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Abstract

Background and objectives: Peripheral blood mononuclear cells (PBMCs) have shown promise as a tissue
sensitive to subtle and possibly systemic transcriptomic changes, and as such may be useful in identifying
responses to weight loss interventions. The primary aim was to comprehensively evaluate the transcriptomic
changes that may occur during weight loss and to determine if there is a consistent response across intervention
types in human populations of all ages.

Methods: Included studies were randomised control trials or cohort studies that administered an intervention
primarily designed to decrease weight in any overweight or obese human population. A systematic search of the
literature was conducted to obtain studies and gene expression databases were interrogated to locate
corresponding transcriptomic datasets. Datasets were normalised using the ArrayAnalysis online tool and differential
gene expression was determined using the limma package in R. Over-represented pathways were explored using
the PathVisio software. Heatmaps and hierarchical clustering were utilised to visualise gene expression.

Results: Seven papers met the inclusion criteria, five of which had raw gene expression data available. Of these,
three could be grouped into high responders (HR, ≥ 5% body weight loss) and low responders (LR). No genes were
consistently differentially expressed between high and low responders across studies. Adolescents had the largest
transcriptomic response to weight loss followed by adults who underwent bariatric surgery. Seven pathways were
altered in two out of four studies following the intervention and the pathway ‘cytoplasmic ribosomal proteins’
(WikiPathways: WP477) was altered between HR and LR at baseline in the two datasets with both groups. Pathways
related to ‘toll-like receptor signalling’ were altered in HR response to the weight loss intervention in two out of
three datasets.

Conclusions: Transcriptomic changes in PBMCs do occur in response to weight change. Transparent and
standardised data reporting is needed to realise the potential of transcriptomics for investigating phenotypic
features.
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Background
There has been a global increase in the prevalence of
obesity over the last 40 years. This rise has been challen-
ging to abate, despite the development of a variety of
specific interventions at the individual level and attempts
to shift food and exercise patterns at the public health
level [1]. A 2007 systematic review and meta-analysis
that assessed weight outcomes of 26,455 participants
across eight different intervention types reported high
heterogeneity, in relation to efficacy, across all interven-
tion types and approaches with mean weight change
ranging from + 0.7 kg to – 22.0 kg after 6 months of
treatment [2]. A recent meta-analysis of genome-wide
association studies, to understand the genetic determi-
nants of BMI, suggested genetic variation accounts for
24.6% of the variation in BMI and combined this evi-
dence supports the hypothesis that an individual’s weight
and weight loss response is complex and highly variable
[3]. It is now accepted that ‘one size does not fit all’ in
terms of weight loss approaches.
Our lack of understanding of how subtle differences in

physiology could play a role in treatment response is a
barrier to personalising approaches that would optimise
an individual’s outcome [4]. It is well established that
the location of body fat determines disease risk, due to
the relationship between adipose tissue type and its
endocrine activity [5, 6]. Global gene expression levels,
in specific tissues, are highly sensitive to endogenous
and exogenous stimuli and as such, can provide insight
into mechanistic and often subtle differences in individ-
uals [7]. Individual gene expression response may be
predictive of success, as shown by distinctive gene ex-
pression patterns in subcutaneous adipose tissue in
weight loss maintainers compared with participants who
rapidly regained weight lost through a weight loss inter-
vention [8].
Peripheral blood mononuclear cells (PBMCs) have

shown promise as a tissue of exploration in obesity re-
search as they are exposed to a range of metabolites
from the diet and resulting from physiological changes
in multiple tissues [9]. Due to their ease of collection
from blood, PBMCs offer the opportunity to measure
valuable information about the metabolic response to
the intervention. Both the questions of whether (i) infor-
mation obtained from PBMCs can help stratify individ-
uals and (ii) if this can go beyond the simple
measurement of quantity (volume) of weight or body fat
lost remain unanswered.
This review sought to explore global gene expression

changes in PBMCs before and after a weight loss interven-
tion in human populations of all ages. This review consid-
ered randomised control trials and cohort studies that
administered an intervention primarily designed to
decrease weight in any human population with overweight

or obesity. The primary aim was to comprehensively
evaluate the transcriptomic changes that may occur dur-
ing weight loss and to determine if there is a systematic
response across intervention types. Secondly, by locating
primary data, we aimed to assess the gene expression dif-
ferences between participants who respond differently to
the intervention (high versus low weight loss) to elucidate
any potential patterns of transcriptomic response that dif-
fer between high and low responders.

Methods
This review was prospectively registered with PROSPERO
(No. CRD42019106582).

Search Strategy
A literature search was conducted in July 2019 with no
date limits. Table 1 contains the search strategy adapted
for use in OVID Medline, Embase, Cochrane, Cinahl,
Scopus and Web of Science; a combination of MeSH
terms and free-text searches were used. Literature cited
in relevant papers were also assessed for eligible articles.
Available datasets were retrieved from the online reposi-
tories GEO [10] and ArrayExpress [11].

Selection of studies and data extraction
Inclusion criteria
Studies were included that reported original research
conducted in humans of any age, classified as having
overweight or obesity (defined by BMI > 25 kg/m2 or
equivalent). The interventions must have included a
weight loss component and measured global gene ex-
pression (either through microarray technology or RNA
sequencing) in PBMCs at baseline and after the inter-
vention as an outcome. Inclusion of a control group was
not required.

Exclusion criteria
Studies were excluded if they did not involve human
participants or if participants were pregnant at the time
of intervention. Studies that were not published in Eng-
lish or not presented in an original research communica-
tion, e.g. conference proceedings, single case studies or
book chapters were also excluded.

Data collection
Selection of studies
Two reviewers independently screened titles and
abstracts of studies retrieved from the search strategy.
Full-text articles were retrieved for selected studies and
were independently screened against the inclusion and
exclusion criteria by the two reviewers and conflicts
were discussed and resolved by the group.
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Data extraction
A template extraction table was created to capture infor-
mation regarding the study design, intervention design,
methods of RNA isolation, weight outcomes, gene ex-
pression analysis and other relevant outcomes. Two re-
viewers independently extracted data from the included
studies and cross-checked to verify findings. Any dis-
crepancies were resolved through discussion. Corre-
sponding authors were contacted to obtain any missing
information.

Quality assessment of the studies
A tool previously created by the authors was adapted for
use in the current review [12]. The tool was adapted by
replacing the domain assessing genetic variants with a

domain assessing appropriate experimental control and
filtering of expression data (Additional file 1).

Quantitative data analysis
As all included studies utilised microarray technology,
the quantitative analysis of all studies followed the same
workflow previously described by A Muñoz Garcia et al.
[13]. This workflow allows for the integration of multiple
global gene expression datasets and places them in a
biological context (see Fig. 1 for an overview of the
methods [13]).

Data inclusion criteria
The raw sample-level gene expression data were
obtained from online repositories (GEO and ArrayEx-
press). Where datasets were not publicly available, the
corresponding authors were contacted to provide the
raw data. If the raw gene expression data were not
available, normalised individual level gene expression
data were obtained.
Studies were excluded from the quantitative synthesis

if they had < 50% of the sample-level gene expression
data available as either raw gene expression data or nor-
malised, or were completed > ten years ago.
Authors were contacted to provide individual-level

data relating to weight outcomes so that individuals
could be re-grouped into HR and LR to each interven-
tion. HR were defined as individuals who lost ≥ 5% body
weight over the intervention period [14], and low
responders were those that lost < 5% body weight over
the intervention period.

Quality control and normalisation of raw gene expression
data
The available raw microarray data underwent quality
control checks and were normalised using ArrayAnaly-
sis, a standardised pipeline [15]. The most appropriate
normalisation method was selected by the analysis pipe-
line, this was determined to be robust multi-array aver-
aging (RMA) for all included datasets.

Determining differentially expressed transcripts
Significantly differentially expressed transcripts were
determined by linear modelling of normalised data using
the limma package [16] in R [17] (R version 3.6.1., limma
version 3.40.6), and Benjamini-Hochberg correction for
multiple testing [18]. Transcripts were defined as signifi-
cantly differentially expressed with an adjusted p value <
0.05. Paired analysis was utilised to compare baseline
and post-intervention gene expression levels within par-
ticipants and unpaired analysis was utilised to compare
baseline HR and LR gene expression levels.
Significantly differentially expressed genes were visualised

using heatmaps and hierarchical clustering performed using

Table 1 Search terms

Query
number

Search term

1 overweight/ or exp obesity/[MeSH]

2 (overweight or over weight).mp.

3 obes*.mp.

4 Adiposity/[MeSH]

5 adipos*.mp.

6 1 or 2 or 3 or 4 or 5

7 ((weight or exercise or lifestyle or life style or diet* or food* or
intake or nutrition* or resistance or physical or aerobic or
strength) adj5 (intervention* or program* or therap* or
training or trial* or counsel* or educ*)).mp.

8 exp Nutrition Therapy/[MeSH]

9 bariatric surger*.mp.

10 exp Bariatric Surgery/[MeSH]

11 Obesity Management/[MeSH]

12 7 or 8 or 9 or 10 or 11

13 gene expression.mp.

14 gene expression/ or transcription, genetic/ or transcriptome/
[MeSH]

15 transcriptom*.mp.

16 gene* transcript*.mp.

17 rna/ or rna, messenger/[MeSH]

18 Rna.mp.

19 microarray*.mp.

20 exp Microarray Analysis/ OR sequencing, RNA/[MeSH]

21 nutrigenomics.mp.

22 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21

23 6 and 12 and 22

24 limit 23 to humans

Search terms were adapted for use in OVID Medline, Embase, Cochrane,
Cinahl, Scopus and Web of Science databases. Mp: title, abstract, original title,
name of substance word, subject heading word, floating sub-heading word,
keyword heading word, protocol supplementary concept word, rare disease
supplementary concept word, unique identifier, synonyms
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the gplots package in R (R version 3.6.1, gplots version
3.0.1.1.) using Euclidean distance for clustering.

Pathway analysis
Overrepresented pathways were identified using the Path-
Visio software (version 3.3.0) which utilises the Wikipath-
ways database [19, 20]. The human pathways were used
for this analysis (downloaded: 12/04/2019) which contains
521 distinct pathways. Pathways were considered overrep-
resented if they met the following criteria: z-score ≥ 1.96
and at least five genes within the pathway had an un-
adjusted p value < 0.05 [13]. For pathways that were over-
represented in multiple studies, log fold changes of genes
within the pathway were visualised using heatmaps and
hierarchical clustering performed as above. Where there
were multiple probes associated with a given gene, the log
fold changes of the probes were averaged together to give
a single value per gene within the pathway. These heat-
maps were used for visualisation purposes only.

Results
Study characteristics
The search was conducted in July 2019 and 5329 studies
were included in the first-pass screening after the removal
of duplicates. After full-text screening, seven articles, per-
taining to six studies, met inclusion criteria (Fig. 2) [21–27].
The main reasons articles were excluded were due to stud-
ies assessing global gene expression in whole blood rather
than PBMCs or the intervention did not contain a weight
loss component (e.g. participants were instructed to remain
weight stable throughout the intervention period, see

additional file 2 for full exclusion list). The six included
studies represented 118 participants who underwent a
weight loss intervention. Table 2 describes the studies’
characteristics. Two studies were randomised control trials
[25, 26] and four studies were cohort studies [21–24, 27].
One study was conducted in twelve adolescent males [24],
the other five were conducted in adults in which two stud-
ies’ participants were all male [21, 26], two studies’ partici-
pants were all female [22, 23] and, for one, the cohort
comprised of both male and female participants [25]. In
one study, the intervention was Roux-en-Y gastric bypass
bariatric surgery [23, 27]; for all others, the intervention
was focused around reduction in dietary energy. The lon-
gest intervention duration was 6 months [25] and the short-
est duration was four to five weeks (one full menstrual
cycle) [22]. Mean weight loss across the studies ranged
from 3.3–28.8 kg. The greatest weight loss occurred in
adults who underwent bariatric surgery [23, 27], and the
lowest was in females who underwent intermittent energy
restriction for one full menstrual cycle [22]. All included ar-
ticles measured global gene expression using microarray
technology.

Quality assessment
Four of the seven articles included were assessed as posi-
tive [22, 24–26], two as neutral [23, 27] and one as nega-
tive [21] for overall quality and risk of bias (Additional
file 1). Studies that were assigned negative or neutral
generally did not describe quality control procedures
with regard to RNA extraction and expression data in
sufficient detail.

Fig. 1 Workflow of methods of analysis of included papers after literature search. Where no raw or normalised global gene expression data was
available, papers were summarised narratively. Normalisation was conducted using the ArrayAnalysis online workflow (available at: arrayanalysis.
org) according to the microarray chip type. Where only normalised global gene expression data was available, the data entered the pipeline after
the normalisation step. High responders were defined as those that lost ≥ 5% body weight over the intervention period. Comparisons between
included papers were made at the pathway level. DEGs, differentially expressed genes, defined as any gene with an adjusted p value < 0.05; HR,
high responder; LR, low responder
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Summary of included studies
Of the seven included articles, six reported significant
changes in PBMC gene expression levels in response to
a weight loss intervention [21, 23–27] and one reported
no change [22]. Of the six studies reporting significant
gene expression changes, five performed further func-
tional analysis to explore enriched gene ontology and/or
biological pathways [21, 23, 24, 26, 27]. All studies
reporting significant gene expression changes reported
overrepresentation of genes in pathways related to gene
expression regulation and immune signalling. Crujeiras
et al. [21] and van Bussel et al. [26] identified that tran-
scripts associated with a number of oxidative stress and
inflammation pathways responded to an 8-week 35%
energy reduction or a 20% energy restriction diet for 12
weeks respectively. In particular, transcripts for the
genes TANK and TRAID3 were upregulated after weight
loss in Crujeiras et al.; both genes are involved in the
NF-κB signalling pathway which is a known immune
modulation pathway [21, 28]. Samblas et al. identified
CD44 as a potential biomarker of weight loss, finding
that CD44 was upregulated and hypomethylated in LR
compared to HR [25]. Pinhel et al., the only study in bar-
iatric surgery [23, 27], identified differential expression
of genes controlling gene expression regulatory and sig-
nalling mechanisms, including the mTOR pathway,
genes related to translation and TLR4 signalling, post-
operatively compared to pre-operatively. Rendo-Urteaga

et al. [24], the only study to explore gene expression
changes in response to weight loss in adolescents
reported differences in HR and LR at baseline, in
particular, decreased expression of genes involved in
inflammatory processes (including LEPR and SIRPB1)
and pathways related to cardiomyopathy in HR com-
pared to LR. In this study, LR were defined as maintain-
ing or increasing BMI standard deviation score (BMI
SDS) over the intervention period. Harvie et al. [22] had
the shortest duration intervention at one full menstrual
cycle (four to five weeks) and reported no differences in
gene expression levels in PBMCs in blood samples taken
before and after the intervention period.

Quantitative synthesis
After searching online data repositories and contacting
authors, raw gene expression data was obtained for 3 stud-
ies [22, 24, 26] and normalised data was obtained for one
study [23, 27]. Two authors provided individual weight
data [22, 24]. One paper with available raw gene expres-
sion data was not included in the quantitative synthesis as
less than 50% of the data was available and had been con-
ducted more than ten years ago [21]. Normalised gene
expression data were only available for one study, which
had been normalised using average normalisation through
GenomeStudio (Illumina, San Diego, California, United
States) [23, 27]. Statistical analysis of differentially
expressed transcripts and pathways were completed

Fig. 2 PRISMA flow diagram of studies included in the systematic review
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within studies and these results were compared and con-
trasted across studies due to differences in populations
and study designs.

Effect of intervention on gene expression
After correction for multiple testing, no transcripts were
significantly differentially expressed in PBMCs after the
intervention in Harvie et al. [22] and van Bussel et al.
[26] (adj p > 0.05). Of the two remaining datasets, 828
transcripts were significantly differentially expressed (adj
p < 0.05) in PBMCs after the intervention in Rendo-
Urteaga et al. [24] and 28 transcripts in Pinhel et al.
(Additional file 3) [23, 27]. No genes or groups of genes
were commonly differentially expressed across all
studies.
Heatmaps and hierarchical clustering (Fig. 3) revealed

a clear separation of gene expression between baseline
and post-intervention samples in Rendo-Urteaga et al.
and Pinhel et al., (Fig. 3 a and b) [23, 24].
Pathway analysis revealed that there was some overlap

between studies (Additional file 4, table 1). However, there
were no pathways common to all four explored studies.
Fifty-three pathways were altered in PBMCs after the inter-
vention in Rendo-Urteaga et al., fifteen in vanBussel et al.,
thirteen in Pinhel et al. and eight pathways were affected in
Harvie et al. [22, 24, 26]. There were two pathways that
were common to Rendo-Urteaga et al. and Pinhel et al.,

‘miRNAs involved in DNA damage response’ (WikiPath-
ways: WP1545) and ‘circadian rhythms related genes’
(WikiPathways: WP3594) [23, 24] (Additional file 4).
Rendo-Urteaga et al. and vanBusel et al. had three overlap-
ping pathways, ‘apoptosis modulation and signalling’
(WikiPathways: WP3624), ‘IL-4 signalling pathway’
(WikiPathways: WP395) and ‘B cell receptor signalling
pathway’ (WikiPathways: WP23) [24, 26].

Comparison of the global gene expression response of HR
and LR to a weight loss intervention
Two articles provided individual-level weight change
data and individual subjects were then grouped into high
(n = 13) and low (n = 17) responders (Harvie et al. and
Rendo-Urteaga et al.) [22, 24]. All participants in Pinhel
et al. had significant weight loss 6 months after bariatric
surgery, and so, the whole group were deemed HR
(baseline weight: 115.3 ± 19.4 kg, follow-up weight: 85.3
± 13.8 kg, n = 13) [23].

Comparison of gene expression levels between HR and LR
at baseline
For Rendo-Urteaga et al. [24], 23 transcripts were signifi-
cantly differentially expressed between HR and LR at base-
line (Fig. 4a, Additional file 3). LEPR (Leptin Receptor)
expression levels were lower in PBMCs of HR compared
with LR (log fold change − 0.43, adj. p value <0.001).

Fig. 3 Heatmap and hierarchical clustering of the differentially expressed genes when comparing baseline to post-intervention samples.
Heatmaps were created using the gplots package (version 3.0.1.1.) in R (version 3.6.1). Columns represent individual samples and rows represent
individual genes. Samples have been clustered using Euclidean distancing. A Top 100 significantly differentiated genes for Rendo-Urteaga et al.
(adj. p value <0.05). B The 28 significantly differentiated genes for Pinhel et al. (adj. p value <0.05)
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There were no significantly differentially expressed tran-
scripts (adjusted p value < 0.05) between HR and LR at
baseline for Harvie et al. [22]. Pathway analysis of Rendo-
Urteaga et al. found that 21 pathways differed between
HR and LR and 20 pathways altered in Harvie et al. be-
tween HR and LR at baseline (Additional file 4, table 2)
[22, 24]. Two pathways were common between the two
studies, ‘cytoplasmic ribosomal proteins’ (WikiPathways:
WP477, Additional file 6) and ‘Initiation of transcription
and translation elongation at the HIV-1 LTR’ (Wikipath-
ways: WP3414).
Heatmaps and hierarchical clustering showed a separ-

ation of HR and LR samples in both studies despite no
transcripts being significantly differentially expressed
(adjusted p value < 0.05) between HR and LR in Harvie
et al. (Fig. 4b) [22]. In Rendo-Urteaga et al., all but two
of the 23 significantly differentially expressed transcripts
were downregulated in HR compared to LR (Additional
file 3) [24].

Comparing gene expression changes after a weight loss
intervention between HR and LR
When the response to the intervention was compared
between HR and LR at the pathway level, there was
some overlap between HR and LR within studies

(Additional file 4, Table 3). Adolescent males HR
(Rendo-Urteaga et al.) had the most pathways enriched
in response to the intervention (42 pathways) [24]. There
were seventeen pathways commonly enriched between
HR and LR to the intervention for Rendo-Urteaga et al.
including the pathways ‘IL1 and megakaryocytes in obes-
ity’, and ‘regulation of toll-like receptor signalling’ (Wiki-
pathways: WP2865 and WP1449 respectively). HRs in
Pinhel et al. had thirteen pathways enriched and HR in
Harvie et al. had five pathways enriched in response to
their respective interventions [22, 23]. There was no
overlap in enriched pathways between HR and LR fol-
lowing the intervention in Harvie et al. [22].
When comparing the effect of the intervention on gene

expression levels in HR between studies there was some
overlap in enriched pathways (Fig. 5). There was one path-
way enriched in HR in both Rendo-Urteaga et al. and
Pinhel et al.: ‘circadian rhythm related genes’ (WikiPath-
ways: WP3954) and one pathway enriched in HR in both
Harvie et al. and Pinhel et al., ‘target of rapamycin (TOR)
signalling’ (Wikipathways: WP1471) [22–24]. (Additional
file 4). There were two pathways commonly enriched in
HR between Rendo-Urteaga et al. and Harvie et al., ‘regu-
lation of toll-like receptor signalling’ and ‘toll-like receptor
signalling pathways’ (Wikipathways: WP1449 and WP75

Fig. 4 Heatmap and hierarchical clustering of the differentially expressed genes when comparing HR and LR samples at baseline. Heatmaps were
created using the gplots package (version 3.0.1.1.) in R (version 3.6.1). Columns represent individual samples and rows represent individual genes.
Samples have been clustered using Euclidean distancing. A Top 100 differentially expressed (p value > 0.05) between HR and LR at baseline for
Harvie et al. B The 30 significantly differentially expressed genes (adj. p value < 0.05) between HR and LR at baseline for Rendo-Urteaga et al. HR,
high responders defined at those that lost > 5% body weight over the intervention period. LR, low responders
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respectively) [22, 24]. Specifically, with regard to HR in
Harvie et al., there was a downregulation of genes in-
volved in this pathway in particular TLR1 TLR4 and
TIRAP (unadjusted p value < 0.05) [22]. Contrastingly,
in HRs in Rendo-Urteaga et al., there was a downregu-
lation of the cytokines activated by the pathways, spe-
cifically TNF, IL1B, IL6 and CCL3 and CCL4
(unadjusted p value < 0.05) but a small, non-significant
upregulation of TLR genes [24] (Fig. 6).

Discussion
This review aimed to describe transcriptomic changes
that occur with weight loss and evaluate the similarities
and differences between weight loss approaches. We
report that transcriptomic changes at both the transcript
and pathway level in PBMCs in response to weight loss
interventions were small and highly variable, especially
in adults. No transcripts were differentially expressed in
all studies across all comparisons. However, seven path-
ways were impacted in two out of four studies in re-
sponse to the weight loss interventions, and two
pathways, ‘genes relating to cytoplasmic ribosomal pro-
teins’, (Additional file 5) and ‘Initiation of transcription
and translation elongation at the HIV-1 LTR’ in HR ver-
sus LR participants at baseline. Two pathways relating to
toll-like receptor signalling were altered in HR in both
Rendo-Urteaga et al. and Harvie et al. [22, 24].

The largest and most varied transcriptomic response
to weight loss in PBMCs occurred in adolescent males,
followed by adults who had bariatric surgery. Adoles-
cents had modest weight loss after 10 weeks of calorie
restriction (mean BMI SDS change: HR − 0.64, LR: −
0.07) compared with adults 6 months after bariatric sur-
gery (mean weight loss: − 28.8 kg) [23, 24]. This suggests
that a relatively smaller amount of weight loss is needed
in adolescents to elicit a transcriptomic response in
PBMCs compared to adults. It should be noted, how-
ever, that due to the lack of available phenotypic data,
subgrouping of Pinhel et al. was not possible. Therefore,
the differences in gene expression between Pinhel et al.
and Rendo-Urteaga et al. could, in part, be explained by
higher heterogeneity in response to bariatric surgery in
adults; which may have hindered full investigation of the
effect of the intervention in Pinhel et al. Rendo-Urteaga
et al. is the only study to date to explore transcriptomic
changes in PBMCs with weight loss in adolescents and
whether this response is unique to this study design re-
quires validation [24].
Stunted metabolic response to a stimulus such as

weight loss demonstrates an inadequate ability to
respond in a systematic and coordinated way [30].
Excess adiposity especially visceral adiposity drives a
state of chronic low-grade inflammation linked to
blunted metabolic adaptation [31]. There is evidence

Fig. 5 Euler diagram of pathways altered in HR in response to a weight loss intervention. Euler diagram created using eulerr package (version
6.1.0) in R (version 3.6.1) [29]
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suggesting that adults and adolescents with obesity have
different serum concentrations of particular cytokines
which may, in part, explain the reduced responsiveness
of the PBMC transcriptome to weight loss in adults in
the studies reviewed here [32]. Indeed, it has been re-
ported that there is a higher incidence of metabolically
healthy obesity in adolescents than adults and that ado-
lescents require a relatively smaller amount of weight
loss which results in changes in circulating inflammatory
markers such as adiponectin and CRP [33–35]. This sug-
gests that intervention at an early age is important and
that weight loss attempts in adults can be impacted by a

host of complex factors that make weight loss
challenging.
Differentially expressed genes and pathways were con-

sidered separately, using different criteria, as they pro-
vide different levels of information. Robust cut-offs are
required to establish whether the transcription levels of
a single gene can significantly change with weight loss or
between responder groups whereas the clustering of
genes on a given pathway is less likely to happen by
chance and their cumulative change, whilst small in each
instance, may collectively be biologically meaningful.
The pathways ‘toll-like receptor signalling’ and

Fig. 6 Heatmap and hierarchical clustering of genes involved in the two pathways relating to toll-like receptor signalling and regulation (WP1449
and WP75) that were enriched following the intervention in high responders in Rendo-Urteaga et al. and Harvie et al. Heatmaps were created
using the gplots package (version 3.0.1.1.) in R (version 3.6.1). Columns represent studies and rows represent individual genes, where multiple
probes mapped to one gene, expression of the probes was averaged to give one expression value per gene. Samples have been clustered using
Euclidean distancing

Day et al. Genes & Nutrition           (2021) 16:12 Page 10 of 14



‘regulation of toll-like receptor (TLR) signalling’
(WP1449 and WP75 respectively) were enriched after
the interventions in HR for Harvie et al. and Rendo-
Urteaga et al. [22, 24]. TLR signalling activates proin-
flammatory cytokines and has been implicated in several
tissues as mediators of obesity-induced proinflammation
and insulin resistance in humans and mice [36–38]. De-
creased activity of this signalling pathway, as seen in
Rendo-Urteaga et al., suggests an attenuation of pro-
inflammatory signalling in PBMCs with weight loss [24].
In contrast, this attenuation is not present in Harvie
et al., and whilst over-represented, there was no clear
directional change across the pathway, despite significant
weight loss [22].
The pathway ‘cytoplasmic ribosomal proteins’ (WP477)

was differentially expressed between HR and LR in both
Rendo-Urteaga et al. and Harvie et al. with genes relating
to this pathway generally decreased in HR in Harvie et al.
and gene activity more varied in Rendo-Urteaga et al.’s
HR [22, 24]. Ribosomes are responsible for protein synthe-
sis. Analysis of gene expression in whole blood of partici-
pants with obesity has revealed upregulation of ribosomal
proteins in obesity that may be due to increased metabolic
demand [39]. Differential expression of this pathway could
be due to differing energetic requirements.
Differences in intervention response both within and

across studies highlight inconsistencies in gene expres-
sion responses to weight loss interventions. This raises
the question of whether a HR to one intervention would
necessarily be a HR in another. In order to be able to
work towards utilising these data for therapeutic use, we
need to work towards standardisation of biological ma-
terial collection, reporting and data pooling. One limita-
tion of pathway analysis is the presence of pathways
with overlapping or similar functions allowing genes to
be represented on multiple pathways which may lead to
over-representation of genes of interest. Nevertheless,
modulation of functionally similar pathways can indicate
shifts in expression of broader biological functions.
The lack of commonality in response across studies

may partially be explained by the high heterogeneity
amongst participants, study designs and differences in
the number of subjects in each subgroup. Whilst study
design differences introduce variability, it allows for the
exploration of whether transcriptomic changes in
PBMCs in response to weight loss are conserved across
a range of individuals and intervention designs, which is
a strength of this review. It appears in the included stud-
ies that transcriptomic changes with weight loss are not
consistently conserved. High heterogeneity amongst in-
cluded studies has also allowed for the exploration of
transcriptomic data within nutrition research in such a
way that accommodates the inevitable variability within
datasets and this approach could be applied with the

inclusion of future studies. This is critical given the
known high individual variability in response to dietary
interventions. As was demonstrated, gene expression
responses to the intervention were different between HR
and LR, which may mask effects when assessing the
transcriptomic response of the group as a whole.
Obesity itself is a complex and heterogenous condition

with the potential for complications to arise in any tissue
with only partially overlapping pathophysiology [40].
Small sample sizes often hinder the exploration of small,
subtle changes in global gene expression, such as those
observed with weight loss. To take full advantage of the
depth of information available through transcriptomic
analysis, standardised and detailed reporting is necessary,
enabling the comparison of multiple studies, increasing
sample sizes and the utility of these data. To minimise
variability, there must be an increase in the consistency
of reported data that are stored in an open-access and
user-friendly format. Data sharing will support transla-
tion of research findings into practice, which remains
elusive until this is realised. This is a reality which is
rarely investigated but a widespread issue in nutrition
research.
PBMCs are a heterogenous cell population which in it-

self introduces variability [41]. One of the limitations of
this review is the inability to be able to quantify the sub-
populations of cells within the included studies. Despite,
or perhaps because of, the variability observed in the
transcriptomic response to weight loss interventions,
PBMCs remain a tissue of interest. PBMCs have previ-
ously shown good correlation with white adipose tissue
in immune system genes but not with other processes,
in particular lipid metabolism [42]. It is therefore not
surprising that our results have yielded transcriptional
modulation of genes involved in immune response, such
as TLR signalling, but it is also important to note that
these functions also have a role in obesity and its treat-
ment. Many of the complications associated with obesity
such as non-alcoholic fatty liver disease and type 2 dia-
betes are connected with inflammatory responses of tis-
sues [5, 43, 44]. In order to make the best use of these
data and to move towards a mechanistic understanding
of weight loss, exploration of transcriptomic responses
in conjunction with other tissue types is urgently
needed.
Transcriptomic analysis shows promise in investigating

phenotypic features that could be used to develop
group-specific strategies. To achieve this, data reporting
must be transparent and standardised. For example, a
limitation in this review is that not all included tran-
scriptomic datasets could be analysed alongside
participant-level weight data. The use of multiple data-
sets is important as it has enabled the capture of vari-
ability and commonality across studies which cannot be
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seen when assessing single studies. Next, steps involve
meta-analytic techniques that require raw gene expres-
sion data together with relevant phenotypic data, in
order to address variability in transcriptomic responses.
There is, therefore, a need for reporting standards for
nutrigenomic studies that include detailed guidelines on
reporting for collection, analysis and open-access avail-
ability of raw data and phenotypic outcomes. The recent
OBEDIS guidelines take the first step towards standard-
isation of obesity research with the core variables re-
quired for weight loss interventions and is a stepping
stone to work towards international standardisation
within obesity research including omics technologies
such as transcriptomics [45].

Conclusions
In conclusion, this review shows that transcriptomic
shifts in PBMCs do occur in response to weight loss.
These shifts appear to be variable and, to date, present
an inconsistent picture; however, variability itself may be
a useful indicator of metabolic health and further explor-
ation of this is needed. An integral part of moving this
area of research forward lies in developing reporting
standards that require transparency in method reporting
and open access to transcriptomic and phenotypic data.
Any move towards personalised weight management
needs to be underpinned by a comprehensive under-
standing of the biological variation of obesity, and treat-
ment response.
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