
Combining Machine Learning and Backgrounded Membrane 
Imaging: A case Study in Comparing and Classifying Different 
types of Biopharmaceutically Relevant Particles

Christopher P. Calderona,b,1,*, Ana Krhač Levačićc,1, Constanze Helbigc,1, Klaus Wuchnerd, 
Tim Menzenc,**

aUrsa Analytics, Inc., Denver, CO 80212

bDepartment of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, 
Colorado 80303, United States

cCoriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany

dJanssen Research and Development, DPDS BTDS Analytical Development, Hochstr. 201, 8200 
Schaffhausen, Switzerland

Abstract

This study investigates how backgrounded membrane imaging (BMI) can be used in combination 

with convolutional neural networks (CNNs) in order to quantitatively and qualitatively study 

subvisible particles in both protein biopharmaceuticals and samples containing synthetic model 

particles. BMI requires low sample volumes and avoids many technical complications associated 

with imaging particles in solution, e.g., air bubble interference, low refractive index contrast 

between solution and particles of interest, etc. Hence, BMI is an attractive technique for 

characterizing particles at various stages of drug product development. However, to date, the 

morphological information encoded in brightfield BMI images has scarcely been utilized. Here 

we show that CNN based methods can be useful in extracting morphological information from 

(label-free) brightfield BMI particle images. Images of particles from biopharmaceutical products 

and from laboratory prepared samples were analyzed with two types of CNN based approaches: 

traditional supervised classifiers and a recently proposed fingerprinting analysis method. We 

demonstrate that the CNN based methods are able to efficiently leverage BMI data to distinguish 

between particles comprised of different proteins, various fatty acids (representing polysorbate 

degradation related particles), and protein surrogates (NIST ETFE reference material) only based 

on BMI images. The utility of using the fingerprinting method for comparing morphological 

differences and similarities of particles formed in distinct drug products and/or laboratory prepared 

samples is further demonstrated and discussed through three case studies.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
*Corresponding author (computational and machine learning related). Chris.Calderon@UrsaAnalytics.com (C.P. Calderon). 
**Corresponding author (biopharmaceutical sample related). tim.menzen@coriolis-pharma.com (T. Menzen).
1Contributed equally.

Supplementary Materials
Supplementary material associated with this article can be found in the online version at doi:10.1016/j.xphs.2022.05.022.

HHS Public Access
Author manuscript
J Pharm Sci. Author manuscript; available in PMC 2022 September 01.

Published in final edited form as:
J Pharm Sci. 2022 September ; 111(9): 2422–2434. doi:10.1016/j.xphs.2022.05.022.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.xphs.2022.05.022


Keywords

Biopharmaceutical characterization; Image analysis; Imaging methods; Morphology; Protein 
aggregation; Monoclonal antibody(s); Surfactant(s); Protein formulation; Microparticle(s)

Introduction

Particulate matter is considered a critical quality attribute in the development and 

manufacturing of biopharmaceutical drug products. Particles found in drug products can 

originate from environmental contamination (unexpected foreign particles), manufacturing 

process (e.g., filter material, stainless steel), excipients (e.g., free fatty acid particles), active 

pharmaceutical ingredients (API) like therapeutic proteins (e.g., protein particles), or can be 

container related (e.g., silicone oil).1

The occurrence of proteinaceous particles and aggregates in biopharmaceuticals may 

result in unintended immunological effects,1,2 and thus may pose a safety concern.3–5 

Protein particle formation can be induced by different chemical6 or physical degradation7 

mechanisms induced by numerous stress factors (e.g., temperature excursions, interfacial or 

mechanical stress).8–10

The non-ionic surfactants polysorbates 20 and 80 (PS20, PS80) are the most commonly 

used stabilizers in biopharmaceuticals and are contained in >70% of marketed parenteral 

biological drug products.11 Polysorbates improve product shelf life by their ability to protect 

protein against interfacial stress, to prevent protein adsorption to container surfaces, and to 

stabilize protein against stresses during common manufacturing processes (e.g., fill/finish, 

lyophilization).2,12–14 Polysorbates exhibit great structural heterogeneity, which is caused by 

the diversity in fatty acid ester distribution, polyoxyethylene chain length, and core sugar 

structure.13,15 During storage of liquid drug product, enzymatic hydrolysis or oxidation of 

polysorbate can occur, which can result in the release of degradation products such as free 

fatty acids (FAs). FAs are poorly soluble in aqueous solutions and can form visible and/or 

subvisible particles.2,4,5,13,14,16–18

Both proteinaceous and non-proteinaceous particles in the visible and subvisible size range 

need to be analyzed to monitor the stability of therapeutic protein formulations. One 

potential particle characterization technique is backgrounded membrane imaging (BMI), 

an automated, 96-well plate based approach for the quantification and characterization of 

subvisible particles >2 μm. BMI offers high throughput analysis as well as low sample 

consumption.19 Since analysis of isolated particles on the membrane surface occurs in air, 

BMI does not suffer from interferences by air bubbles and is insensitive to the formulation’s 

refractive index.

Discrimination and classification of particles in a protein drug product or distinguishing 

particles from various distinct formulations are demanding because particles exhibit a high 

degree of heterogeneity in origin, size and morphology.1 For example, characterization and 

quantification of FA particles resulting from degradation of polysorbate are challenging 

due to the fact that, by human eye, FA particles often exhibit similar morphology as 

Calderon et al. Page 2

J Pharm Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



other particle types (e.g., protein aggregates). Unfortunately, most of the morphological 

information contained in particle images is usually not exploited during data analysis, 

e.g., only a small number of simple morphological features related to size and shape is 

utilized in standard BMI analysis. A deeper qualitative insight into collected (BMI) particle 

images should be possible when data analysis is complemented by artificial intelligence (AI) 

methods.

In recent years, AI has demonstrated substantial progress in the analysis of particle 

images. Through its ability to extract data features from imaged particles, AI can 

leverage subtle morphology differences to discriminate particle populations and enables new 

particle classification and characterization approaches. Such classification methods have 

already been demonstrated on images from flow imaging microscopy.20–22 In particular, 

it has already been observed, by convolutional neural network (CNN) based methods, 

that signatures of various stresses (e.g., mechanical agitation or temperature shocks) 

can manifest as distinct morphologies in protein aggregates imaged by flow imaging 

microscopy.20,21,23–25 Accordingly, AI based approaches such as CNNs have great potential 

to support and supplement the analysis of collected (BMI) particle images. However, it was 

unknown to the authors prior to this study, if the isolation of particles on a membrane surface 

including vacuum application necessary in BMI would compromise the morphological 

information of various particle types encoded in digital images that has been successfully 

used in previous flow imaging based approaches.

Although CNN based classification can be extremely accurate in identifying particles, these 

classifiers exhibit a major inherent limitation in their inability to identify particles formed 

under stress conditions not covered by the underlying CNN training data (the potential 

aggregation-inducing stresses must be known a priori). In contrast to traditional supervised 

CNN based classifiers, the fingerprinting approach can identify when new “classes” are 

encountered (i.e., the method can detect novel particle populations not contained in the 

training data). With the fingerprinting approach, a high dimensional image is compressed 

to a two-dimensional (2D) image representation we refer to as an “embedding”.26,27 

The fingerprinting approach was originally motivated as a dimension reduction technique 

aimed at quality control applications (where extreme dimension reduction is necessary for 

nonparametric density estimation and formal goodness-of-fit testing).20 In our present study, 

we focus on showing how the fingerprinting method can be used to compare heterogeneous 

particle populations.

Specifically, in this study, we used BMI, to generate images of subvisible particles from 

three different groups of samples containing a variety of particles including: protein based 

drug products (DP A, DP B, and DP C), synthetic model FA particles (from a single 

FA or from a mixture of FAs) and ethylene tetraflouroethylene (ETFE) particles, a NIST 

protein particle surrogate. Our main purpose was to develop and evaluate automated image 

analysis methods based on CNNs for the comparison and classification of images from 

different types of pharmaceutically relevant particles. In addition, the potential impact of 

BMI-specific sample preparation (vacuum application, drying on a membrane surface) on 

the particle morphology information and consequently on the possibility of distinguishing 

different types of particles was evaluated. Going beyond typical CNN based classification, 
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the recent fingerprinting approach20 was evaluated to not only compare particle classes/types 

but also improve studies on subvisible particle formation mechanisms in drug products. We 

also explore how the fingerprinting approach can allow for a more quantitative comparison 

of similarities and differences between different particle types.

Materials and Methods

Materials

Drug products (DPs) contained 20 to >100 mg/mL IgG1-type monoclonal antibodies 

(mAbs) formulated at a pH between 5-6 in different buffers (Table 1). The DPs were 

selected due to the presence of well characterized product related particles. DP A was stored 

at −80°C, DP B and DP C were stored at 2-8°C until the day of BMI analysis.

FAs used to prepare synthetic model FA particles (Table 1) were of analytical standard 

grade and obtained from Merck (Darmstadt, Germany). Excipients used for the preparation 

of formulation buffers were of “Ph. Eur.” or better grade. Highly purified water was used 

throughout the study (Milli-Q® IQ 7000 purification system; Merck).

ETFE particles (Reference Material 8634) were obtained from the National Institute of 

Standards and Technology (Gaithersburg, MD, United States).

Generation of FA Particles as Model for Particles Originating from Polysorbate Degradation

Details on FA sample composition are summarized in Table 1. For particle samples 

containing a single FA species, the respective FA was dissolved at a 1,000-fold of the 

target concentration in 2-propanol. 2-Propanol was filtered with a 0.22-μm hydrophilic 

polyvinylidene fluoride (PVDF) syringe filter (Merck) prior to sample preparation. 

Dissolved FA was then spiked into a formulation buffer of same composition as for DP 

C in a 6R glass vial. Particle samples were homogenized by inversion and incubated for 

6 to 7 days at 2-8°C. For particle samples containing multiple FA species, stock solutions 

each containing a single FA were prepared in filtered 2-propanol at a 7,000-fold of the 

target concentration of the respective FA. A stock of the FA mixture in 2-propanol was then 

obtained by mixing the single FA stocks at equal volumes. The mixed FA stock was then 

spiked into formulation buffer as described above. Samples Mix I and Mix II were incubated 

at 2-8°C up to 5.5 months. Sample Mix III, containing additional salts, was incubated at 

2-8°C and after incubation times of 36 hours and 1, 4, and 5.5 months sample volumes for 

BMI analysis were withdrawn from the same vial after homogenization.

Particle Analysis by Backgrounded Membrane imaging (BMI)

BMI analysis was performed with a HORIZON instrument (Halo Labs, Philadelphia, PA, 

USA). Application of samples to 96-well membrane plates (Halo Labs) was carried out 

in a laminar air flow cabinet. A volume of 30 - 420 μL of sample was pipetted per well 

and vacuum was applied at 350 mbar below ambient pressure to remove liquid from the 

membrane plate. In the case of samples where more than 60 μL of sample per well was 

required, the sample was pipetted in successive steps of 60 μL with vacuum suction after 
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each step. After sample application and vacuum suction, each well was washed with at least 

the 1.5-fold volume of water.

Characterization of Nature of Particles in Protein Based Drug Products

Particles present in DP A to C were characterized after isolation on gold-coated membrane 

filters by micro-spectroscopic techniques. Scanning electron microscopy coupled to an 

energy dispersive X-ray detector (SEM-EDX) allowed a semi-quantitative analysis of 

the elemental composition of particles. FTIR measurements in attenuated total reflection 

mode (ATR-FTIR) in a spectral range of 4000-600 cm−1 were performed on isolated 

particles to determine their organic nature. In addition, isolated DP C particles were further 

characterized by liquid chromatography mass spectrometry (LC-MS) to determine in greater 

depth their organic nature qualitatively and quantitatively.

Computational Details for Analyzing BMI images via CNNs

The classification and embedding analyses were performed on BMI particle image 

sets without any detailed information on the type or composition of particles, or on 

applied experimental protocols (the samples were blinded and denominated as sequentially 

numbered particle images).

The approach outlined in Daniels et al. (2020)25 was followed for CNN model construction. 

The specific CNN network architecture used for training the classification algorithm is 

provided in Fig. S1; a minor variant of this network architecture was used for the CNN 

based embedding used in fingerprinting (see Fig. S1 caption for details). Below, we outline 

the main steps of the CNN-based analysis.

BMI image Pre-Processing

Images of individual particles, denoted as collected BMI particle images, were extracted 

from the HORIZON instrument’s background-corrected well-images using proprietary 

software. The neural network was configured to process grayscale images that were 32 

× 32 pixels; the results in this work were found to be insensitive to the precise pixel 

size (a comparison of output obtained using 24 × 24 images is reported in the supporting 

information). In order to achieve this size and keep the spatial image resolution fixed 

throughout (i.e., no image rescaling applied), the following pre-processing steps were 

implemented before inputting the images to the neural network: for individual particle 

images smaller than 32 pixels in either dimension, image borders were extended with a 

constant intensity (the extended pixels took on the average pixel intensity of the training 

set) with the original image centered within this padded border to achieve the target image 

size (black borders and other image padding strategies were also tested and generated nearly 

identical results); for individual particle images larger than 32 pixels in either dimension, 

the particle images were centered and cropped to the target size used in the CNN network. 

A total of N ≈ 140,000 collected (BMI) particle images was available to be analyzed by 

two primary types of CNN models considered in this work: CNN classification networks 

and closely related CNN embedding networks. The various CNNs used in different sections 

differ primarily in the training data used to calibrate the models and/or the loss objective 

function used to estimate CNN models; all images were subsequently normalized by 
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subtracting the empirical training set pixel intensity mean and subsequently dividing by 

the training set pixel intensity standard deviation.

Classification Networks

For CNN based classification models, the extracted individual images with a label, i.e., 

particle type information, used explicitly in the model were shuffled and randomly assigned 

to the train or test set (80/20% train/test split, where 80% were used for training and 20% 

were used as test data). Test data were not used in training the CNN model. Image sample 

sizes used for each CNN are reported in the Results and Discussion. The classification 

network (see Fig. S1 for details) was trained for 15 epochs (an epoch is one complete pass 

through the training data) using an Adam optimizer with the AMSgrad option set to true 

with a minibatch size of 256 (all other parameters were default) optimizing a weighted cross 

entropy loss objective function. In all classification models studies, weights were selected to 

be inversely proportional to the number of samples of each category.

Embedding Networks

The embedding network architecture differs from the classification network only in the last 

layer (see Fig. S1). However, a different objective loss function is used to estimate the CNN 

parameters from the training data. The “Batch All non-zero” triplet loss objective function26 

(using 32 images of each class to construct triplet minibatches) with squared Euclidean 

distances (and margin hyperparameter = 1.0) was used as the loss function for obtaining the 

CNN parameters of the embedding network. The CNN embedding network was trained with 

the same optimizer using an 80/20% train/validation set split. The validation set was used to 

monitor the loss function with a “patience” of 5 (i.e., the parameter optimization was ceased 

if the validation loss function did not decrease beyond the empirically observed minimum 

loss function value for 5 epochs). The CNN parameters yielding the minimum triplet loss on 

the validation set were selected in an effort to avoid over-fitting.

Probability Density Function (pdf) or Fingerprint Estimation and Goodness-of-fit Statistic 
Computation

The scatterplot of CNN embeddings for a given class of interest was used to derive the 

corresponding probability density function (pdf); this is what we refer to as a fingerprint. To 

compute the pdf or fingerprint, the CRAN package ks28 was leveraged to obtain the optimal 

general bandwidth matrix (with off-diagonal terms) using the plug-in matrix bandwidth 

selector associated with a Gaussian kernel density estimate (the data and optimal bandwidth 

then permit evaluation of the pdf at any point of interest). Due to (relatively) low particle 

numbers in the studied cases, the entire dataset was used to construct the fingerprints (in 

contrast to the approach taken in Calderon et al.25).

For goodness-of-fit hypothesis testing, a reference fingerprint of interest was selected as the 

null pdf; the null hypothesis is that the observed data represents random samples drawn from 

the null pdf and the alternative hypothesis is that the observed data are random samples 

drawn from any other pdf. Since real world FA particles due to polysorbate degradation 

were one of our primary interests, in this work, we used collected (BMI) particle images 

of DP C as the null reference pdf and tested images from all other samples (e.g., synthetic 
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model FA particles). Using the null pdf and scatterplot data from a class of interest, the 

Rosenblatt transform29 was computed using custom Python functions. The Kolmogorov-

Smirnov goodness-of-fit test statistic30 was then computed using the function kstest in 

the stat package of scipy (version 1.4.1). To address over-rejection (i.e., the practical vs. 

statistical significance problem31), we divided each test scatterplot data set into Ntest = 

100 subsets and applied the goodness-of-fit test on samples of size Ntest (the net data 

was randomly shuffled without replacement and grouped into subsets of size Ntest) and 

the percent of subsets rejected was recorded. For example, if a given class had a total of 

30,000 images, 300 = 30,000/Ntest subsets would be formed and the fraction of rejected 

goodness-of-fit tests in that collection of tests is used to quantify the proximity of the 

consistency/inconsistency of the embedding scatterplot data with the selected null pdf. A 

low fraction rejection indicates statistical consistency and a high fraction rejection indicates 

an inconsistency with the null pdf.

Computational Environment Details

All computations (CNN and goodness-of-fit analyses) were carried out in Python 3.7.1 using 

Pytorch 1.7.0 in a Docker container running Ubuntu 18.04.5 LTS connected to two Nvidia 

GeForce 1080s.

Results and Discussion

Classification of Collected BMI Particle Images into Different Classes (FA, Protein, or ETFE 
Particles)

For the proof-of-concept study, we analyzed particle images from (i) the palmitic acid 

(PalA) particle sample, (ii) two drug product samples (DP A, DP B) containing protein 

particles, and (iii) ETFE particles in order to create four classes of particles from 

fundamentally different sources (Table 1). Particles in DP A and DP B were identified 

as proteinaceous particles with no meaningful levels of other constituents via ATR-FTIR and 

SEM-EDX (using an experimental approach similar to Cao et al. (2015)4). Besides being 

related to different proteins and protein concentrations, formation mechanism and age of 

particles in DP A and B are also different: protein particles in DP A were generated on a 

short time scale due to fill-finish stress, whereas DP B protein particles were slowly formed 

over years (>5 years) during long-term storage at 2-8°C. Hence, we aimed to see if BMI 

images of proteinaceous particles in DP A and DP B could be distinguished in the first 

classifier considered. ETFE particles are abraded polymer particles which are time-stable 

and have similar optical properties relative to protein aggregates in solution. The abraded 

ETFE studied in this work was developed by NIST as a protein surrogate originally for size 

and count applications in flow imaging microscopy.32 We wanted to study if the morphology 

of this surrogate protein-particle standard exhibits morphologies of protein particles when 

imaged by BMI.

Figure 1 shows randomly selected particle images from the four classes in the first CNN 

based classification model considered; images of PalA particles, protein particles in DP A or 

DP B, or ETFE particles are displayed in each panel. In addition, Table 2 displays the test 

classification accuracy achieved by this traditional supervised CNN model (see Fig. S1 for 
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neural network details) for the four classes considered explicitly in training the CNN model 

of this section. The numbers reported in the table correspond to the fraction of correctly 

labeled images for the test data. The neural network was trained with a total of ≈ 75,000 

images of the four classes split into an 80/20% train/test set. Note that the sum of the rows 

always equals one in the classifiers studied.

Table 3 focuses on test results obtained via a different CNN model; this neural network 

was trained only with BMI images of different FA particle samples (trained with ≈75,000 

images split evenly into an 80/20% train/test set). The confusion matrix summarizes the 

classification results obtained with the 20% test data comprising of particles generated with 

single FAs (C12 to C18) or with a mixture of FAs at two different concentrations (see Table 

1).

Finally, in Table 4 we show classification results for BMI particle images from DP C with 

the neural network applied in Table 3. Roughly 20,000 BMI images of this out-of-sample 

particle type (i.e., no images of the DP C class were used in training or testing) were 

classified into the predefined FA particle classes of the CNN. The particles in DP C were 

characterized by LC-MS as FAs or salts of FAs with no significant amount of protein (see 

section 2.4) and originated from enzymatic degradation of polysorbate.

Discussion

The randomly selected particle images in Fig. 1 display that both dramatic and 

subtle morphological differences exist in BMI particle images sampled from the four 

classes summarized in Table 2. Table 2 demonstrates that BMI images contain enough 

morphological information about the underlying particles to accurately distinguish between 

particles from the FAs, two proteins, and protein surrogates. BMI particle images originating 

from a given sample were classified as distinct population and being different to particles 

from other samples/types. ETFE particle images were different from protein particle images 

in two included DPs (differing in protein, protein concentration, formulation, particle 

formation mechanism, particle age), and particle images of synthetic model FA particles 

generated by spiking palmitic acid into a placebo formulation. The accuracy achievable by 

a standard CNN classifier using BMI data is encouraging. For example, 77% of the PalA 

particle images and 81% of the proteinaceous particle images in DP A as well as 82% of the 

proteinaceous particle images from DP B were correctly classified. Similarly, ETFE could 

be differentiated in 95% of the test images.

The classification accuracy achievable is notable since the imaged particles are not in their 

native solution environment when analyzed by BMI. Prior to this study, it was unknown to 

the authors if the isolation of particles on a membrane surface with applying vacuum and 

drying steps inherent in the BMI method would sufficiently preserve the morphology of 

different particle types or origins.

The previous result encouraged us to evaluate if BMI images of particles of various 

FAs (placebo spiked with FA of a chain length from C12 to C18) and FA mixtures at 

two different concentrations were similar or resulted in distinct morphologies. As can be 

observed in Table 3, the BMI FA particle images were distinguished by the traditional 
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classification network. Note that in this case there are six classes in the CNN model, so 

a random classifier would predict the correct answer 1/6 of the time. The diagonal entries 

are the largest in each test case and greatly exceed the random guess fraction (i.e., 1/6 

= 0.17), showing that even BMI particle images from a large collection of FAs exhibit 

distinct morphology detectable by a CNN. These results indicate that FAs of variable 

carbon chain lengths form particles with distinct image signatures detectable by CNNs under 

our experimental conditions. When generated from a mixture of FAs, subtle systematic 

differences in particle morphology (that can be seen by careful eye inspection) are detected 

for samples Mix I and Mix II by CNNs, despite the two mixtures differing only in FA 

concentration. This could be partly explained by solubility limits of the applied FA species 

in aqueous solutions. The solubility limits of the three major FAs (out of the seven FAs 

contained in Mix I and Mix II, see Table 1) at 2-8°C were determined by Doshi et al. 

(2015)2 in a formulation containing 0.04% (w/v) PS20 at pH 5.7. The solubility limits 

of lauric, myristic, and palmitic acid are 19 ± 1 μg/mL, 3 ± 1 μg/mL, and 1.5 ± 0.5 

μg/mL, respectively. In FA Mix II (11 μg/mL) the concentrations of palmitic (1.3μg/mL) 

and myristic acid (2.0 μg/mL) were below their solubility limits and the particles appeared 

slightly brighter and less dense compared to FA Mix I (22 μg/mL) (see Fig. S3). In 

FA Mix I with high FA concentration, the concentrations of palmitic (2.5 μg/mL) and 

myristic acid (4.0 μg/mL) exceeded the solubility limits and the particles appeared slightly 

darker. Accordingly, understanding the solubility limits of FAs in pharmaceutically relevant 

solutions is crucial not only for understanding the reasons for nucleation and precipitation 

resulting in particle formation (see Section 3.2.2 for additional discussion), but also for 

understanding the morphological differences of the formed particles. It would certainly be 

useful to know the solubility limits of all seven FAs contained in the mixed FA samples 

to further understand the results obtained. Nevertheless, these results suggest that the CNN 

was able to detect subtle differences in morphology of FA particles originating from changes 

only in the total concentration of FAs.

Table 4 shows that PalA (C16) particles are the closest match when the CNN model, trained 

on the synthetic model FA particles shown in Table 3, is forced to classify DP C particles 

into one of the six classes used in CNN training. In particular, for the FA related particles 

in DP C, which formed due to enzymatic degradation of polysorbate, more than half of 

the images were classified by the neural network as being most similar to PalA followed 

by SteA particles and particles in FA Mix I (see Table 4). Interestingly, LC-MS analysis 

indicates that particles in DP C contain 10% stearic acid, 33% palmitic acid, and 45% 

myristic acid (see Section 3.2.2 for further discussion and analysis). However, a classifier 

match on an out-of-sample test case (recall the CNN classifier was only trained on synthetic 

model FA particle classes and not DP C) does not indicate identical particle types. In the 

next section, we explore how the fingerprinting method can be used to more quantitatively 

explore the similarities and differences of various particle types with particles of DP C.

Qualitative and Quantitative Comparison of BMI Particle Images by Fingerprint Analysis

In this subsection, we evaluate the fingerprinting approach as an alternative to supervised 

CNN classification for the qualitative and quantitative comparison of particle types coming 

from a variety of conditions in three exemplary case studies. The case studies aim at gaining 
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insights about protein particles formed by different mechanisms in different DPs (case study 

1); studying particles from different FAs in laboratory samples and formed in DP due to 

PS20 degradation (case study 2); characterizing morphological changes of synthetic model 

FA particles over time (case study 3). All samples studied throughout are presented in Table 

1.

The embeddings, i.e., the scatterplot of dimension reduced representations of BMI particle 

images, used in the fingerprint method based on six samples containing FA particles 

(including DP C) and two protein particle samples (DP A and DP B) are shown in Fig. 

2. Since many of the embeddings overlap, the embeddings are split into two separate 

plots in Fig. 2 to improve clarity (however all 8 classes were simultaneously used in 

training the CNN embedding network). Despite the substantial dimensional reduction of the 

BMI particle images into a 2D embedding space, the fingerprinting approach still reveals 

differences in particle morphologies.

Recall that the CNN embeddings used in our fingerprint analysis utilize a nonlinear 

CNN whose parameters were obtained by maximizing an objective function that explicitly 

leverages user-supplied training image label information (here “labels” correspond to the 

Sample Designations shown in Table 1) in order to create a lowdimensional embedding 

with nonlinear function approximation. Principal components analysis (PCA) is a linear 

unsupervised dimension reduction technique; traditional PCA aims at using unlabeled data 

in order to construct an orthonormal basis capable of approximately reconstructing the entire 

image with a subset of the obtained basis vectors. In Fig. S2, we show PCA embeddings 

obtained by analyzing the same data shown in Fig. 2a. In contrast to the CNN embeddings, 

the embeddings of DP A to C obtained using PCA overlap heavily for a majority of the drug 

product samples (although each PCA embedding point cloud exhibits a slightly different 

shape). Comparing Fig. 2a and Fig. S2, one can observe a benefit of a CNN dimension 

reduction technique utilizing labels.

Case Study 1: Comparison of BMI Particle Images for Protein Particles Formed by Different 
Mechanisms in Different DPs

In Fig. 3, fingerprints, i.e., estimated nonparametric pdfs, approximating the distribution of 

embeddings of selected representative cases from Fig. 2 are shown. In particular, Fig. 3 

compares the fingerprints for DP A and DP B (the two drug products with proteinaceous 

particles) against DP C, MyrA and FA Mix I in order to illustrate two items: (i) embedding 

points corresponding to distant regions exhibit distinct morphologies as judged by a human 

observer; and (ii) images belonging to different classes and exhibiting similar fingerprints 

(e.g., FA Mix I and DP A) also tend to have very similar particle morphologies.

To illustrate both of these points, the ≈ 50 closest (in terms of Euclidean distance) 

embedding points of DP B, DP C, MyrA and FA Mix I to their corresponding global pdf 

modes (i.e., the global maximum of the pdf denoted by circled x’s in Fig. 3) were computed 

and corresponding images are presented in Fig. 4.
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Discussion.

Four cases with distinct pdf modes exhibit distinct morphologies as can be observed by 

inspecting Fig. 4. It is worth explicitly noting that the particle populations in the two 

different DPs with proteinaceous particles (DP A, DP B) exhibited readily distinguishable 

fingerprints with well separated modes (Fig. 3) indicating that the BMI images of the protein 

particles generated by different mechanisms can be separated using the fingerprinting 

approach.

Whereas the CNN classifier in the previous section was comprised of 32 dimensions, the 

features from the BMI images are compressed into a 2D embedding in the fingerprint. This 

strong dimension reduction might reduce separability compared to a CNN classifier, but 

the embedding representation often appears to “curate” a highly heterogeneous particle 

collection into representative particle images. Consequently, the curation enables the 

observation of common texture and structure compared to randomly selected images. For 

instance, particles in images in the pdf mode of DP B, DP C, and MyrA look differently 

in terms of shape and brightness (Fig. 4) and the modes are also well separated in the 

embedding space (Fig. 3). Nevertheless, the fingerprinting approach was unable to create a 

2D representation that could separate DP A particle images from FA Mix I images (while 

simultaneously encoding information from the six other particle types shown in Fig. 2). This 

is likely due to the high degree of similarity of FA Mix I (see Fig. 4) and DP A particle 

images (see Fig. 1) which indicates that different particle types might not always exhibit 

sufficiently different morphologies for discrimination by the fingerprinting approach. As 

mentioned, the algorithm is aiming to compress the BMI particle image data down to just 

two numbers, and if fingerprints are close in shape, the underlying particle morphologies 

are likely similar. Furthermore, when comparing Fig. 3 and 4, the results of this case study 

illustrate that embeddings derived from BMI images (which avoid solution based refractive 

index contrast issues) can also correlate with human interpretable morphologies. However, 

there is no guarantee that embeddings computed by CNN loss functions correlate with 

human interpretable features or “morphologies” such as shape and brightness. In contrast, 

CNN computed features can encode information at diverse length scales,33 which may not 

be obvious to human interpretation. In line with our present findings made for BMI images, 

we have empirically observed embeddings from CNN and human interpretable features 

correlate in flow imaging microscopy in previous studies.20,24,25 That is, the CNN based 

embedding scheme is not likely leveraging subtle run specific image differences induced by, 

e.g., variations in illumination or drifting optics. However, we would like to explicitly note 

that the fingerprinting algorithm can be used to embed samples not considered in the training 

scheme. If the resulting fingerprints are similar (or different) one can have confidence that 

the underlying particle morphologies are similar (or different) in the corresponding BMI 

images. In previous work25, we demonstrated how the fingerprinting approach can detect 

novel particle populations. In this work, we focus on using the fingerprinting approach to 

compare particle morphologies from different drug products and synthetic model FA particle 

samples.

Calderon et al. Page 11

J Pharm Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Case Study 2: Comparison of BMI Particle Images of FA Particles in a DP with Laboratory 
Prepared FA Model Particle Samples

In this case study, the same CNN embedding (fingerprinting) network shown in the previous 

section is utilized to qualitatively and quantitatively compare similarity of embeddings 

corresponding to BMI images of FA particles originating from polysorbate degradation in 

DP C and of synthetic model FA particles (see Table 1). The comparison aims to determine 

the suitability of using different synthetic model FA particles, which can be generated in the 

time scale of hours to days, to mimic FA particles formed as a consequence of polysorbate 

degradation within a time frame of several months.

Similarity of BMI images of the synthetic model FA particles to the BMI particle 

images from DP C was quantitatively determined by the goodness-of-fit hypothesis testing 

described in the Methods. For this purpose, the DP C pdf was used as the null density 

and the various laboratory prepared FA particle samples as well as DP A and DP B (both 

representative for pharmaceutically relevant protein particles) were tested to see how similar 

these cases are to DP C. The class with the lowest rejection rate was deemed the closest 

match to the FA particles in DP C. When subjected to the stringent goodness-of-fit test 

obtained using DP C as the null pdf, with N=100 particle image subsets, DP A, DP B and 

all FA samples were rejected at 100% except PalA and SteA. SteA particle images exhibited 

the second fewest hypothesis testing rejections (78%), whereas PalA particles exhibited 

the fewest rejections (44%). Note, the goodness-of-fit test was merely used to quantify 

similarity to DP C’s pdf; less stringent tests or metrics can be considered. This and other 

issues, such as practical vs. statistical significance, are discussed elsewhere.25

Figure 5 displays the fingerprints of the synthetic model particles of the two FAs most 

similar to the FA particles in DP C. Note that the BMI images exhibit slightly off-set modes 

of fingerprints for the particles in sample DP C (c) and for synthetic SteA particles (a). 

Sample images from two tail regions of DP C (d) and SteA (b) particles highlighted in Fig. 5 

are shown in Fig. 6.

Discussion.

The fingerprint analysis showed that the BMI images of synthetic model FA particles from 

longer chain FAs, SteA (C18) and PalA (C16), were most similar to images of the FA 

particles in DP C (the pdfs of SteA and PalA particle images overlapped heavily with the 

DP C pdf, see Fig. 5). Thus, the pure PalA and SteA particle samples were closer, in terms 

of the morphology imaged by BMI, to DP C particles than the particle sample containing 

a mixture of FA species (FA Mix I, see Fig. 3 and 4). Although the fingerprint analysis 

was consistent with the CNN classification results (Table 4), the latter was surprising as the 

FA Mix I sample was intended to mimic FA particles in DP C with regard to the total FA 

concentration and the FA composition as discussed below.

Fingerprints for PalA particles and for the particles in DP C spanned similar regions of 

embedding space, however, there was a subtle difference in their fingerprints that was 

detectable by the goodness-of-fit testing method employed. SteA particle images and 

the images of DP C particles exhibited not only similar particle morphologies in their 
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overlapping regions, but also some distinct morphologies which were identified by the 

fingerprint analysis (as shown in Fig. 6). Furthermore, the fingerprint analysis comparing 

BMI images of FA particles in DP C and of synthetic model FA particles was not consistent 

with the results of the LC-MS characterization of the FA particles in DP C. LC-MS revealed 

that myristic acid was the most abundant FA (≈46% of total FA mass) in particles isolated 

from DP C, followed by palmitic acid (≈33%). Lauric acid was present at ≈11% followed by 

stearic acid at about 10%.

One possible explanation for the apparent differences between the results from the 

fingerprint analysis and LC-MS could be that the morphology of FA particles might be 

impacted by the particle formation process. FA particles in DP C formed in a continuous 

process over several months with the availability of different FA species changing over 

time with the progressing PS20 degradation process. For example, the enzymatic hydrolysis 

rate was reported to depend on the hydrophilicity of the carboxyester species and the 

specific enzyme.34–36 In contrast, during the generation of the synthetic model FA particles 

(obtained by spiking into aqueous buffer) the entire mass of FA is instantly released into 

the formulation resulting in a fast precipitation (hours to days) of poorly soluble FAs. 

Furthermore, studies by Cao et al. (2015)4 and Almendinger et al. (2021)37 illustrate the 

potential impact of additional factors like presence of protein or glass leachables (e.g., 

aluminum ions) on the FA particle formation process. Accordingly, a better adjustment 

of the composition of synthetic model FA particle samples with respect to, e.g., protein 

or metal ion content, might improve the morphological resemblance between model and 

real-life FA particles.

Additionally, it remains to be clarified how well the ratios of the differing FA species in 

the particles formed in the Mix I sample agree with the actual FA species distribution in 

particles in DP C determined by LC-MS. In the applied protocol for synthetic model particle 

generation, the concentration and composition of the 2-propanol-dissolved FA mixture was 

consistent with the total FA mass and the FA species distribution in the particles in DP C. 

Nevertheless, according to Doshi et al. (2015)2, longer chain FAs (e.g., C18, C16) exhibit 

lower solubilities than short chain FAs like lauric acid (C12). Thus, different FA species 

in Mix I might have exhibited a differing extent of precipitation leading to differences 

between targeted and actual FA composition of the synthetic model FA particles. Moreover, 

the polysorbate raw material itself used in the preparation of the Mix I sample needs to be 

considered as important source of additional free FAs.16

Nevertheless, it should also be considered that differences between fingerprint and LC-MS 

analyses may be expected because the image based fingerprint approach performs data 

analysis on a distribution of particles (each imaged individually) while LC-MS results 

represent an averaged FA composition obtained from a total mass of particles retained on a 

filter surface.

Overall, the fingerprinting results provide a hint that the present protocol for the generation 

of synthetic model FA particles by spiking of organic-solvent-dissolved FA into formulation 

buffer can serve as a simplified but not fully representative model particle system to study 

the formation of particles related to the degradation of polysorbate in DPs.
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Case Study 3: Comparison of BMI FA Particle Images Acquired Over Time in Laboratory 
Prepared Samples

In our third case study, BMI particle images acquired over 6 months from another synthetic 

model mixed FA particle sample (FA Mix III) were evaluated for relevant changes in particle 

concentration and morphological properties. The total number of particles continuously 

increased from ≈ 2,000 particles/mL ≥2 μm at 36 hours, to ≈ 10,000 particles/mL ≥2 

μm at 1 month and reached ≈ 16,000 particles/mL ≥2 μm at 6 months. For the particle 

morphology assessment, the same CNN embedding network architecture as stated above 

was used, but this time the network was trained with data from model particles in the 

FA Mix III sample mimicking FA particle formation in presence of salts (aluminum (III) 

chloride, NaCl; see Table 1). The network was trained using FA Mix III particle images from 

the same sample imaged at 36 hours, 1 month, and 4 months. The 6-months images were 

evaluated out-of-sample (i.e., they are not contained in the training class). Figure 7 displays 

the fingerprints obtained at the four different time points. In Fig. 8, we display images for 

the ≈ 50 closest (in terms of Euclidean distance) embedding points to the pdf modes shown 

in Fig. 7 for the 36-hours, 1-, 4-, and 6-months time points.

Discussion.

Fingerprint analysis of the BMI images from FA Mix III particles revealed a meaningful 

change over time in particle morphology, i.e., a different fingerprint distribution and location 

for BMI particle images at 36 hours compared to all later time points (Fig. 7). In contrast, 

time points at 1, 4 and 6 months exhibit a common mode and shape in terms of the 

fingerprint distribution indicating no further meaningful morphological changes in imaged 

particles. Representative particle images in Fig. 8 confirm that there are subtle (although not 

easily detectable by human eye) morphological differences in the particles rapidly formed 

within 36 hours, i.e., the boundaries and interior of the particles are lighter, compared to 

those particles present in the same sample after longer storage times (≥1 month) where the 

particles appear more compact and darker. The change in morphology between particles 

imaged at 36 hours and ≥1 month might be explained by different phases during particle 

formation. The fact that after 1 month the particle morphologies remain similar suggests that 

the mechanism of particle formation remains the same and only more particles of the same 

morphology are formed after that time point.

Interestingly, Almendinger et al. 37 propose a two-stage model for the formation of FA 

particles in the presence of aluminum ions: in the initial phase, nucleation seeds are formed 

by complexation of aluminum ions and FA, in the second phase, additional FA molecules 

accumulate at the seeds, which finally results in precipitation of particles. Despite the fact 

that the authors suggest a change in growth mechanisms before the actual presence of 

subvisible particles, their hypothesis reinforces that FA particle formation might proceed 

in successive mechanistic steps. Although our results appear to be consistent with this 

hypothesis, additional work is needed to fully understand the particle formation mechanism.

Classification and Comparison of BMI Particle Images in Comparable Samples

In previous data analysis the usefulness of fingerprinting to differentiate between particles 

of different origin or formed by different mechanisms was demonstrated. We also wanted 
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to evaluate if BMI particle images of the same origin in comparable samples would be 

classified as similar by the fingerprinting approach. To this purpose, several vials of the 

same batch of DP C, each containing FA particles, were analyzed on the same day. In 

addition, frozen (−80°C) aliquots of the same DP A sample with protein particles were 

analyzed 2 months apart.

Fingerprints of BMI FA particle images (Fig. 9) from three separate vials of DP C 

analyzed on the same day demonstrate qualitatively that there is little variation between 

the embedding distributions. The fingerprint of the pooled data (blue dashed line) from 

the entirety of all imaged DP C particles is representative of each vial (plotted in black). 

Furthermore, using the entire DP C distribution (combining the particle images from all 

vials) as the null density, the quantitative goodness-of-fit rejection rates were 5%, 1%, and 

7% for vials 1-3, respectively, showing that the distribution of embedding points was not 

inconsistent with the null density in the repeat vials.1

The standard CNN classifier did show comparable classification results for images of 

protein particles from frozen DP A analyzed 2 months apart (we refer to the later analysis 

run as DP A*), i.e., 84% of the BMI particle images from DP A* were correctly classified 

compared to 81% in the case of the initial DP A run. The fingerprinting approach also 

provides comparable BMI particle image classification results between both runs (data not 

shown).

Discussion

BMI particle image analysis by CNN classification or by the fingerprinting approach 

provides consistent results for comparable samples with respect to particle origin or age. 

This was demonstrated by highly comparable embedding distributions (Fig. 9) for FA 

particles from different DP C vials of the same batch, which were analyzed side-by-side. 

Formal hypothesis testing failed to detect significant differences in these BMI imaged 

particles sampled from different vials. In addition, classification results for BMI images 

of (preserved) protein particles from two separate analytical runs of −80°C frozen DP 

A support that morphological similarities in BMI images are correctly and reproducibly 

assessed and differences meaningful when found between BMI images by both approaches.

Conclusions

In conclusion, both traditional supervised CNN classifiers, as well as the recent 

fingerprinting approach20 demonstrated that images from BMI contain representative 

morphological features capable of distinguishing various particle types studied (e.g., 

images of different FA and protein particles can readily be distinguished from one 

another). Furthermore, we showed how the CNN based fingerprinting approach can be 

used to both qualitatively and quantitatively characterize morphological differences in 

particle populations (if particle classes exhibit resolvable morphological differences). The 

fingerprinting approach also enables the characterization of the morphological similarity of 

1 The reported quantitative goodness-of-fit rejection rates used an α = 0.05 and subsampled the data (using batch size of N = 100 
particle image embedding subsets) to check for consistency with the null density.
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BMI particle image distributions of different particle types (e.g., DP A and FA Mix I particle 

images exhibited highly similar morphologies when analyzed as a population).

Previously, the fingerprinting approach was demonstrated as a promising tool in the field 

of particle analysis when combined with flow imaging microscopy.20,24,25 In this work, we 

demonstrated that extracted BMI particle images using proprietary software complemented 

by the fingerprinting approach can be a valuable label-free method for high-throughput 

particle classification and characterization. Particle classification and characterization based 

on morphological features, in addition to particle count and size, can be utilized for 

the monitoring of particle formation over the different stages of product development. 

Furthermore, our findings illustrate that the fingerprinting approach can help to gain new 

insights in studies aiming to mimic and understand particle formation mechanisms related to 

polysorbate degradation in drug products.

Future research and case studies will assist in elucidating the capability of particle 

classification using BMI complemented by data analysis based on CNNs or other AI. 

Finally, while today’s routine particle analysis instruments are optimized for sizing and 

counting of particles, it would be interesting to explore how fingerprinting and other CNN 

based AI perform when combined with imaging techniques optimized for image resolution 

(hence recording higher fidelity digital information about particle morphology).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Randomly selected particle BMI images of ETFE, PalA (C16), and DP A and DP B.
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Figure 2. 
Embeddings of DPs and FAs. A neural network was trained to create an embedding 

which maps the grayscale pixel intensities from a labeled BMI image collection into 

a 2D scatterplot representation (i.e., we perform dimension reduction). Shown are the 

embedding data used to create probability density function (pdfs), referred to as fingerprints. 

Embeddings of some samples overlap substantially in embedding space due to similar 

particle morphologies, hence we have separated the embeddings into two groups of plots. 

In addition, fingerprint contour plots of selected samples shown in Fig. 3 further aid in 

illustrating the similarities and differences in overlapping fingerprints.
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Figure 3. 
Probability density functions (pdfs) or fingerprints of embeddings coming from five selected 

particle types. The fingerprints were estimated from the embeddings shown in Fig. 2. The 

contour levels displayed correspond to the probability mass covered by the enclosed area; 

the mode of the distribution (indicated by circles with x’s for each case) is in the middle of 

the lowest level set shown and each of the other levels displayed is the area associated with 

the %-value of the probability mass (e.g., 80% indicates the region containing 80% of the 

probability mass centered at the mode).
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Figure 4. 
Source BMI images nearest four of the modes shown in Fig. 3. Note how the spatially 

distant regions of Fig. 3 correspond to distinct particle morphologies. Fingerprints of FA 

Mix I and DP A overlap globally to a high-degree and particle images from FA Mix I and 

DP A appear to show similar particle morphologies (randomly sampled DP A particles are 

shown in Fig. 1 and exhibit similarity to typical FA Mix I particles shown here).
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Figure 5. 
Comparison of fingerprints of particle images from PalA (left) and SteA (right) with DP 

C. Circles labeled “a” and “c” indicate the modes of the embeddings of SteA and DP C, 

respectively. The points labeled “b” and “d” mark two tail regions of SteA’s and DP C’s 

fingerprints.
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Figure 6. 
Source BMI images nearest the points shown in Fig. 5.
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Figure 7. 
Fingerprints of the FA Mix III sample analyzed at four different time points (36 hours, 1, 4, 

and 6 months: from top to bottom).
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Figure 8. 
Source BMI images nearest the mode of the fingerprints shown in Fig. 7. The images 

represent FA particles in Mix III (at 36-hours, 1-, 4-, and 6-month time points).
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Figure 9. 
Fingerprints for FA particles from three separate vials of DP C. The different vials were 

from the same batch and of the same age. Fingerprints of the single vials are plotted in black 

along with the fingerprint of the entire DP C sample (consisting of data from all 3 vials) 

indicated as blue dashed line.
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Table 2

Confusion Matrix Showing Ground-truth (rows) vs. Predicted Label (columns) for Four Different Classes of 

Particles: the Protein Surrogate ETFE, PalA (C16), and DP A and DP B. In Each Row, the Numbers Listed 

Correspond to the Fraction of Individual BMI Test Images Classified into the Category Labels Shown in the 

Columns). Green Color Highlights Classification Results for the True Class (a Perfect Classifier would Exhibit 

Ones Along the Diagonal). Pink Color Indicates Fraction of Misclassification.

ETFE PalA DP A DP B

ETFE 0.95 0.02 0.01 0.02

PalA 0.03 0.77 0.10 0.09

DP A 0.01 0.09 0.81 0.09

DP B 0.02 0.07 0.09 0.82
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Table 3

Confusion Matrix of FA Particle Classes. The CNN was Trained with Images of a Large Collection of 

Particles from Pure FAs and FA Mixtures of Known Composition. See Table 1 for a Detailed Description 

of the Samples Analyzed. The Ground-truth Row Labels have been Omitted for Clarity (Top to Bottom 

Ground-truth Labels Correspond to Left to Right Column Labels). Color Code: Green Indicates Fraction of 

Correct Classification, Pink Marks Fraction of Misclassification.

C18 C16 C14 C12 Mix II Mix I

0.64 0.26 0.00 0.00 0.00 0.09

0.20 0.67 0.03 0.00 0.02 0.09

0.00 0.03 0.87 0.07 0.03 0.00

0.01 0.01 0.11 0.60 0.27 0.01

0.00 0.01 0.02 0.20 0.75 0.01

0.06 0.06 0.00 0.01 0.03 0.80
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Table 4

Classification of Particle Images from DP C Using the CNN from Table 3, in which DP C was not Used as a 

Training Class. Notably, Orthogonal LC-MS Analysis (See Methods Section) Indicated that Particles in DP C 

were Primarily Composed of FAs or Salts of FAs with no Significant Amount of Protein. Using BMI Images, 

the CNN Predicts PalA (C16, no Color) as the Most Likely Label when Analyzing ≈ 20k DP C BMI Particle 

Images. Pink Cells Indicate Particle Classes DP C Particles were less Frequently Assigned to.

C18 C16 C14 C12 Mix II Mix I

0.25 0.51 0.03 0.00 0.01 0.20
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