
 

Open Peer Review

F1000 Faculty Reviews are written by members of
the prestigious  . They areF1000 Faculty
commissioned and are peer reviewed before
publication to ensure that the final, published version
is comprehensive and accessible. The reviewers
who approved the final version are listed with their
names and affiliations.

Any comments on the article can be found at the
end of the article.

REVIEW

Recent advances in understanding the mechanisms determining
 longevity [version 1; peer review: 3 approved]

Robert Bayersdorf , Björn Schumacher 1,2

Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany
Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine
Cologne, University of Cologne, Cologne, Germany

Abstract
The field of aging research has progressed significantly over the past
decades. Exogenously and endogenously inflicted molecular damage
ranging from genotoxic to organellar damage drives the aging process.
Repair mechanisms and compensatory responses counteract the
detrimental consequences of the various damage types. Here, we discuss
recent progress in understanding cellular mechanisms and
interconnections between signaling pathways that control longevity. We
summarize cell-autonomous and non-cell-autonomous mechanisms that
impact the cellular and organismal aging process
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Throughout history, humankind has been preoccupied with 
longevity, death, and immortality, as evidenced by the first 
known epic, describing Gilgamesh’s futile quest for immortal-
ity. Death due to old age, however, appears to be rather rare 
in nature, as most species are confronted with various extrin-
sic sources of mortality, including predation, malnutrition, and  
life-threatening temperatures, all of which can limit the life 
span of individuals in their natural habitats. The vastly differ-
ent life spans among closely related species1,2 were selected 
mainly via pressure exerted by extrinsic mortality risks that had 
to be balanced with the need for successful offspring generation. 
Some trees may persist thousands of years, whereas some insect  
species live for only a few days and other species, such as the 
small freshwater animal hydra, are thought to live indefinitely3. 
Various primate species show considerable life span variations, 
ranging from around 10 to 60 years, even in protected environ-
ments. It is vigorously debated whether humans have a fixed 
maximum life span that plateaus at 115 years4 or whether the mor-
tality risk plateaus past 105 years5, leaving open the theoretical  
possibility of immortality—provided there were an infinite 
number of 105-year-old individuals. In general, not all individu-
als of a given species reach the same age, even if they live in the  
same environment. This variation was most impressively dem-
onstrated in a clonal Caenorhabditis elegans population that 
even under identical environmental conditions showed a stochas-
tic life span distribution6. Genome comparisons from species 
groups with different life spans have revealed evolutionary  

signatures in genes, some of which have been implicated in  
pathways associated with longevity regulation7,8. Among these 
are genes involved in DNA repair, splicesosome and RNA  
processing, cell cycle control and cell division, kynurenine 
metabolism, autophagy, wound healing, and hemostasis7,8. Such  
studies offer great potential for identifying aging modula-
tors to enhance our understanding of the factors that govern the  
dynamics of life span determination. 

Over the past three decades, environmental and metabolic  
factors as well as evolutionarily conserved pathways that influ-
ence life span have been identified (Figure 1). Examples include 
several stress factors that, in excess, can negatively affect life 
span but that, in moderation, can trigger protective responses 
that lead to life span extension in a process called hormesis9.  
For example, DNA damage is thought to accumulate in tissues 
during aging, as extrinsic and intrinsic sources of genotoxic  
stress lead to a wide array of DNA lesions, including oxidized DNA 
bases, apurinic sites, and DNA double-strand breaks (reviewed 
in 10). DNA damage drives the aging process via mechanisms  
ranging from interference with replication and transcription 
to the DNA damage response (DDR) that triggers apoptosis 
and cellular senescence11. A range of congenital DNA repair  
defects lead to progeroid syndromes that are characterized 
by accelerated segmental aging phenotypes in humans12,13.  
Reactive oxygen species (ROS) have been prime suspects for 
accelerating the aging process; however, they can also trigger 

Figure 1. Life span determination. (1) Organismal life starts out as a system in healthy homeostasis (green bar area), which becomes 
increasingly disorganized via deleterious effects (yellow/red bar area) until it reaches a threshold of system collapse and death (dotted line). 
Positive and negative effects determine the dynamics of this transition and therefore the life span of the individual. (2) Biological damage 
leading to disruption of systemic homeostasis can be triggered by environmental insults and internal metabolic processes, which can self-
amplify and interact which each other. (3) Damage triggers compensatory responses that limit damage (green blunt arrow), facilitate damage 
repair (solid green arrow), and delay the complete disruption of homeostasis (dotted green arrow). Over time, compensatory responses 
exhaust their compensatory capacity and potentially limit repair resources (dotted red arrows). (4) Repair and re-synthesis of biological 
structures and components at least partially revert some types of damage. Green arrows denote positive effects on life span, red arrows 
denote negative effects on life span, and black arrows denote neutral or ambiguous effects.
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protective responses at low levels and are even necessary  
for certain life span extension phenotypes14. For example,  
epigallocatechin-3-gallate (EGCG), a compound found in green 
tea (Camellia sinensis L.), leads to ROS production and an 
extended median life span in C. elegans, but this effect is abro-
gated when the nematodes are treated with the ROS-neutralizing 
reducing agent N-acetylcysteine (NAC)15. Similar positive life 
span and hormetic effects could be observed with low concen-
trations of other ROS inducers, such as naphthoquinones and  
arsenite, in a ROS-dependent manner16,17. Moreover, the influ-
ence of glycogen and glucose on the intracellular glutathione 
redox system, concomitant ROS scavenging, and life span 
reduction in long-lived daf-2 mutant C. elegans highlight the 
importance of ROS signaling and redox systems for life span  
control18,19. Strongly elevated ROS levels, however, induced by 
higher concentrations of paraquat shorten life span, presum-
ably because of oxidative damage15,17,19. A similar relationship 
can be observed regarding the nutritional state of animals, 
as severe nutrient and energy limitation can lead to death;  
however, calorie restriction (CR), dietary restriction (DR), 
or intermittent fasting has positive effects on life span in  
several model organisms, and modulation of metabolic param-
eters in a 2-year human trial showed potential benefits20–22.  
These life span extensions can also be triggered via modulation 
of molecular signaling pathways—for example, insulin-like 
growth factor (IGF) signaling—or via the inhibition of neuronal 
circuits involved in nutrient sensing23. Based on informa-
tion regarding the signaling mechanisms that mediate the life 
span–extending consequences of CR, pharmacological inhibi-
tors such as the mammalian target of rapamycin (mTOR) 
inhibitor rapamycin were shown to be sufficient for life span  
extension in several model organisms, including mice24. Cur-
rently, several efforts are underway to develop more specific 
TORC1 inhibitors to avoid the side effects associated with 
rapamycin treatment in humans, such as immunosuppression  
and impaired wound healing25–27.

Protein homeostasis, also called proteostasis, describes a  
compendium of processes that include proteasome-dependent 
protein degradation, several types of autophagy required for the 
degradation of biomolecules, protein aggregates and defective 
organelles (reviewed in 28), as well as downregulation of ribos-
omal protein translation29,30. Enhanced proteostasis mechanisms 
are often essential components of lifespan-extending pathways  
(Figure 1). Inhibition of TOR signaling, for instance, reduces 
the initiation of protein translation, which might then alleviate 
proteotoxic stress, e.g., the age-related accumulation of protein  
aggregates30. In addition, shifts in overall metabolism might 
cause or result from changes in proteostatic capacity31.  
For example, mitochondria, which have important roles in 
energy generation and act as hubs for lipid metabolism and 
anabolic processes, have been implicated in lifespan regula-
tion. Treatment with the natural compound urolithin A induces 
mitophagy and extends lifespan in C. elegans perhaps by  
eliminating dysfunctional mitochondria, thus linking autophagy 
and mitochondrial physiology to life span determination32. 
Their involvement might be context-dependent, as mitochon-
drial stress responses, such as the mitochondrial unfolded  

protein response (UPRmt), can contribute to life span extension in  
C. elegans23. In contrast, life span–extending mutations in the  
electron transport chain complex IV (COX-5B, previously 
referred to as CCO-1) or cytochrome c reductase (ISP-1) induce 
UPRmt marker expression; however, abrogating this induction via 
mutation of the transcription factor (TF) ATFS-1 does not amel-
iorate this life span extension33. Zhou et al. demonstrated that 
the consequence of autophagy can also be context-dependent: 
whereas increased autophagy is necessary for many life  
span–extending paradigms (that is, CR), increased mitochondrial 
permeability can convert elevated autophagy into a life span–
shortening process in C. elegans34. This observation suggests 
that mitochondrial and autophagic functions may interact to  
modulate longevity.

A range of TFs and epigenetic and splicing modulators35 that 
regulate stress responses and confer positive effects on life span 
have been identified. The discovery that attenuation of the insu-
lin-like signaling (IIS) pathway extends life span in C. elegans 
ignited the field of the genetics of longevity. Importantly, IIS 
regulates life span via activation of the FOXO TF DAF-16. 
Since these seminal discoveries, numerous additional life  
span–regulating TFs have been identified. The HLH-30/
TFEB TF mediates longevity via stress-induced regulation of 
autophagy-associated genes upon stress. Although these TFs 
have been characterized in isolation for quite some time, how 
they can cooperate with a variety of other TFs to regulate life 
span and stress responses has been recently delineated. Lin  
et al. suggested that DAF-16/FOXO and HLH-30/TFEB coop-
erate to regulate longevity and also have important independ-
ent functions under specific stress conditions36. In contrast, the 
homeodomain TF CEH-60/PBX, whose role in development 
has been investigated, was recently shown to negatively affect  
life span in C. elegans by repressing DAF-16 activity37. 
HLH-30 activity, which has positive effects on life span, 
can be enhanced via treatment with nuclear export blocker 
drugs38 and modulators of intracellular calcium storage  
compartments39. On the level of mRNA processing, the splicing 
factor SFA-1/SF1 has emerged as a requirement for the 
proper splicing of transcripts involved in lipid metabolism 
and other metabolic processes under conditions of life span– 
extending DR35.

Epigenetic mechanisms are crucial for cell identity and func-
tion of differentiated cells, the differentiation of stem cells, 
and stem cell maintenance. So far, different adult stem cell  
systems have been identified which show aging-associated 
changes in epigenetic marks on chromatin and DNA (for exam-
ple, in hematopoietic stem cells [HSCs], intestinal stem cells, and  
muscle stem cells [MuSCs]). Cell-intrinsic damage, accumulat-
ing during stem cell quiescence, may lead to epigenetic changes, 
while cell elimination is prevented through anti-apoptotic path-
ways (reviewed in 40). For example, these changes can lead to 
divergent deposition of H3K4me3 marks or action of Rad21/
cohesin, resulting in impaired stem cell function and senescence 
signaling in aged MuSCs41 or over-activation of inflammatory 
signaling in HSCs42, respectively. Deficiencies in stem cell  
function, in turn, impair tissue homeostasis, function, and 
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regeneration, leading to declining organismal health and most 
likely limiting life span. Moreover, epigenetic changes in aged 
stem cells might lead to increased incidences of aging-related  
diseases such as hematopoietic cancers by allowing the clonal 
selection of mutated HSCs43–45. Interestingly, transient epige-
netic reprogramming via cyclic expression of the Yamanaka 
factors in mice showed signatures of improved health in a  
progeroid laminopathy mouse model46.

It is becoming increasingly clear that in addition to cell- 
autonomous stress responses that modulate the intrinsic resil-
ience of individual cells upon exposure to specific types of stress,  
signaling between cells and tissues can elicit such responses 
both locally and in distal tissues. The influence of these inter- 
tissue effects has been exemplified by heterochronic parabiosis 
and transplantation experiments, which suggest differences 
in circulating and local niche factors to dynamically alter tis-
sue functionality and epigenetic states during aging40,47,48. In  
particular, neuronal tissue has come into focus as a significant 
coordinator of life span–modulating processes; for example,  
neuronal autophagy (as well as autophagy in the intestine) can 
regulate life span–extending processes non-cell-autonomously49.  
The immune system is an important non-cell-autonomous regu-
lator that not only profoundly influences life span directly by 
preventing premature death due to infections but also protects 
organisms via cancer surveillance and removal of senescent  
cells. While the prowess of the immune system fades dur-
ing aging through a process called immunosenescence50, 
nuclear DNA damage, accumulating extranuclear DNA, and  
senescent cells fuel inflammation51. Parts of the adaptive 
immune repertoire of individual aging humans have recently 
been characterized, and declines in the diversity of CD8+ 
(cytotoxic) T-cell and B-cell repertoires were observed52,53. 
Senescent cells, which adopt a distinct physiology (often via  
continuous DNA damage signaling11), have themselves been 
implicated in impairing normal tissue function and promot-
ing the development of a deleterious, chronic pro-inflammatory 
environment54–56. Targeting senescent cells has shown positive 
effects on immune function in mice and therefore appears to 
be a promising field of research to improve tissue aging in the  
elderly57, including attempts to re-establish a balanced out-
put of aging HSCs to regenerate lymphopoiesis during aging58.  
In contrast, the senescence program might protect cells from 
transforming into cancer cells and has been implicated in tis-
sue regeneration after skin injury59. Together, these observations 
indicate that senescent cells serve dual roles in influencing life  
span: pro-longevity tumor suppression and tissue repair versus 
involvement in pro-aging inflammatory reactions.

As the important roles for the immune system and metabolism 
in life span modulation have been intensely studied for some 
time, the involvement of the microbiome has emerged more 
recently. Different microbiota compositions have been shown 
to modulate both the immune system and metabolism in posi-
tive and pathogenic ways. Studies on centenarians have sug-
gested specific signatures in the gut microbiome in terms of its  
composition and diversity in long-lived humans60,61. For example, 
higher relative abundances of Akkermansia and Bifidobacterium, 
known health-associated microbes, are positively associated 

with exceptionally long-lived humans60. Furthermore, micro-
bial transfer experiments from young to middle-aged killifish, a  
short-lived model organism recently established for conduct-
ing research on vertebrate aging, demonstrated a positive effect  
of a young microbiome on life span62.

Many stress factors that influence life span (for example, ROS, 
mitochondrial impairment, cellular redox imbalance, nutri-
tional status, and protein translation) are intimately connected  
(Figure 1). Thus, the delineation of clear cause-and-effect 
relationships between such factors and longevity is challeng-
ing. ROS, for example, can cause proteome stress63 and lead 
to DNA damage64 among other effects; however, it also stimu-
lates protective (hormetic) responses9. DNA damage, in turn,  
can lead to more ROS production65, potentially also via conse-
quential imbalances in the mitochondrial proteome. The DDR, 
which comprises checkpoint signaling and DNA repair path-
ways, protects cells from malignant transformation66. The DDR 
can also lead to decreased general translation67, which might 
alleviate proteostatic stress. The involvement of proteostasis  
in the DDR appears manifold, ranging from distinct roles dur-
ing DNA repair to ensuring cellular homeostasis. DNA dam-
age remains a central node in the network of these processes, 
as both exogenous and endogenous genotoxins constantly 
inflict DNA damage and because the DDR affects a vast range  
of metabolic and proteostatic responses68. Interestingly, CR 
was shown to dramatically extend life span in nucleotide exci-
sion repair–deficient progeroid animals69, suggesting a new 
perspective in the ongoing quest for therapies for congeni-
tal progeroid syndromes. Indeed, DAF-16–mediated stress 
responses to DNA damage in C. elegans can preserve tissue 
maintenance and function by elevating the tolerance to persistent  
DNA damage70.

Interventional studies with the mTOR inhibitor rapamycin have 
had positive effects on delaying the onset of age-associated 
chronic disease markers and potentially negative effects in 
humans71–73. In addition to rapamycin, the drugs resveratrol and 
metformin have been used to modulate pathways involved in 
DR-mediated life span extension, and senolytic drugs (for exam-
ple, dasatinib, quercetin74, and fisetin75) have been reported to  
differentially enhance apoptosis in senescent cells, depending 
on their original cell type. (Senolytics are reviewed in 76.)  
Dasatininb and quercetin were recently tested in a first human 
pilot study on idiopathic pulmonary fibrosis; however, the 
long-term effects of these treatments have not been assessed77. 
These interventions might indeed provide potential therapeutic  
options for delaying the aging process; however, drugs for 
specifically enhancing DNA repair or alleviating DNA dam-
age have not been developed yet. In contrast, the deletion of 
DDR components was shown to exert positive effects on tissue  
maintenance and life span in mice that prematurely aged because 
of telomere dysfunction78–80. These results suggest that modulat-
ing the DDR could provide interesting avenues for interventions  
for maintaining tissue homeostasis during aging.

In summary, recent progress has significantly expanded our 
knowledge of the various processes that modulate life span, 
including genetic regulators, stress responses, metabolism,  
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cellular senescence, and inter-tissue communication. Stochastic  
effects, such as the occurrence of DNA damage, which can 
impact each one of those processes68 could result in differ-
ent individual aging trajectories, where hypothetical tipping 
points of declining tissue functionality are reached at different 
time points81,82. This might be one reason for the heterogene-
ity of individual life spans even in defined, homogenous model  
organism populations. Importantly, the interactions between 
longevity modulators are becoming increasingly apparent, 
highlighting the complexities underlying aging and life span 
determination. As multiple factors contribute to aging and the 
alleviation of age-related organismal deterioration, it might be 
necessary for future interventions to collectively target a range 

of longevity modulators—potentially even in a tissue- or cell  
type-specific manner—to extend the healthy life span in humans.
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