaction network from BioGRID repository; Figure S6: Network analysis among
HIF1a and MCP-counter markers; Figure S7: Distribution of CD276/B7-H3 and CD274/PD-L1 mRNA expression
grouped by NB-hop prediction in the batch-adjusted test set.
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