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Abstract

The process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for
its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological
applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear
magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence
(PINE), that achieves robust, unsupervised probabilistic labeling of data. The computational core of PINE uses estimates of
evidence derived from empirical distributions of previously observed data, along with consistency measures, to drive a
fictitious system M with Hamiltonian H to a quasi-stationary state that produces probabilistic label assignments for relevant
subsets of the data. We demonstrate the successful application of PINE to a key task in protein NMR spectroscopy: that of
converting peak lists extracted from various NMR experiments into assignments associated with probabilities for their
correctness. This application, called PINE-NMR, is available from a freely accessible computer server (http://pine.nmrfam.
wisc.edu). The PINE-NMR server accepts as input the sequence of the protein plus user-specified combinations of data
corresponding to an extensive list of NMR experiments; it provides as output a probabilistic assignment of NMR signals
(chemical shifts) to sequence-specific backbone and aliphatic side chain atoms plus a probabilistic determination of the
protein secondary structure. PINE-NMR can accommodate prior information about assignments or stable isotope labeling
schemes. As part of the analysis, PINE-NMR identifies, verifies, and rectifies problems related to chemical shift referencing or
erroneous input data. PINE-NMR achieves robust and consistent results that have been shown to be effective in subsequent
steps of NMR structure determination.
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Introduction

Labeling a set of fixed data with another representative set is the

generic description for a large family of problems. This family

includes clustering and dimensionality reduction, an approach in

which the original dataset is represented by a set of typically far

lower dimension (the representative set). The representative set,

often the parameter vector that signifies a set of data points, can be

simply the cluster mean (center) or may include additional

parameters, such as the cluster diameter. The labeling problem

is important, because it is encountered in many applications

involving data analysis, particularly where prior knowledge of the

probability distributions is incomplete or lacking.

A challenging instance of the labeling problem arises naturally

in nuclear magnetic resonance (NMR) spectroscopy, which along

with X-ray crystallography is one of the two major methods for

determining protein structures. Although NMR spectroscopy is

not as highly automated as the more mature X-ray field, it has

advantages over X-ray crystallography for structural studies of

small proteins that are partially disordered, exist in multiple stable

conformations in solution, exhibit weak interactions with ligands,

or fail to crystallize readily [1], provided that the NMR signals can

be assigned to specific atoms in the covalent structure of the

protein. The labeling problem known as the ‘‘assignment

problem’’, has been one of the major bottlenecks in protein

NMR spectroscopy.

Protein NMR structure determination generally proceeds

through a series of steps (Figure 1). The usual approach is first

to collect data used in determining backbone and aliphatic side

chain assignments (front-end labeling). These assignments are then

used to interpret data collected in order to determine interatomic

or torsion angular constraints (back-end labeling) used in structure

determination.

The front-end ‘‘labeling process’’ associates one or more NMR

parameters with a physical entity (e.g., nucleus, residue, tripeptide,

helix, chain); the back-end ‘‘labeling process’’ associates NMR
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parameters with constraints that define or refine conformational

states. In reality, the distinction between front-end and back-end is

artificial. Strategies have been developed that use NOESY data for

assignments [2,3] or for direct structure determination without

assignments [4]. In addition, as demonstrated recently, structures

of small proteins can be determined directly from assigned

chemical shifts by a process that largely bypasses the back-end

[5,6]. Ideally, all available data should be used in a unified process

that yields the best set of assignments and best structure consistent

with experiment and with a probabilistic analysis that provides

levels of confidence in the assignments and atomic coordinates.

Prior Approaches to the Problem
The usual approach to the solution of the problem of assigning

labels to subsets of peaks (spin subsystems) assembled from

multiple sets of noisy spectra is to collect a number of

multidimensional, multinuclear datasets. After converting the time

domain data to frequency domain spectra by Fourier transforma-

tion, peaks are picked from each spectrum for analysis. Methods

have been developed for automated peak picking or global analysis

of spectra to yield models consisting of peaks with known intensity,

frequency, phase, and decay rate or linewidth [7,8]. In the ideal

case, the resulting peak-lists identify combinatorial subsets of two or

more covalently bonded nuclei by their respective frequencies

(Figure 2). These subsets must be ‘‘assembled’’ in a coherent way

to ‘‘best’’ correspond to specific atoms in the amino acid sequence

of the protein. In practice, peak lists do not report on all nuclei

(because some peaks are missing), and ‘‘noise peaks’’ (peaks

incorrectly reported as true peaks) are commonplace. In the

examples analyzed here (Table 1), the level of missing peaks varied

between 9% and 38%, while the level of noise peaks varied

between 10% and 135%. The large number of false positives as

well as false negatives typically present in the data result in an

explosion of ‘‘ambiguities’’ during the assembly of subsets.

A common feature among prior approaches has been to divide

the assignment of labels into a sequence of discrete steps and to

apply varying methods at each step. These steps typically include

an ‘‘assignment step’’ [9–12], a secondary structure determination

step [13–15], and a ‘‘validation step’’ [16]. The validation step, in

which a discrete reliability measure indicates the possible presence

of outliers, misassignments, or abnormal backbone chemical shift

values, is sometimes omitted. Other steps can be added, or steps

can be split further into simpler tasks. For example, backbone and

side chain assignments frequently are carried out sequentially as

separate processes. Some approaches to sequence-specific assign-

ment rely on a substantially reduced combinatorial set of input

data by assuming a prior subset selection, e.g., prior spin system

assembly [17,18]. The specification of conformational states can

be added as yet another labeling step. For example, backbone

dihedral angles can be specified on a grid (e.g., 30u intervals) as

determined from chemical shifts [19], coupling constants and/or

NOEs [20], or reduced dipolar couplings [21].

The NMR assignment problem has been highly researched, and

is most naturally formulated as a combinatorial optimization

problem, which can be subsequently solved using a variety of

algorithms. A 2004 review listed on the order of 100 algorithms

and software packages [22], and additional approaches are given

in a 2008 review [23]. Prior methods have included stochastic

approaches, such as simulated annealing/Monte Carlo algorithms

[24–26], genetic algorithms [27], exhaustive search algorithms

[17,28–30], heuristic comparison to predicted chemical shifts

derived from homologous proteins [31], heuristic best-first

algorithms [32–34], and constraint-based expert system that use

heuristic best-first mapping algorithm [35]. Of these, the most

established, as judged from BMRB entries that cite the assignment

software packages used, are Autoassign [10] and GARANT [27].

Similarly, a wide range of methods have been used to predict

the protein secondary structural elements that play an important

role in classifying proteins [36,37]. Prior approaches to assigning a

secondary structure label to each residue of the protein have

included the Dd method [38], the chemical shift index method

[14], a database approach (TALOS) [19], an empirical probabil-

ity-based method [39], a supervised machine learning approach

[40], and a probabilistic approach that utilizes a local statistical

potential to combine predictive potentials derived from the

sequence and chemical shifts [13]. Recently, a fully automated

approach to protein structure determination, FLYA, has been

described that pipelines the standard steps from NMR spectra to

structure and utilizes GARANT as the assignment engine [41].

The FLYA approach demonstrates the benefits of making use of

information from each step in an iterative fashion to achieve a

high number of backbone and side chain assignments.

Our goal is to implement a comprehensive approach that

utilizes a network model rather than a pipeline model and relies on

a probabilistic analysis for the results. We reformulate the

combinatorial optimization problem whereby each labeling

configuration in the ensemble has an associated but unknown

non-vanishing probability. The PINE algorithm enables full

integration of information from disparate steps to achieve a

probabilistic analysis. The use of probabilities provides the means

for sharing and refining incomplete information among the

current standard steps, or steps introduced by future develop-

ments. In addition, probabilistic analysis deals directly with the

multiple minima problem that arises in cases where the data does

not support a single optimal and self-consistent state. A common

example is a protein that populates two stable conformational

states.

The PINE-NMR package described here represents a first step

in approaching the goal of a full probabilistic approach to protein

NMR spectroscopy. PINE-NMR accepts as input the sequence of

the protein plus peak lists derived from one or more NMR

experiments chosen by the user from an extensive list of

Author Summary

What mathematicians call the ‘‘labeling problem’’ underlies
difficulties in interpreting many classes of complex
biological data. To derive valid inferences from multiple,
noisy datasets, one must consider all possible combina-
tions of the data to find the solution that best matches the
experimental evidence. Exhaustive searches totally outstrip
current computer resources, and, as a result, it has been
necessary to resort to approximations such as branch and
bound or Monte Carlo simulations, which have the
disadvantages of being limited to use in separate steps
of the analysis and not providing the final results in a
probabilistic fashion that allows the quality of the answers
to be evaluated. The Probabilistic Interaction Network of
Evidence (PINE) algorithm that we present here offers a
general solution to this problem. We have demonstrated
the usefulness of the PINE approach by applying it to one
of the major bottlenecks in NMR spectroscopy. The PINE-
NMR server takes as input the sequence of a protein and
the peak lists from one or more multidimensional NMR
experiments and provides as output a probabilistic
assignment of the NMR signals to specific atoms in the
protein’s covalent structure and a self-consistent probabi-
listic analysis of the protein’s secondary structure.

Protein NMR Analysis by PINE
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possibilities. PINE-NMR provides as output a probabilistic

assignment of backbone and aliphatic side chain chemical shifts

and the secondary structure of the protein. At the same time, it

identifies, verifies, and, if needed, rectifies, problems related to

chemical shift referencing or the consistency of assignments with

determined secondary structure. PINE-NMR can make use of

prior information derived independently by other means, such as

selective labeling patterns or spin system assignments. In principle,

the networked model of PINE-NMR is extensible in both

directions within the pipeline for protein structure determination

(Figure 1): it can be combined with adaptive data collection at the

front or with three-dimensional structure determination at the

back end. Such extensions should lead to a rapid and fully

automated approach to NMR structure determination that would

yield the structure most consistent with all available data and with

confidence limits on atom positions explicitly represented.

In addition to its application to NMR spectroscopy, the PINE

approach should be applicable to the unbiased classification of

biological data in other domains of interest, such as systems

biology, in which data of various types need to be integrated:

genomics (DNA chips), proteomics (MS analysis of proteins), and

metabolomics (GC-MS, LC-MS, and NMR) data collected as a

function of time and environmental variables.

Methods

General Approach
The fundamental idea of PINE is to embed the original

assignment problem into a higher dimensional setting and to use

empirically estimated compatibility (or similarity) conditions to

iteratively arrive at an internally coherent labeling state. These

conditions are embodied in the form of a parameterized

Hamiltonian (energy function) that evolves at each iteration step.

In the quasi-stationary regime, this construction yields clusters,

defined as subsets of chemical shift data with assigned labels. The

clusters have strong intra-cluster links and highly localized inter-

Figure 1. Conventional stages in protein structure determination by NMR. After the data have been collected, the challenging ‘‘front-end’’
process leads to sequence-specific amino acid labeling. The ‘‘back-end’’ process then leads to the three-dimensional structure.
doi:10.1371/journal.pcbi.1000307.g001
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cluster couplings. We view each possible cluster of related

experimental data in the domain as a ‘‘site’’ that is to be

potentially labeled. More specifically, our goal is to discover (learn)

the map f that relates the ‘‘domain’’ (set of subsets of data) to the

‘‘codomain’’ (set of subsets of labels):

f : 2X?2L

where X = [x1, x2, …, xm] is the set of data values available from all

experiments, and L = [L1, L2, …, Ln] is the set of labels associated

to the chemical shifts. At first it may appear that this map is trivial,

because one protein has precisely one set of correct chemical shifts.

However, breaks in the backbone sequential data, incompleteness

of P : 2X |2L? 0,1½ � with
P
2L

P x,2Lð Þ~1, x[2X experi-

mental peak lists, and the presence of many noise peaks renders

the discovery of a deterministic one-to-one map to the sequential

labels unpromising. Rather than discovering a single map, we opt

to find a set of maps, each with its associated probability. More

directly, we choose to associate subsets of labels from the list L to

subsets of data from the list X, each with a commensurate

probability:

In order to formulate the computational problem, we require

that the labels for data values satisfy constraints that arise from the

system of neighborhoods built around each data value. The system

of neighborhoods is a dynamic state variable that co-evolves with

the probability values. We assign an initial set of labels, L, with

associated weights to each input data point, S (e.g., chemical shift)

and introduce a measure of similarity based on distances between

‘‘neighboring points’’ (Figure 3). Typically, in our starting

configuration, the possible labels for each data value far exceed

the number of sites. The set of labels contains the ‘‘null’’ label to

allow for the case where a data element cannot be labeled.

The approach used to measure the global compatibility or

support for the specific labeling of site S at iteration step m is to

aggregate the compatibilities over versions of individual evidences

by applying a variation of the belief propagation algorithm [42].

The evidence for assignment is weighted by the probability of each

‘‘neighbor’’ being correct, and the probabilities at stage m can be

updated by replacing them by the new weight configuration state.

As probabilities evolve, the information content of changing

configurations is monitored for the optimally ‘‘informative’’ state.

The resulting model is analogous to the random cluster Fortuin

and Kasteleyn (FK) model [43]. In practice, a straightforward

implementation leads to densely connected networks with noisy

weights and no principled way to control the iteration steps.

To implement the intuitively appealing ideas presented above

that are designed to find the optimal state in the form of marginal

probabilities, we have devised an iterative approach that utilizes

topology selection followed by a variation of belief propagation

algorithm [42] and subsequent adjustment of initial weights and

topology. This topology selection step plays a key role in achieving

robust and computationally efficient results.

Mathematical Formulation
We proceed by analogy to FK [43]. Let G = (V,E) be any general

graph, with eME an edge in G, and nMV a vertex. The set of

assignments (or labels) for each vertex is designated by [1,2,…,q].

Figure 2. Conventional process of resonance assignments for a
protein labeled with stable isotopes (13C and 15N). Peaks
observed in multidimensional spectra are matched to search for
common frequencies. Some common frequencies identify atoms within
a residue; others identify atoms in neighboring residues. The common
visual aid in this process is a series of paired strip plots from
complementary NMR experiments. Strips from CBCA(CO)NH (a and c)
and HNCACB (b and d) experiments can be used here to assign the
tripeptide Thr-Tyr-His. Starting with Ca (CA) and Cb (CB) frequencies
assumed to belong to Thr66 (strip a), a horizontal trace (line), arising
from the common frequency of NH nuclei, is used to locate Ca and Cb of
Tyr67 in (strip b). To continue the process, the same peaks are located in
(strip c), and the peaks are traced to strip d. In strip d, given the
accepted tolerances across spectra (shown by boxes around the
selected peaks), several alternative assignments are plausible for His68.
These additional peaks may be artifacts (false peaks), or peaks from
other nuclei with similar frequency. Depending on the starting point of
the assignment process, the choice of experiments, the amount of

conflicting information, or other factors, an exponentially expanding
number of alternative assignments can arise, rendering a computational
solution intractable. This difficulty has proved to be a major drawback
for NMR structure determination, particularly for larger proteins.
doi:10.1371/journal.pcbi.1000307.g002
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The ‘‘configuration energy’’ of this system is encoded in the

partition function:

Z~
X

l:V? 1,2,...,qf g
P
e[E

We:d l við Þ,l vj

� �� �
e~Svi,vjT ð1Þ

In this formula, the outside sum is performed over the

configuration states of the system represented by the map l, and

the inside product measures the compatibility of the vertex labels

joined by the edge e. Each edge is weighted by the factor We and

has end-point vertices Svi,vjT, and d is the compatibility measure

of end-point vertices configuration. By defining ve~{1=bWe and

d l við Þ,l vj

� �� �
~{1=blog l við Þ,l vj

� �� �
, Eq 1 can be rewritten as:

Z~
X

l:V? 1,2,...,qf g
e
{b
P
e[E

ve:u l við Þ,l vjð Þð Þ
e~Svi,vjT ð2Þ

In the setting of statistical physics, the Boltzmann weight of a

configuration is e{bH , where H (the sum in the exponential)

represents the energy of the configuration and b is a parameter

called the inverse temperature. Because the weights are assumed to

be positive, they can be interpreted probabilistically (after

normalization by Z) as a probability measure on the qN states

for the graph G where N is the number of vertices.

In the standard random-cluster model, the neighborhood

structure, or topology, of the graph is prescribed, and the objective

is to find the ground state for a given set of weights by varying the

‘‘spin’’, or labeling, configurations. In our case, we are

determining the ground state ensemble and the topology of the

model at the same time. At each iteration step i, we define Ai, a

subset of the graph G, where Ai V ,Sið Þ, Si(E, and evaluate the

partition function for this subset. We evolve the topology of the

graph at each iteration by the addition and removal of edges and

by refining the edge weights toward the optimum topology as

described in the algorithm section. A local Bayesian updating

procedure updates the weights, and the local rate of change of

weights is used to modify the corresponding local topology of the

graph. On the subsequent iteration, our algorithm reintegrates

these local modifications in the context of the entire network and

attempts to establish a new quasi-stationary state.

The algorithm must address two critical challenges. The data

that describe edge weights and states in Eq 2 are derived from

empirical relationships that involve noisy data, and, therefore, a

straightforward deterministic search of the resulting combinatorial

space would be infeasible. In addition, the computational

complexity of the resulting problem grows rapidly with the

number of labels and the topology of the graph; thus, a suitable

starting and evolving representation of the topology, and a

corresponding approximation algorithm is the key to obtaining a

robust solution to this problem.

PINE-NMR
The probabilistic construction used in PINE-NMR belongs to

the general class of graphical models in which dependencies

among random variables are constructed ahead of the inference

task. In cases where the graph of dependencies is acyclic, there are

powerful and efficient algorithms that correctly maximize the

marginal probabilities through collecting messages from all leaf

nodes at a root node [44]. When the graph is not acyclic, current

algorithms for graphs with cycles often reach oscillatory states,

converge to local maxima, or achieve incorrect marginals due to

computational difficulties. Approaches have been described in the

literature for dealing with a single loop condition [45] or for

converging under alternative free energy approximations [46,47].

‘‘Tree-based reparameterization’’ algorithms [48] have been

described as a general approach that iteratively reparameterizes

the distributions without changing them on the subtrees in the

original graph. These algorithms, which are geared toward

addressing the approximation of marginals in the presence of

loops, represent trade-offs among robustness, accuracy, computa-

tional speed, and efficiency of implementation. Our modification

provides a simple extension that can be described as an adaptive

form of coarse-to-fine approximation. We start with a ‘‘coarser

topology’’ and explore more refined factorizations of the

probability distribution and look for stable fixed points. In our

adaptive approach, the extension of the state space (embodied in

the algorithm) plays a critical role. In intuitive terms, the

additional degrees of freedom (null states) provide ‘‘room for

change’’ for existing distributions as the topology is being refined.

The internal working of the stepwise factorization of the

probability distribution requires a coarse estimate on the initial

threshold that reduces the connectivity degree of the graph. In our

case, this approximation is arrived at using a combination of

theory and empirical investigation.

Figure 4 presents an overview of the probabilistic network

implemented in PINE-NMR. Sets of probabilistic influence sub-

networks are combined into a larger influence network, and each

sub-network may have its own computational model used to

perform the inference task. The entire probabilistic network is

constructed by considering the conditional dependencies of the

sub-networks. The actual implementation of PINE-NMR entails a

fairly complicated network with more than 30,000 lines of code in

Matlab and other supporting scripting language. A descriptive and

stepwise version is given below.

Figure 3. Illustration of the system of neighborhoods built
around each data value in PINE. Each input data point (S) is linked
to a set of labels (L) with associated weights. Similarity measures and
constraints are utilized to construct each neighborhood system or
topology (as denoted by the arrows).
doi:10.1371/journal.pcbi.1000307.g003
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Figure 4. Global network of relationships in PINE-NMR. A set of probabilistic influence sub-networks are combined into a larger influence
network. The iterative probabilistic inference on the complex network ensures globally consistent labeling.
doi:10.1371/journal.pcbi.1000307.g004
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Basic Algorithm for PINE-NMR
1. Read input data and check for errors. If errors are found,

report errors and abort.

2. Align the 1H, 15N, and 13C dimensions of all spectra

independently.

3. Generate spin systems (Figure 5).

(a) Derive the similarity scores of peaks Xi
j across spectra.

Pi,m
j,n ~

f X i
j ,X m

n

� �
P
k

X i
j ,X k

n

� � ,

f X ,Yð Þ~
e{d x,yð Þ=C if d x,yð Þƒ2C

0 if d x,yð Þw2C

( ð3Þ

The distance function denoted by d is the ordinary Euclidean

distance along the common dimensions of the vectors, and C

is determined by the spectral resolution in each dimension of

a multidimensional experiment. The default values are

0.25 ppm for 15N and 13C, and 0.02 ppm for 1H. The

existence of peaks closer than default values in any spectra

adjusts C accordingly. The values can also be overridden

manually.

(b) Begin with sensitive spectra; build probabilistic spin systems

for backbone atoms:

NS~0; # comment : set the number of spin systems

E~ e1,e2, . . . ,enf g; # comment : Rank the experiments

based on sensitivity

for each experiment ej[E

for each peak X i
j , i~ 1 : mð Þ, in experiment j

if X i
j has not been visited before

generate a spin system SSNS based onpeak X i
j ;

NS~NSz1;

for each experiment q 1 : nð Þ except j

find allpeaks p 1 : kð Þ in exp eriment q

if f X i
j ,X p

q

� �
=0, add to list SSNS with

probability P
i,p
j,q; flag P as visited

(c) The resulting spin systems have the following fields (some

fields might be empty or have several choices with different

probabilities):

1:HA i{1ð Þ 2:CB i{1ð Þ 3:CA i{1ð Þ 4:CO i{1ð Þ

5:N ið Þ 6:H ið Þ 7:HA ið Þ 8:CB ið Þ 9:CA ið Þ 10:CO ið Þ

(d) Derive connectivity scores for spin systems by a formula

analogous to 3.a. The score P(SSi,SSj) is measured using

fields 7–10 of SSi and fields 1–4 of SSj.

(e) Utilize the scores to assemble the spin systems to triplet spin

systems.

4. Estimate the b factor and c factor, which are the measures of

data quality defined as follows:

b~
number of fields in spin systems with unique choices

total number of fields in spin systems
;

c~
number of fields in triplet spin systems with unique choices

total number of fields in triplet spin systems

In calculating any of the above formulas, only the fields with

choices are considered. For example if none of the experiments

provided by the user has HA information, HA fields are not used

in the calculation.

5. If (b,0.4 or c factor,0.2) # comment: Report low data

quality to the user and stop. The low data quality check can be

manually overridden through user requests. However, low

‘‘quality factors’’ are strong indicators of ‘‘highly incomplete’’

data and the web service discourages the use of results from low

quality data.

6. Otherwise, set K = 0 (iteration counter).

Repeat:
7. K = K+1; (iteration counter).

8. Triplet amino acid typing:

a. Score each atom based on the probability distribution of

chemical shifts derived from BMRB, and the latest secondary

structure prediction.

pX nð Þ~

pn helixð Þ:gn
helix Xð Þzpn strandð Þ:gn

strand Xð Þzpn coilð Þ:gn
coil Xð ÞP

j

pj helixð Þ:gj
helix Xð Þzpj strandð Þ:gj

strand Xð Þzpi coilð Þ:gj
coil Xð Þ

ð4Þ

gi
helix, gi

strand , and gi
coil , are the chemical shift probabilities of the

related atom in residue i derived from BMRB and PDB

databases, and pi(helix), pi(strand), and pi(coil) are the secondary

structure probabilities in the current iteration step.

b. Adjust the scoring if any pre-assignment exists:

for each assigned atom a to chemical shift Y :

Set pY að Þ~1; Set pX að Þ~0; for all X=Y ;

Renormalize the probabilities

c. Adjust the scoring if any selective labeling experiment exists

while taking into account the possibility of overlap:

for each chemical shift Y seen in a selective labeling

experiment of residue type A :

if a belongs to residue type A, then Set pY að Þ~1 else

Set pY að Þ~Poverlap;

Renormalize the probabilities; for overlap use

Poverlap~

max
number of residues{number of reference peaks

number of residues
,0:01

� �

We set the minimum probability of a peak to possibly overlap

with another one to 0.01, even if the number of peaks in the

dataset exceeds the number of residues.

Protein NMR Analysis by PINE
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d. The total score Sx(y) of labeling a triplet spin system y

to a triplet residue x is the product of scores of individual

atoms in the triplet residue. Both triplet spin systems

and triplet residues contain an extra state called the

‘‘null’’ state to allow for the case where they cannot be

labeled.

Figure 5. Spin system generation network in PINE-NMR. The peaks in the most sensitive experiments in the data are used initially as reference
peaks. Aligning the peaks along the common dimensions and registering them with respect to reference peaks enables us to define a common
putative object called the spin system. Spin systems are then assembled to derive triplet spin systems.
doi:10.1371/journal.pcbi.1000307.g005

Protein NMR Analysis by PINE

PLoS Computational Biology | www.ploscompbiol.org 9 March 2009 | Volume 5 | Issue 3 | e1000307



9. Derive the backbone assignment network weights based on

amino acid typing scoring, connectivity experiments, latest

backbone assignment, and possible outlier detections from the

last iteration (Figure 6):

For every pair of choices, xn ið Þ and xnz1 jð Þ, of neighboring

triplets n and nz1 :

Derive the connectivity score y xn ið Þ,xnz1 jð Þð Þ by evaluating

the Euclidian distance of common

dimension of triplets analogous to 4:bð Þ for every connectivity

experiment available inthe data set:

The total score would be the product of individual scores:

For every pair of choices, xn ið Þ and ym jð Þ, of possibly related

triplet residue n and triplet spin system m :

if xn ið Þ is not identified as an outlier assignment and both of

the following conditions hold

max
l

y xn ið Þ,xnz1 lð Þð Þð ÞwT and

max
l

y xn{1 lð Þ,xn ið Þð Þð ÞwT

then

w xn ið Þ,ym jð Þð Þ~
Pn

k{1 xn ið Þð Þ

1

if i~m & j~n

Otherwise

(

else

w xn ið Þ,ym jð Þð Þ~
Sxn

ymð Þ

1

if i~m & j~n

Otherwise

(

T is a threshold value for the connectivity score, which is defined

as, c*max_connectivity_score, c is the quality factor defined in 5, and

Pk-1(xn(i)) is the probability of assigning xn(i) to triplet residue n in

the iteration k21.

10. Select the network topology; calculate the threshold for

removing low-weight edges from the network based on the quality

of the data, use: cut off threshold~10{10�
ffiffiffiffiffi
b�c
p

11. Apply the belief propagation algorithm [42] to find the

marginal probabilities Pk
n(xn(j)) of assigning triplet spin systems xn(j)

to triplet (tripeptide) residues n.

12. Given the marginal probabilities of the triplet residue

assignments, derive the probabilistic assignment of the individual

backbone atoms.

13. Detect and remove the outliers in the backbone

assignments [16].

14. Derive the secondary structure of each amino acid based

on the formula:

Pn sð Þ~
X

j

Pn
k xn jð Þð Þ:pn s xn jð Þjð Þ ð5Þ

pn(s|xn(j)) is the probability of residue n to be in the secondary

structure state s given the assignment xn(j) derived from the

method described in [13], and Pk
n(xn(j)) is the assignment

probability of triplet residue with the center residue n, to triplet

spin system xn(j). The summation is over all the possible choices of

tripeptides in the protein sequence.

Until the assignment probabilities converge or K = 10
(the maximum number of iterations)

15. If no convergence, probabilities are the average probabil-

ity of last three iterations. ‘‘No convergence’’ indicates the

presence of ‘‘nearby’’ local minima.

16. For every amino acid, generate an energetic model

network and apply the Belief Propagation [42] to derive final

probabilistic side chain assignments as described in supplementary

material Protocol S1.

17. Report the final probabilistic assignments: backbone, side

chain, secondary structure prediction, and possible outliers. The

output can be specified to conform to variety of formats, including

Xeasy, SPARKY, and NMR-STAR (BMRB).

The input to PINE-NMR consists of the amino acid sequence

and multiple datasets known as peak lists (chemical shifts) obtained

Figure 6. Graphical network for backbone chemical shift assignments. Overlapping tripeptides (triplet residue) are evaluated. The weights
on the edges are derived from amino acid typing, secondary structures, connectivity experiments, and possible outlier assignments. According to the
statistical physics model described in the text, application of the belief propagation algorithm yields the marginal probabilities for backbone
assignments.
doi:10.1371/journal.pcbi.1000307.g006
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separately from selected, defined NMR experiments. The peak

lists consist of sets of real-valued two-dimensional, three-dimen-

sional, or four-dimensional vectors, denoted by lXi
jMRl l = 2,3,4.

The dimension of the data is denoted by l, the index j indicates

that the observation is from the jth dataset, and the index i denotes

the ith observation within the dataset. To compare data from

different experimental sets (different j) that have shared subspaces

(signals from nuclei in common), we consider only the common

subspace. This allows us to omit the index l in subsequent

formulas. The similarity (or nearness) is used to build an initial

system of neighborhoods. The approximate starting value for

similarity is given a probabilistic interpretation by using Eq 3

(Basic Algorithm: 3.a) to compare each datum (peak) Xi
j with the

reference datum (peak) Xm
n. The peaks in the most sensitive

experiments in the dataset (normally 15N-HSQC or HNCO) are

used as the initial reference set. We define a common putative

object, called the spin system (Figure 6), by aligning the peaks

along the common dimensions and by registering them with

respect to reference peaks according to Eq 3. The total number of

states of the spin system is equal to the combinatorial set of all label

choices including the null state. The preservation of all

neighborhood information at this step is particularly important

for the analysis of data from larger proteins in which noise peaks

and real peaks are closely interspersed.

Amino Acid Typing (Spin System Scoring)
The spin-system scoring step is used to integrate the spin system

sub networks by assigning a score to each possible label that can be

associated to a spin system. This process makes use of empirical

chemical shift probability density functions, calculated from

combined BMRB (chemical shift) and PDB (coordinate) data

from proteins of known structure, for each atom of every amino

acid type in three label states: a-helix, b-strand, and neither helix

nor strand (other) [13]. The general form of the score is obtained

by computing the probability of a chemical shift X having the label

n (residue number) as described in Basic Algorithm: 8.a. This

approach connects amino acid typing and secondary structure

state determination through a conditional dependency model. The

successive application of weighted measures (Basic Algorithm),

leads to the definition of a complex network of relationships and

weights among correlated sets of information at the global level

(Figure 3). This process establishes an initial system of neighbor-

hoods (Figure 2). Whenever an initial set of probabilities is

unavailable, a uniform distribution is assumed as the starting state.

Backbone and Side Chain Assignments
The challenge is to address the computationally demanding

problem of deriving the backbone and side chain assignments from

amino acid typing and other experimental data (connectivity

experiments) according to the model described above. Rather than

modeling the assignment of labels to individual peaks, or assigning

spin systems to a single amino acid, we generate triplet spin

systems and label them to overlapping triplets of amino acids in

the protein sequence (Figure 5). The selection of tripeptides instead

of single residues reduces the complexity of the graph by

eliminating a substantial number of labeling choices; however, it

may introduce additional noise to the network due to possible

erroneous spin system assembly. Given the trade-off between noise

level and network complexity, we found that triplets yielded the

optimum choice among other combinations of residues. However,

the resulting network of weights and relationships has a complex

topology in which a large fraction of relationships (edges) arise

entirely from noise in the data, and the resulting random field is

not amenable to a straightforward implementation. To overcome

this problem, we determine, from spin system scoring and

connectivity constraints, an initial topology and the sets of weights

for the backbone (Figure 6 and Basic Algorithm: 9) and side chain

assignments (Protocol S1). The topology ordinarily is dependent

on the weights and a set of parameters (thresholds). These values

typically are noisy and incomplete and are contaminated by false

positives and false negatives. Our goal is to evolve the initial state

of the system toward an ‘‘optimally coherent’’ state without the

need for any manual parameter settings by carefully managing the

selection of network topology. An initial topology for the network

is determined by removing all edges with potential weights below a

threshold value. The threshold value is calculated (Basic

Algorithm: 10) automatically by approximating the level of success

achievable by each threshold (Figure S1). For a fixed set of edge

values, this function is generally unimodal and defines the

appropriate threshold for the starting state. At each threshold, a

variation of the belief propagation algorithm [42] operates on the

dense multigraph to effectively prune many edges and to derive

the posterior probabilities that define clusters (or labels). After each

iteration step, the posterior probabilities of all label assignments

are utilized to determine local topology modifications and new

edge weights.

Assignment of Secondary Structure Labels
Secondary structure labels are dependent variables derived from

prior chemical shift assignments. Each chemical shift assignment

has an associated probability, and we derive the probabilities for

the assignment of secondary structure labels from a normalized

and weighted sum of associated probabilities. After computing the

probability of each residue n to be in each of three conformational

states (s = helix, strand, other) by the method described in [13] for

different assignment configurations, the overall secondary struc-

ture probability is calculated by Eq 5 (Basic Algorithm). Note that

this step involves a shift in the point of view from chemical shift

centric to residue centric.

Iteration Rules
Posterior probabilities derived in each iteration of the

assignment process are used as local prior probabilities in the

next round of assignment, provided that (1) the assignment has not

been detected as an outlier, (2) the assignment of chemical shift is

correlated with the assignment of secondary structure consistent

with known empirical distributions, and (3) the assignment is

consistent with established connectivity constraints.

If one or more of the above conditions are not met, the results

are deemed inconsistent because the resulting probabilities appear

as outliers of the marginals supported by the current graph

topology. This view is driven by the notion that the equilibrium of

our fictitious system is the fixed point of the energy functional, with

the factorization induced by our graph. In order to reach the

consistent state, scores are re-evaluated and a new local score is

computed for the next iteration; a new topology is generated, and

the computational steps are repeated. The iteration process

continues until a stationary or quasi-stationary state is reached,

i.e., when the topology of the network and the labeling

probabilities do not vary significantly. The iteration process leads

to ‘‘self-correction’’ through appropriate adjustments to the

topology of the underlying network in order to preserve maximum

information.

Results

PINE-NMR is designed to analyze peak lists derived from one

or more of a large set of NMR experiments commonly used by

Protein NMR Analysis by PINE
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protein NMR spectroscopists. This set (listed on the PINE-NMR

website) currently includes data types used for backbone and

aliphatic side chain assignments. (PINE-NMR will be expanded in

the future to handle aromatic side chain assignment.) To test the

software, we asked colleagues at the Center for Eukaryotic

Structural Genomics (CESG) and the National Magnetic Reso-

nance Facility at Madison (NMRFAM) to provide subsets of data

from projects that had led to structure determinations with

assigned chemical shifts deposited in the BMRB [49]. We wanted

the assignments to have been refined and vetted in light of a

structure determination, because we took the BMRB deposited

values to be ‘‘correct’’. In most cases, the input data supported the

determination of both backbone and aliphatic side chain

assignments. In some cases, the input data supplied supported

only the determination of backbone assignments. The peak lists

were provided by the persons submitting the data without any

specification for the peak picking software, threshold, or other

parameters.

Table 1 summarizes the PINE-NMR results for all datasets

provided. The input datasets are indicated along with the size of

the protein. A backbone or side chain assignment was scored as

‘‘correct’’ if the top ranked (highest probability) PINE-NMR

assignment corresponded that in the BMRB deposition. The

assignment accuracy is given as the number of ‘‘correct’’

assignments divided by the total number of assignments supported

in theory by the input data expressed as a percentage. ‘‘The

‘‘correct’’ (BMRB) assignments had the benefit of additional

information coming from NOESY data and filtering with respect

to structure determination. Also listed in Table 1 is the backbone

‘‘assignment coverage’’ achieved by PINE-NMR (defined as the

total number of correct backbone assignments in comparison to

the total backbone assignments in the corresponding BMRB

deposition expressed as a percentage).

The secondary structure accuracy reported in Table 1 compares

the PINE-NMR result with the secondary structure of the

deposited three-dimensional structure as determined by the DSSP

software [50]. It can be seen that the accuracy of the PINE-NMR

results correlates with the data quality factor. The outlier count is

defined as the number of C9, Ca, or Cb atoms detected as possible

outliers in the final assignment by the LACS method [16].

In the majority of cases, the assignment accuracy was above 90%

for backbone resonances and above 80% for aliphatic side chain

resonances. Two cases in Table 1 yielded assignment accuracies

below 90%. In the case of the 177-residue protein (At5g01610), the

lower performance was due to the poor quality of data from a highly

disordered region of the protein. A human expert was unable to go

beyond the PINE-NMR assignments, and additional data were

required to complete the protein structure determination. In the case

of the 299-residue protein (At3g16450), its stereo array isotope

labeling (SAIL) pattern [51] gave rise to chemical shift deviations

that degraded expected matches. In this case the performance of

PINE-NMR could be improved by incorporating corrections for the

deuterium isotope effects on the chemical shifts.

An illustration of the improvement achieved by combining

information comes from comparing the assignment accuracy

results from PINE with those from PISTACHIO [12] (Table 1).

PISTACHIO is an automated assignment tool developed earlier

that does not make use of inferred secondary structure or outlier

detection implemented in PINE-NMR. The results from PINE-

NMR also are superior to those achieved by iterative pipelining of

the individual assignment (PISTACHIO [12]), secondary structure

determination (PECAN [13]), and outlier detection (LACS [16])

steps (results not shown). The tests of PINE-NMR shown in

Table 1 are highly stringent, in that minimal information is

provided. Separate tests (results not shown) demonstrate that the

performance is improved if the input peak lists have been pre-

filtered to correspond to spin systems.

The results of website users provide a separate measure of the

performance of PINE-NMR. Since July, 2006, users have

analyzed more than 1,300 sets of chemical shift data. Without

access to the final structures and chemical shift assignments for

these proteins, these results could not be analyzed, as in Table 1,

with regard to correct assignments and secondary structure.

Instead, we used the results from Table 1 to estimate the empirical

conditional probability of incorrect labeling in the user PINE-

NMR output: P(incorrect label| plabel = x). Assignments with a

probability higher than 0.95 generally were found to be correct

(Table 1). Using the data submitted to the PINE-NMR web site,

we selected a representative sample of proteins with numbers of

residues and data quality factors similar to those in Table 1. We

then used the empirical estimate of accuracy to analyze the results

from these proteins (Table S1). The outcome was in substantial

agreement (in a statistical sense) with the results shown in Table 1.

Of particular note are two proteins submitted to PINE twice (the

proteins with 120 residues and 160 residues in Table S1). In each

case, after an initial submission of the data, the user provided

additional experimental data prior to another round of analysis.

The additional data improved the empirical estimate of accuracy

and led to additional assignments at improved levels of confidence.

The level of accuracy and completeness achieved in favorable

cases by a single automatic PINE-NMR computation was

sufficient for the initial downstream steps of structure determina-

tion. For example, the PINE assignment output for ubiquitin,

which was obtained from the input of automatically picked peak

lists from HSQC, HNCO, CBCA(CO)NH, HNCACB,

C(CO)NH, H(CCO)NH, HCCH-TOCSY, HBHA(CO)NH, and

C13-HSQC spectra, along with 15N-NOESY and 13C-NOESY

spectra for this protein were provided as input to the Atnos [52]/

Candid [53] program. The only manual step in the structure

calculation was the determination of cross b-strand hydrogen bond

constraints for the amino acid residues shown to be in b-sheet by

the PINE analysis of secondary structure (an effort taking only

about one hour). Hydrogen bond constraints for a-helical regions

were introduced based on the results of the PINE secondary

structure analysis. The resulting 20 conformers that best fit the

input data had an rmsd of 1.1 Å for backbone atoms and 1.7 Å for

all heavy atoms (0.8 Å for backbone residues and 1.3 Å for all

heavy atoms in ordered residues as analyzed by PSVS [54]. This

structure had a backbone rmsd of 1.23 Å from the highly refined

ubiquitin structure determined from NMR data deposited in the

PDB (1d3z). Without the manual hydrogen bond constraints the

structure had a backbone rmsd of 2.77 Å from the 1d3z structure.

The level of assignments achieved by PINE-NMR for small

proteins meets or exceeds the assignment levels that led to

successful structure determination of small (under 100 residue)

proteins from chemical shift data alone [5].

PINE-NMR also can be useful for semi-automated analysis of

larger proteins that require for structure determination the

collection of additional data such as dipolar couplings, manual

NOESY assignments, or aromatic side chain assignments. We

have developed PINE-NMR in ways that enable expert input, for

example, by specifying a selective labeling scheme, pre-assigned

cluster labels, pre-assigned spin systems, or pre-assigned cluster

labels for subsets of the data. For pre-assigned cluster labels, PINE-

NMR can act as a verification tool, for example, by checking their

internal consistency with peak lists or by detecting chemical shift

referencing problems or outliers (the LACS report). The software

performs spectral alignment, detects excessive noise peaks,
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uncovers experimental inconsistencies, recognizes the insufficiency

of input data, and identifies nomenclature conflicts.

The latest version of PINE-NMR is available for public use

through a webserver at http://pine.nmrfam.wisc.edu. The PINE-

NMR server offers complete backbone and side chain chemical

shift assignment, secondary structure determination, and possible

referencing error or outlier detection. The server supports a

variety of convenient input and output formats, including Sparky,

Xeasy, and BMRB (NMR-STAR). PINE-NMR also accepts prior

information that reflects experimental information the user wishes

to specify, such as fixed input (pre-assigned labels), selective

labeling pattern, or assembled spin systems in cases where

segments of the protein have been labeled by other means.

Discussion

Application of the PINE algorithm to the NMR assignment

problem has led to a tool that is capable of analyzing data in a self-

correcting manner without the need for the user to manipulate any

parameters in the software. The public availability of PINE-NMR

through an online server has made it possible for a variety of users

to test its accuracy and robustness. The PINE algorithm

reformulates an otherwise intractable network of interactions

within the context of an energy minimization problem. To address

the high computational complexity of the minimization problem,

we have devised a local approximation algorithm with reliable

global properties. To address the non-convexity of the energy

functional and the potential of ‘‘getting stuck’’ in local minima, we

perform successive approximations with increasingly more com-

plex energy functionals and with the reweighting of solutions.

Our evolution and selection of the initial network topology of

PINE-NMR emerged through the examination of two quantities: (1)

the estimated conformity across all datasets with respect to a single

reference dataset (b factor), and (2) the estimated conformity between

pairs of datasets that contained complementary information (c factor).

These quantities, which are calculated as described in the Basic

Algorithm, were found to be generally dependent on the size of the

protein and the number of false positive and false negatives in the

input data. In intuitive terms, the combination of these quantities

measures the degree of conformity between the vertex and edge

potentials in the network model. The numerical approximation of

this quantity (in analogy to quantity called a matching polynomial) is

encoded in the fourth root of the product of b and c. For example,

when pairs of data in the dataset have low conformity measures, the

network topology (e.g. change in the edge set) is strongly influenced

by label assignments. These same quantities are also used in the

computation of the quality factor and the predicted number of

residues assigned (Table S1). After a user submits input data to the

server, PINE-NMR performs a preliminary evaluation. If factors b

and c do not satisfy the required threshold, PINE reports the problem

to the user and suggests possible remedies. Otherwise the assignment

process continues. Typically the datasets that yielded high-quality

assignments in PINE-NMR had b factors equal to 0.65–0.85 and c

factors equal to 0.4–0.6.

The impact of topology selection can be investigated compu-

tationally by running simulations that test the computational

complexity (running time) and accuracy of the results as a function

of increasing network complexity. For small proteins, where the

number of false positives and negatives is small, increasing network

complexity leads asymptotically to higher accuracy (Figure S1A).

The network energy remains stable as more edges are added, and

the computational complexity drops sharply as soon as an

‘‘essential network topology’’ is achieved. For larger proteins,

increasing network complexity initially leads to higher accuracy,

but accuracy falls off at the highest levels of complexity (Figure

S1B). The most accurate label assignments are achieved when the

cardinality of the edge set for the network is small. Therefore,

selecting a more complex network of interactions not only is

computationally inefficient but may also lead to decreased

accuracy. Inaccuracies within more complex networks tend to

propagate. Specifically, high complexity neighborhoods with large

numbers of edges were found to degrade the accuracy of their

neighbors, and, although this effect typically is local, it also can

have long-range impact. These findings reinforce the importance

of selecting good initial topology and underscore the advantages of

local, as opposed to global, topology modification.

In practical terms, additional knowledge about the structure of a

protein can improve the data interpretation. For example, NMR

experts often use their experience and knowledge of similar

structures or structural folds to make decisions – this knowledge is

often hard to codify in an algorithm. In some instances, the bias is

subtle. For example, the use of data from BMRB in order to

generate simulated peaklists that are to be subsequently assigned is

afflicted with bias, because the data in BRMB are highly likely to

be associated with a known structure and, therefore, higher

information content (sharper localization of parameters according

to Bayes’ formula).

One of the challenges in protein NMR spectroscopy is to

minimize the time required for multidimensional data collection

and analysis without sacrificing the quality of the resulting protein

structure. We are in the process of coupling PINE-NMR to (HIFI-

NMR) [55], an innovative approach that uses adaptive reduced

dimensionality NMR data collection. For 3D triple-resonance

experiments of the kind used to assign protein backbone and side

chain resonances, the probabilistic algorithm used by HIFI-NMR

automatically extracts the positions (chemical shifts) of peaks with

considerable time-savings compared with conventional stepwise

approaches to data collection, processing, and peak picking. The

combination of HIFI- and PINE-NMR will support fully

automated, probabilistic, NMR data collection and analysis

through assignments, determination of secondary structure and

backbone dihedral angles. We are currently developing protocols

for including H(C)CH-COSY, CCH-TOCSY and common four

dimensional NMR experiments in the PINE-NMR network. Our

future plans also include the inclusion of NOESY data, which will

extend side chain assignments to aromatic residues [56] and

support assignments of larger proteins [3].

The core computational model of PINE should be applicable to

other problems where automated clustering is needed. For

example, when DNA microarray data are used to explore all

genes of an organism in order to detail their biochemical networks,

automated clustering of gene networks can provide unbiased

information about the underlying biology.

Supporting Information

Figure S1 Running time and assignment accuracy of the results

as a function of increasing network complexity. Network

complexity is defined as: network complexity = 2log(cutoff

threshold). The results for smaller proteins or proteins with higher

quality data (A) differ from those for larger proteins with low

quality data (B). The results underscore the importance of proper

setting the cut-off threshold in selecting the edge set when

constructing the topology of the graph.

Found at: doi:10.1371/journal.pcbi.1000307.s001 (0.09 MB TIF)

Protocol S1 Side chain chemical shift assignment algorithm.

Found at: doi:10.1371/journal.pcbi.1000307.s002 (0.03 MB

DOC)
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Table S1 Examples of ten PINE-NMR runs with experimental

NMR data showing how the data quality measure t correlates with

the agreement between the actual and predicted number of

assignments with probability p.0.95. The strong correlation can

be best observed in the cases where additional data for the same

protein have been uploaded to the server.

Found at: doi:10.1371/journal.pcbi.1000307.s003 (0.23 MB

DOC)
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