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1  |  INTRODUC TION

1.1  |  Motivation

Fruit juices consist of a large number of nutritive compounds like 
organic acids, amino acids, minerals, vitamins, and in a small amount 

phytochemicals (Belitz et  al.,  2009). Preserving this benefit chal-
lenges manufacturers to find a compromise between microbiological 
stability and sensory and nutritional quality. The greatest influence in 
this sense is exerted by the production step of preservation. In spite 
of novel techniques, the most common way of preservation remains 
thermal treatment in terms of high temperature short time (HTST) or 
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Abstract
The feasibility of inline classification and characterization of seven fruit juice varieties 
was investigated by the application of near-infrared spectroscopy (NIRS) combined with 
chemometrics. The findings are intended to be used to optimize the flash pasteurization 
of liquid foods. More precise information of the kind of product in real time had to be 
achieved to enable a more product-specific process. Using the method of partial least 
squares discriminant analysis, the fruit juice varieties were classified, showing a classifica-
tion rate of 100% regarding an internal and 69% regarding an external test sets. A char-
acterization by the extract content, pH value, turbidity, and viscosity was made by fitting 
a partial least squares regression model. The percentage prediction error of the pH value 
was <3% for internal and external test sets, and for the Brix value prediction errors were 
about 4% (internal) and 20% (external). The parameters viscosity and turbidity were found 
to be unsuitable. Despite this, the strategy applied to gain more product-specific informa-
tion in real time showed to be feasible. By linking the results to a database containing po-
tentially harmful microorganisms for various types of fruit juices, a more product-specific 
calculation of the necessary heat input can be performed. To demonstrate the practical 
relevance, a comparison between conventional and product-adapted process control was 
performed using two fruit varieties as examples in case of Alicyclobacillus acidoterrestris. 
Thus, with more accurate product information, achieved through the use of NIRS with 
chemometrics, a more precise calculation of the heat input can be achieved.
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bottle pasteurization. The thermal effect required to prevent spoil-
age by microorganisms is expressed in pasteurization units (PU). 
The PU are calculated using a highly simplified model (Heiss, 2004; 
Rahman, 2007). The so-called fruit juice formula was historically de-
veloped based on empirical values (Oliver-Daumen, 2011; Schwarzer 
et  al.,  2010). Even if dedicated particularly to fruit juices, simplifi-
cation of this formula provides insufficiencies, which can lead to 
both impaired safety and exaggerated treatment. The major disad-
vantage of the PU model results first from “globalization” by em-
ploying a product-unspecific leading germ as reference and second 
from ignoring the heating and cooling sections in a continuous flash 
pasteurization system. For a realistic assessment of the microbiolog-
ical hazard potential, product properties such as pH value, extract 
content (“Brix value”), and turbidity have to be taken into account. 
These parameters can affect the inactivation rate of microorgan-
isms, which is expressed by D and z values. The D value is the deci-
mal reduction time at a reference temperature. The z value indicates 
the required temperature increase that is necessary to reduce the D 
value (time) to a tenth compared to a reference temperature (Tiwari 
& Rajauria, 2018). Depending on the fruit juice type and its individual 
properties, the D and z values for the microorganisms vary in a rel-
evant extent (Oliver-Daumen, 2011). Therefore, getting information 
about the product in time of processing enables to determine more 
product-specific D and z values, provided that a database with cor-
responding values like Brix and pH values can be accessed. Using 

this information, a more specific PU target value can be calculated 
and the process control can be adjusted accordingly (Schwarzer 
et al., 2010). Such a database with scientifically approved D and z 
values for specific product type and the specific growth conditions 
already exists with an open Internet access and is continuously fed 
with new data (Schwarzer et al., 2010). Hence, the aim of this study 
is to enable manufacturers to profit practically from this database, 
to obtain a more gentle process, and to better protect nutritive juice 
compounds. Therefore, the feasibility of inline product classification 
(fruit variety) and characterization of relevant properties (Brix value, 
turbidity, pH value, and viscosity) was demonstrated and presented 
in this study.

1.2  |  Approach for a case-specific pasteurization

This work follows a novel approach to liquid food preservation that 
allows for case-specific pasteurization and better protects valuable 
chemical compounds. Figure 1 shows the underlying idea and work-
flow, which is investigated here using near-infrared (NIR) analysis. 
With the help of inline spectroscopy measurements and chemomet-
rics, a selection of the microorganisms that are specifically relevant 
for the product is to be made from a large number of potentially 
harmful microorganisms. Only for these microorganisms, the ki-
netic parameters (D/z values) have to be considered, with which a 

F I G U R E  1  Underlying background idea as a novel approach for a case-specific calculation of the pasteurization units (PU) by the 
individual selection of spoilage microorganisms from fruit variety identification and analysis of relevant product properties
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(“pessimistic”) PU calculation is performed. Although these result-
ing PU are still to be regarded as a worst-case scenario for safety 
reasons, this only refers to the ultimately selected few microorgan-
isms. This calculation is therefore much more optimistic and thus 
gentler than the globalizing assumption of a much larger spectrum of 
microorganisms. The selection of harmful microorganisms in practi-
cal applications is supposed to be conducted in two steps: (i) the 
categorization of the product type and variety and (ii) the product 
characterization with regard to Brix, pH, turbidity, and viscosity. 
The aforementioned strategy is exemplified within this study using 
two fruit varieties (apple and grape; of a total of seven varieties con-
tained in this study).

1.3  |  Near-infrared spectroscopy application on 
fruit juices

For the determination of product information, a real-time and inline 
applicable analytical method, which is nondestructive and easily 
adaptable, is necessary. Near-infrared spectroscopy (NIRS) in com-
bination with chemometrics has the potential to accomplish these 
requirements (Günzler & Gremlich,  2002; Kessler,  2007). Near-
infrared spectroscopic investigations on fruit juices are the matter 
of numerous publications. Typical applications are the verification 
of the correct declaration of regional provenance, the verification 
of authenticity, or the quantification of special ingredients (Hosseini 
et  al.,  2021; Igual et  al.,  2010; Kelly & Downey,  2005; Lanza & 
Li,  1984; Rambla et  al.,  1997; Reid et  al.,  2005; Šnurkovič, 2013; 
Twomey et al., 1995; Włodarska et al., 2018). In most cases, these 
investigations are offline applications and place emphasis on a single 
fruit variety or on particular ingredients. Some studies combine dif-
ferent techniques such as NIRS with ICA like in the study of Ribeiro 
et al. (2017). An example of a study involving a multiproduct investi-
gation was published by dos Santos et al. (2018). Beside the specific 
aim in the context of the fruit juice pasteurization and NIRS as an 
inline measurement method, a particularity of this work is the use 
of a so-called transflection probe, which is a system of transmission 
measurement with a doubled path length using a reflection surface.

2  |  MATERIAL S AND METHODS

Figure 2 shows schematically the experimental design of processing 
and the ways of analyzing and evaluating the results by chemometric 
methods, which is explained in more detail in the following sections.

2.1  |  Sample material

In order to study the feasibility of the classification and quantifi-
cation of fruit juices by NIRS, 7  ×  5 (n  =  35) commercial samples 
have been bought from local grocery stores: seven varieties of fruit 
juices, each from five different producers. The samples included the 

varieties cloudy apple, orange, pear, peach, cranberry, black currant, 
and grape. The reference values determined for the parameters 
investigated within this study are tabulated as mean values with 
related standard deviation in Table 1. The minimum and maximum 
values were presented in Table 2. In addition, 26 other fruit juices of 
different varieties were purchased, the number varying depending 
on the availability of different manufacturers.

2.2  |  Inline NIR measurements

Processing of fruit juice samples and near-infrared inline measure-
ments were carried out in a laboratory system for HTST treatment 
of liquid foodstuff type HT220 (OMVE). The experimental setup has 
been described in detail previously (Weishaupt et al., 2020) so that 
only a brief description of the general setup is given here. The inline 
NIR measurements were conducted under constant process condi-
tions with flow rate of 90 L/h, temperature of 20°C, and pressure 
of 3 bar. The heat-holding section of the HTST laboratory plant was 
extended by a tube coil containing a segment with three ports that 
allows the insertion of external probes. Through one of these ports 
the NIR probe was inserted. The NIR probe is a so-called transflec-
tion probe sensor with a variable path length and a reflective surface 
at the opposite side of the light source (Avantes BV). The sensor was 
connected to a spectrometer type PSS-2120 (Polytec GmbH) with a 
diode array detector of 256 pixels and a spectral range from 1100 
to 2100 nm in combination with the software Pas Labs 1.2 (Polytec 
GmbH). Recording of the spectra was made in absorbance mode 
with 100 scans averaged per spectrum. The path length of transflec-
tion probe was set to 2 mm. Before running the fruit juice samples, a 
reference measurement with demineralized water at a temperature 
of 20°C was conducted, also under constant process conditions with 
flow rate of 90 L/h. Each juice was measured inline 30 times at 20°C. 
For the generation of a so-called external test set of spectral data, 
which are totally independent from the training dataset, another set 
of 26 different commercial fruit juices consisting of the same varie-
ties were measured under the same process settings.

2.3  |  Laboratory reference measurements

Extract (“Brix value”), turbidity, pH value, and viscosity were meas-
ured in the laboratory environment to provide reference data, which 
were used to generate models using the NIR spectra with the help 
of chemometric methods. These reference values are necessary in 
the second step after identification of the fruit variety to better in-
dividualize the pasteurization requirements according to the overall 
approach described earlier (Figure 1). The Brix value was measured 
with a refractometer type J157 Automatic Refractometer (Rudolph 
Research Analytical, Hackettstown, NJ) by placing a small amount 
of sample in the measuring chamber. The turbidity was measured 
with the laboratory turbidity meter type 2100AN (Hach) by fill-
ing a measuring cuvette with sample material and placing it in the 
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measuring cell. The turbidity meter features a triple beam scattered 
light optical design (590–1100  nm wavelength), measuring a side 
(90° angle) scatter of the sample. The pH value was measured with 
a pH meter Protos 3400S (Knick Elektronische Messgeräte GmbH 
& Co. KG). The viscosity measurements were carried out at 20°C 
with a rotational viscometer ViscoQC 300 (Anton Paar Germany 
GmbH, Ostfildern-Scharnhausen, Germany) with the adapter CC12 
and 230  rpm for 1  min measuring time. All measurements were 

performed in fivefold, for which the mean and standard deviation 
were then calculated.

2.4  |  Data analysis

The characterization and classification of the fruit juices were real-
ized with chemometric methods applying Simca 16.1 (MKS Umetrics 
AB). An informative overview of the basics of the chemometric 
methods used here is given by Hosseini et al. (2021) in their publica-
tion, thus following is a brief explanation of the partial least squares 
regression (PLSR) and partial least squares discriminant analysis 
(PLS-DA) methods used here. For characterization through quantifi-
cation of ingredients, the PLSR method was applied. The PLSR is the 
regression extension of the principal component analysis (PCA), in 
which a dimension reduction takes place with simultaneous correla-
tion to the results of reference analytics. This is achieved by simul-
taneously modeling the spectra of the fruit juice samples (Matrix X) 
and the values of the reference analytics (Matrix Y), looking for the 
latent variables in X that are most predictive of those in Y, respec-
tively. The overall aim of PLSR is to predict properties of unknown F I G U R E  2  Scheme of the experimental design

Commercial fruit juice samples

Laboratory reference measurements Inline NIR measurements

Brix value pH value Turbidity Viscosity

Data analysis Classifica�on
PLS-DA

Quan�fica�on
PLSR

Internal Valida�on External Valida�on

TA B L E  1  Reference values of n = 35 commercially purchased juices

Sample no. Apple Pear Peach Orange Grape Cranberry Black currant

Brix value (°Brix)

1 11.56 ± 0.04 12.66 ± 0.02 12.47 ± 0 10.97 ± 0 15.93 ± 0 11.22 ± 0.02 13.89 ± 0

2 10.86 ± 0.03 13.75 ± 0.02 12.05 ± 0.03 10.70 ± 0.02 16.19 ± 0 10.25 ± 0.0 9.86 ± 0

3 11.67 ± 0 12.97 ± 0 12.46 ± 0.09 11.00 ± 0.01 16.15 ± 0 11.24 ± 0.0 12.68 ± 0.02

4 11.54 ± 0 12.19 ± 0 14.63 ± 0.02 11.12 ± 0.01 16.51 ± 0 11.68 ± 0 12.31 ± 0

5 12.00 ± 0 12.69 ± 0.01 13.11 ± 0.02 11.02 ± 0.01 16.15 ± 0 12.79 ± 0.02 10.19 ± 0

pH value (–)

1 3.52 ± 0.01 3.65 ± 0.03 3.58 ± 0.01 4.1 ± 0.01 3.44 ± 0.01 2.85 ± 0.02 2.92 ± 0.04

2 3.59 ± 0.01 3.71 ± 0.01 3.58 ± 0 3.91 ± 0 3.42 ± 0.02 2.85 ± 0.01 2.95 ± 0.02

3 3.44 ± 0 3.53 ± 0.01 3.61 ± 0.01 3.92 ± 0 3.41 ± 0 2.77 ± 0.01 2.95 ± 0

4 3.32 ± 0.01 3.70 ± 0.01 3.68 ± 0.01 3.87 ± 0.01 3.32 ± 0.01 2.75 ± 0.01 2.96 ± 0.01

5 3.45 ± 0.01 3.49 ± 0.01 3.51 ± 0.01 3.87 ± 0 3.42 ± 0 2.59 ± 0.01 2.92 ± 0.01

Turbidity (EBC)

1 131 ± 0 922.6 ± 2.6 1068.4 ± 20.7 983.2 ± 0.4 0.5 ± 0 197.8 ± 0.8 0.1 ± 0

2 242.6 ± 0.5 226.6 ± 0.9 1039.6 ± 6.6 1045 ± 0 0.5 ± 0 1.4 ± 0 0.7 ± 0

3 324 ± 0 596.6 ± 1.7 980.2 ± 2.6 1184.2 ± 0.4 0.2 ± 0 1.3 ± 0 1.4 ± 0

4 166.8 ± 0.4 75.8 ± 0.4 738.6 ± 11.8 1357.8 ± 0.4 0.2 ± 0 3.1 ± 0 0.5 ± 0

5 275.4 ± 0.5 824.6 ± 3.8 592 ± 0.7 1502.2 ± 1.6 0.3 ± 0 6.2 ± 0 0.3 ± 0

Viscosity (mPas)

1 1.11 ± 0.18 20.64 ± 1.25 13.68 ± 0.59 2.29 ± 0.34 2.43 ± 0.09 1.33 ± 0.15 2.36 ± 0.08

2 1.27 ± 0.02 4.12 ± 0.29 13.87 ± 0.8 3.38 ± 0.18 2.12 ± 0.18 1.02 ± 0.05 2.22 ± 0.04

3 0.92 ± 0.07 10.8 ± 0.54 9.83 ± 0.88 2.68 ± 0.08 2.00 ± 0.15 1.03 ± 0.04 2.03 ± 0.13

4 1.79 ± 0.04 2.06 ± 0.06 17.74 ± 0.25 2.50 ± 0.1 2.03 ± 0.07 1.03 ± 0.02 1.92 ± 0.25

5 1.43 ± 0 11.42 ± 0.9 10.73 ± 0.57 3.76 ± 0.08 2.51 ± 0.14 1.11 ± 0.03 2.29 ± 0.04

Note: Values are mean ± standard deviation of Brix and pH values, viscosity, and turbidity examined in a fivefold measurement.
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samples (Eriksson, 2013). PLSR models for Brix value, turbidity, vis-
cosity, and pH value were fitted and validated on an internal test 
set (spectral dataset was split into 2/3 training and 1/3 test set) and 

on an external test set (26 totally independent fruit juice samples). 
For classification, the method of PLS-DA was employed, which is an 
adaption of the PLSR for the purpose of classification (Aguilar-Rosas 

Sample no. Apple Pear Peach Orange Grape Cranberry Black currant

Brix value (°Brix)

1 11.53 12.65 12.47 10.97 15.9 11.20 13.89

11.60 12.70 12.47 10.98 15.93 11.24 13.89

2 10.81 13.74 12.03 10.66 16.19 10.25 9.86

10.88 13.77 12.08 10.71 16.19 10.25 9.86

3 11.67 12.97 12.38 10.99 16.15 11.24 12.66

11.67 12.97 12.57 11.00 16.15 11.24 12.70

4 11.54 12.19 14.61 11.11 16.51 11.68 12.31

11.54 12.19 14.65 11.14 16.51 11.68 12.31

5 12.00 12.69 13.09 11.00 16.15 12.76 10.19

12.00 12.70 13.13 11.03 16.15 12.81 10.19

pH value (–)

1 3.52 3.60 3.57 4.10 3.44 2.82 2.88

3.53 3.67 3.58 4.11 3.45 2.88 2.97

2 3.57 3.70 3.58 3.90 3.39 2.84 2.92

3.60 3.73 3.59 3.91 3.43 2.87 2.96

3 3.44 3.53 3.60 3.92 3.40 2.76 2.95

3.45 3.54 3.62 3.92 3.41 2.79 2.95

4 3.32 3.69 3.67 3.86 3.32 2.74 2.95

3.33 3.70 3.69 3.88 3.33 2.76 2.98

5 3.45 3.48 3.50 3.87 3.41 2.58 2.91

3.46 3.50 3.51 3.87 3.42 2.60 2.93

Turbidity (EBC)

1 131 919 1043 983 0.49 197 0.08

131 925 1091 984 0.52 199 0.09

2 242 226 1032 1045 0.43 1.43 0.74

243 228 1049 1045 0.52 1.47 0.76

3 324 594 976 1184 0.22 1.28 1.36

324 598 983 1185 0.24 1.30 1.41

4 166 75 726 1357 0.16 3.08 0.48

167 76 754 1358 0.21 3.15 0.57

5 275 821 591 1500 0.28 6.17 0.24

276 830 593 1504 0.33 6.26 0.30

Viscosity (mPas)

1 0.84 19.13 12.80 1.83 2.32 1.14 2.23

1.24 22.30 14.24 2.67 2.57 1.48 2.43

2 1.24 3.71 12.95 3.16 1.98 0.98 2.18

1.29 4.45 14.63 3.56 2.42 1.09 2.27

3 0.84 9.89 8.85 2.57 1.88 0.99 1.93

1.04 11.32 10.58 2.78 2.23 1.09 2.18

4 1.73 1.98 17.40 2.37 1.93 0.99 1.73

1.83 2.13 18.04 2.62 2.08 1.04 2.32

5 1.43 10.63 10.04 3.65 2.27 1.09 2.24

1.43 12.90 11.37 3.86 2.62 1.14 2.32

TA B L E  2  Minimum (top of cell) and 
maximum (bottom of cell) values of the 
fivefold measurements for the reference 
values of n = 35 commercially purchased 
juices; examined were values of Brix and 
pH values, viscosity, and turbidity
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et  al.,  2007; Ruiz-Perez et al.,  2020; Szymańska et  al.,  2012). The 
principle is based on the use of a binary “dummy” system, which as-
signs, for example, a 0 or a 1 depending on the class membership. 
With a chosen threshold of 0.5, a sample is considered to be a group 
member, when the predicted y value is the highest and it has a value 
above 0.5. For the ability of allocation, the model has to be trained 
in a calibration phase regarding the characteristics of the individual 
groups. In this study, the aim of the categorization was to distinguish 
the seven different fruit varieties. Before the regression and classifi-
cation models were developed, the raw spectra were preprocessed. 
For this matter, regardless of the chemometric method applied, the 
dataset of 30 spectra recorded for each fruit juice sample was di-
vided into two parts, 20 spectra as training set and 10 spectra as 
internal test set. With tools like wavelength selection, standard nor-
mal variation (SNV), multiscatter correction (MSC), Savitzky–Golay 
smoothing, and derivative spectra, model performance was opti-
mized in an iterative process trying to find the best preprocessing 
strategy for a high-performing prediction or classification model. 
Quality parameters of evaluation were the explained variation (R2) 
and the predictive quality (Q2). R2 represents a measure for the vari-
ance explained by the model and Q2 for the predictive ability based 
on the difference between the predicted value and the actual value. 
Both shall attain a value close to 1 as indication of a high perfor-
mance. The number of latent variables formed in the course of di-
mensional reduction was examined to avoid overfitting by executing 
the permutation test (Eriksson, 2013; Lindgren et al., 1996). This has 
the advantage of checking the optimal number of latent variables 
and of verifying the statistical significance of the model. Starting 
from the unpermuted model with corresponding R2 and Q2, the Y 
variable is randomly mixed up in its assignment to the X variable. 
This leads then to changed values of R2 and Q2. If the original model 
is high in significance, the R2 and Q2 resulting from the permuta-
tion test are supposed to be significantly lower (R2 below 0.3 and 
Q2 lower than 0.05; Eriksson, 2013; Eriksson et al., 2008; Lindgren 
et al., 1996).

In addition to these general quality parameters, there are further 
quality and performance parameters specific for PLSR and PLS-DA. 
For PLSR, the root mean square error of cross-validation (RMSECV) 
and the root mean square error of estimation (RMSEE) were calcu-
lated to evaluate the regression model quality. The RMSECV is a 
measure for the prediction error in case of internal cross-validation 
and the RMSEE is calculated by the comparison of given and esti-
mated values of Y variable. Both should be low and as close to each 
other as possible. The root mean square error of prediction (RMSEP) 
results from an internal validation using the internal test set. It 
represents the model performance regarding the prediction of un-
known samples. To proof the model performance, the RMSEP for an 
external test set was also calculated, which contains only indepen-
dent fruit juice samples.

In order to assess the classification performance of PLS-DA 
models, there are – besides the overall percentage of correct classi-
fication – several parameters, which specifically describe the classi-
fication performance better. Among these, the most common ones 

are the sensitivity (se) and the specificity (sp). The sensitivity de-
scribes the proportion of true positive assignments (TP) to the total 
number of class members consisting of true positive and false nega-
tive (FN) results. The specificity describes the ratio between true 
negative (TN) class assignments to the total number of members, 
which are not part of the class under consideration (sum of true neg-
ative and false positive [FP] assignments). For the calculation of 
these, the formulas se = TP

TP + FN
 and sp =

TN

TN+ FP
 were used. Both have 

to be near 1 for a high classification performance, whereas se and sp 
are inversely proportional (Brereton, 2018; Cozzolino et al., 2012; 
Oliveri & Downey, 2012; Szymańska et al., 2012). Thus, for a more 
general statement about the number of correct classifications, the 
two parameters are combined in the accuracy (acc), which is a mea-
sure of the degree of truthfulness of the classification. It can be cal-
culated with acc = TP + TN

TP + TN+ FP + FN
 (Oliveri & Downey, 2012). In case of 

a multiclassification situation with threshold, it is necessary to visu-
alize the classification performance at various thresholds to find the 
optimum ratio of se to sp for high performance. For this purpose, the 
receiver operator characteristic (ROC) plot is considered, in which 
the sensitivity as true positive rate (TPR) is plotted against the false 
positive rate (FPR = 1 − sp). In case of more than two classes, it rep-
resents the separability of one group against all other groups. This 
curve should therefore rise as steeply as possible (ideal case would 
be TPR = 1 and FPR = 0). If the curve runs close to the bisector, a 
purely coincidental allocation can be assumed. The threshold value 
that has the largest normal distance from the bisector is the optimal 
one. As a measure for the curse of ROC curve, the area under the 
curve (AUC) was introduced, which has a value of 0.5 for the bisec-
tor. The closer this value comes to 1, the better the ability to sepa-
rate between different classes is. The AUC value thus corresponds 
to the probability that a positive value is actually classified as such 
(Baratloo et  al.,  2015; Fawcett,  2006; Oliveri & Downey,  2012; 
Szymańska et al., 2012).

2.5  |  Scenario of a smart selection of 
pasteurization parameter setting using product-
specific D and z values

For a more product-specific control of the pasteurization process, in-
formation about the product to be pasteurized is necessary, such as 
the fruit variety, the Brix value, and the pH value. Within this study, 
this information is determined by NIRS and chemometric methods. 
Considering two fruit juices, for example, apple and grape are pro-
cessed in one production site. First, they need to be identified as 
apple juice or grape juice by NIR and PLS-DA. Then, Brix and pH 
values are predicted using NIR measurement and PLSR. After de-
termining these specific microbiologically relevant parameters by 
means of NIR, product-specific characteristic data of the mortality 
rates (D and z values) could be determined from the database. Via 
comparison with the globalized PU values determined by applying 
fruit juice formula, the extent of a possible optimization by a more 
product-specific calculation of the PU values.
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3  |  RESULTS AND DISCUSSION

The foundation for a more product-specific pasteurization is the 
knowledge of certain product properties, which must already be 
available at the start of production. The microbially relevant prop-
erties to be determined are the fruit variety, the extract content, 
the pH value, the turbidity, and the viscosity, which are realized by 
means of NIR spectra in combination with chemometrics. The aim 
of the following data evaluation is therefore to test the feasibility of 
this approach.

3.1  |  Identification of fruit variety

Near-infrared raw spectra (1050 measurements) were divided into 
a training set (700 measurements), that is, 20 spectra per fruit juice, 
and a test set (350 measurements), that is, 10 spectra per fruit 
juice. Two models were generated, one for fruit variety classifica-
tion applying PLS-DA and another one for characterization of fruit 
juice properties applying PLSR. For both models, the preprocessing 
methods of wavelength selection and MSC led to highest model 
quality parameters, relying on the parameters of R2 and Q2 (data 
shown in Table 3). Besides the parameters R2 and Q2, it was mainly 
the prediction performance expressed in RMSEP with respect to 
the external test set, since low prediction error values are associ-
ated with a high robustness of the model against unknown samples. 
A comparison of all the results of the different preprocessing meth-
ods is shown in Table 4 for the PLS-DA model and in Table 5 for the 
PLS model. With a number of 12 latent variables, the permutation 
test resulted in very low values in case of PLS-DA model, indicating 
a statistical significance and no overfitting, and with a number of 
11 latent variables for PLSR model, respectively. Although the per-
mutation test induced that it is not overfitting, the number of LVs 
is high considering the number of samples used. To reduce the risk 
of overfitting, pseudo-univariate models could be an alternative. 
Figure 3 shows an example of spectra for each fruit variety after 
preprocessing.

After evaluation of model quality, the classification performance 
of the PLS-DA model was validated by calculating the sensitivity and 
specificity, which were merged to get the parameter of accuracy. 
The classification performance for the calibration dataset and the in-
ternal test dataset showed no failures in classification. Regarding the 

external test dataset which consists of 26 completely independent 
juices, the classification rate decreased from 100% to 69% (Table 6), 
which still corresponds to a high assignment rate.

Expressed in terms of the performance parameters se, sp, and 
acc, values >90% are shown for the parameter sp for all fruit juices. 
The risk for a wrong assignment of samples to another class is 
therefore low. For se, the values differ greatly depending on the 
fruit variety. For orange, peach, and cranberry, se is 100%, for 
grape still 80%. Only apple, pear, and black currant have a lower 
percentage of 33%–40%. This means a higher risk of being assigned 
to the wrong fruit variety. Results of the parameters sp and se are 
shown in Figure  4. Summarized in the acc, values >80% are ob-
tained. With the exception of the varieties pear and grape, all va-
rieties showed values greater than 90%. This further corroborates 
the values of the classification rate, which suggests a good classi-
fication rate, since the acc does not only consider the correct clas-
sification within a variety, but takes into account the entire sample 
material, that is, all classes.

For a more class-specific evaluation of performance with dif-
ferent threshold values of the assignment, the ROC curves were 
plotted (Figure  5) and AUC values were calculated. The different 
courses of the ROC curves demonstrated the variation in optimal 
threshold for a high classification performance of the various fruit 
juices. In the case of grape, orange, cranberry, and peach, the AUC 
value is between 0.9 and 1, which indicates a high probability for a 
true positive classification. Pear also has a high AUC value of 0.82. 
Solely, black currant and apple have values around 0.65, which im-
plies that the selection of a high threshold entails a risk of incorrect 
classification. Results of AUC calculation are shown in Table 7. To 
investigate an optimization approach to the model performance, the 
classification task was modified in a second PLS-DA model (model 
properties were displayed in Table 3 named “PLS-DA orange”). The 
task was now not to classify each fruit variety used in the study, but 
to distinguish one variety, in this case orange, from the others. This 
approach increased the classification rate from 67% to 98%, while 
the sensitivity for orange remained at 100% and was increased to 
95% in the case of specificity. Based on the overall high values of 
performance parameters, especially since the risk of a false negative 
assignment is higher than the opposite, the NIRS can be considered 
as applicable as inline analysis method for classification of fruit juice 
varieties. Furthermore, it became apparent that there is even poten-
tial for improvement.

TA B L E  3  Characteristics and quality parameters of PLS-DA model for discrimination of fruit variety and PLSR model for prediction of 
fruit juice characteristics

Model type
Preprocessing 
methods

Number of latent 
variables (LV)

Wavelength 
area (nm)

Number of spectra 
included

Explained 
variation 
(RX

2/RY
2)

Predictive 
quality (Q2)

PLS-DA MSC 12 1332–1441
1465–1837

700 1/0.959 0.958

PLS-DA orange 8 1/0.967 0.966

PLSR 11 1/0.946 0.944
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3.2  |  Product characterization

For the pursuing evaluation according to Figure 1, product proper-
ties of the juices were fitted with a PLSR model using the training 
set of fruit juice spectra. The optimization of the model quality was 
achieved by an iterative process with regard to the values of RMSEE 
and RMSECV. Included in the model were the analytical reference 
values of Brix and pH values, turbidity, and viscosity as Y variables. 
The number of latent variables was tested concerning overfitting by 
applying the permutation method. A summary of the PLSR model 
properties and quality parameters are shown in Table 3. RMSEE and 
RMSECV of the parameters Brix and pH values were very low in 
relation to the reference values and near 0, indicating the poten-
tial of these parameters as reference values. In order to verify the 

normality, the residual plots were considered. A linearity was found, 
and the limits of ±4 were not exceeded, which would be an indica-
tion of outlier. The residual plots of Brix and pH values were shown 
in Figure 6 as an example. In addition to examining the plots of re-
siduals, an analysis of variance (ANOVA) was performed to test the 
significance of the models. The CV-ANOVA provides a significance 
test of the null hypothesis of equal residuals of the two models 
compared. The p value is considered here, which indicates the prob-
ability level at which a model is recognized as significant, usually at 
a value of <.05. Since all the four Y variables resulted in p values 
smaller than 0.05, they can be described as significant. Results are 
shown in Table 8.

For optimization and validation of prediction performance, 
the RMSEPs for the internal and external test sets were calculated 
(Table 9). RMSEP values for the internal test set are in the range of 

Preprocessing 
method

Number 
of LV

Wavelength 
area (nm)

Explained 
variation
(RX

2/RY
2)

Predictive 
quality (Q2)

Class. rate
ext. TS (%)

MSC 12 1332–1441
1465–1837

1/0.959 0.958 69

SNV 1/0.961 0.96 65

SG 1/0.941 0.94 46

1. der 1/0.945 0.945 58

2. der 0.989/0.942 0.941 46

TA B L E  4  Comparison of model and 
prediction quality parameters of PLS-
DA models fitted by using different 
preprocessing methods and 700 spectra 
included (LV, latent variables; class. rate, 
classification rate; 1. der, first derivative; 
2. der, second derivative; ext. TS, external 
test set)

TA B L E  5  Comparison of model and prediction quality parameters of PLS models fitted by using different preprocessing methods with 
700 spectra included, 11 latent variables, a wavelength selection from 1332 to 1441 nm and 1465 to 1837 nm (1. der, first derivative; 2. der, 
second derivative; ext. TS, external test set)

Preprocessing 
method

Explained variation 
(RX

2/RY
2)

Predictive 
quality (Q2)

RMSEP ext. TS 
Brix

RMSEP ext. 
TS pH

RMSEP ext. TS 
viscosity

RMSEP ext. 
TS turbidity

MSC 1/0.959 0.958 2.33 0.3 3185.37 940.34

SNV 1/0.961 0.96 3.46 0.35 3184.99 136.55

SG 1/0.941 0.94 2.82 0.3 3179.92 303.39

1. der 1/0.945 0.945 3.16 0.82 3182.52 307.58

2. der 0.989/0.942 0.941 2.42 0.98 3181.4 557.13

F I G U R E  3  Typical spectra after 
preprocessing for each fruit variety 
examined
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RMSEE and RMSECV (calculated with the training set), whereas the 
values of the external test set were only slightly higher in the case of 
the Brix and pH values (scatter plots are shown Figure 7). In case of 
viscosity and turbidity, an increase by a multiple of the RMSEP value 
was observed. A comparison of these results was shown in Table 10. 
The difference of the values with regard to the external test set 
shows that the model requires optimization with regard to the cali-
bration dataset in order to increase the robustness against unknown 
samples. An increase in the number and diversity of the calibration 

dataset would provide this. In order to make the RMSEP values more 
interpretable, they were set in relation to the mean value of the refer-
ence values in order to determine the percentage error of prediction 
(Table 9). For the internal test set, percentage errors of <4% could be 
obtained for Brix and pH values, whereas for viscosity and turbid-
ity this is above 15%. For the external test set, the percentage error 
values of the Brix value deteriorate to about 20%. With the external 
test set, higher prediction errors occur, which shows that the calibra-
tion dataset is too small. An increase of the sample size can lead to 

TA B L E  6  Classification table of PLS-DA model for the external test set; incorrect classification is marked in bold and italics

Samples Class members
Correct 
classified

Classified as

Grape Black currant Orange Cranberry Apple Pear Peach

Grape 5 80% 4 0 0 1 0 0 0

Black currant 3 33.33% 1 1 0 1 0 0 0

Orange 4 100% 0 0 4 0 0 0 0

Cranberry 3 100% 0 0 0 3 0 0 0

Apple 3 33.33% 0 0 0 0 1 2 0

Pear 5 40% 1 0 2 0 0 2 0

Peach 3 100% 0 0 0 0 0 0 3

Total 26 69% 6 1 6 5 1 4 3

F I G U R E  4  Performance parameter specificity (sp) and sensitivity (se) of PLS-DA model calculated with the external test set

80%

33%

100%

33%

40%

100%

100%

0% 20% 40% 60% 80% 100%

se

Orange

Peach

Pear

Black Currant

Cranberry

Apple

Grape91%

100%

91%

100%

90%

100%

91%

0% 20% 40% 60% 80% 100%

sp

F I G U R E  5  ROC plot of PLS-DA model 
with true positive rate (TPR) plotted 
over false positive rate (FPR) with an 
optimum value of 1 for TPR and 0 for 
FPR representing high classification 
performance; colored lines represent the 
TPR of the corresponding class at the 
different thresholds
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a significant improvement. Hence, it could be shown for the param-
eters Brix and pH values that they are suitable parameters for inline 
characterization by means of NIRS. For the parameters viscosity and 
turbidity, it is confirmed by a very strongly increased prediction error 
that they cannot be predicted well by NIRS. In conclusion and with 
the premise of model optimization, for example, in the form of in-
creasing the dataset for decalibration, pH and Brix could be used as 
parameters for inline characterization of fruit juices by NIRS.

3.3  |  Exemplary application of an individualized 
pasteurization using product-specific D and z values

Finally, an example is given how to profit in practice from an inline 
product identification and characterization using NIRS as analytic 
tool. A large number of D and z values are available and many of them 
are already collected in an Internet accessible database (“Lemgo D- 
and z-value Database for Food”). However, more data are required 
for a wider use in practice. Despite its exemplary character, the case 
shown here is intended to demonstrate the feasibility of an individu-
alized and gentle pasteurization by implementing NIRS as an inline 
analytical tool. A well-known juice-spoiling germ, Alicyclobacillus aci-
doterrestris, was therefore selected. In fruit juices, this organism can 
lead to product spoilage during warm storage (depending on climate 
and weather in certain countries), or hot packaging with slow cooling 

after too cold heat treatment, which stimulates the germination 
(Ciuffreda et al., 2015; Komitopoulou et al., 2001). The experience-
based recommendation for a sufficient treatment is 30 s at 101°C or 
expressed in pasteurization units 63 PU resulting from the so-called 
fruit juice formula (� ref = 80°C, z = 10°C):

In Equation 1, �ref corresponds to the reference temperature to 
which the z values used refer, � corresponds to the actual tempera-
ture measured at the end of the heat-holding section in classical con-
trol of the pasteurization process, and t represents the heating time.

In the here shown case, one (real) sample from the class apple 
and one from the category grape were randomly selected and char-
acterized by PLSR method in Brix and pH values (shown in Table 11). 
Bibliographic data for the described characteristics of the different 

(1)PU = 10

�−�ref

z ⋅ t

TA B L E  7  Classification performance of PLS-DA model 
expressed as AUC value regarding the external test set

Fruit variety
AUC 
value

Grape 0.93

Black currant 0.64

Orange 1

Cranberry 0.99

Apple 0.65

Pear 0.82

Peach 1

F I G U R E  6  Residuals plots for the Brix and pH values of the PLSR model with a straight course representing normality

TA B L E  8  Results of the ANOVA for the PLSR models of Brix and 
pH values, viscosity, and turbidity

Y variable of PLSR model F P

Brix 404.09 0

pH value 471.17 0

Viscosity 364.87 0

Turbidity 1108.56 0

TA B L E  9  Quality parameter RMSEP of PLSR model for the 
evaluation of prediction performance regarding the internal and 
external test sets and prediction error as relation between mean of 
reference values and RMSEP for a better interpretability

RMSEP Prediction error (%)

Y variable
Internal 
test set

External 
test set

Internal 
test set

External 
test set

Brix value (°Brix) 0.48 2.33 3.83 18.58

pH value (–) 0.1 0.3 2.95 2.39

Turbidity (EBC) 77.19 940.34 18.58 7498.72

Viscosity (mPas) 1.39 3185.37 29.76 25401.67
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juice types are available, which show the influence of the product 
matrix on the heat stability of the microorganism A. acidoterrestris 
(Aneja et al., 2014; Silva et al., 1999). Silva et al. (1999) published a 
tabular overview of determined D and z values of different germs 
in different product matrices, among others also by Splittstoesser 
et al. (1994), who worked with well-comparable juice in regard to pH 
value and Brix. Silva et al.  (1999) elaborated an empirical model in 
terms of a polynomic function that allows the determination of the 
D value in dependence of the temperature, pH value, and extract 
content in Brix.

Two D values (for �1 = 80°C and �2 = 90°C) were calculated by 
the model of Silva et al. and from that the z values for the selected 
samples and the predicted pH values and extract contents:

In the formula, lg is an abbreviated notation of the logarithm 
of 10. For comparison purposes, the required holding times for 
63 PU at 95°C were calculated, results are shown in Table 11. The 
“customization” with individual z values reveals that for the same 
PU impact a shorter treatment at 95°C seem to be sufficient in 
comparison to the fruit juice formula. However, the slight differ-
ences in pasteurization time do not allow a distinction to be made 
between grape and apple juices, whether calculated with D and 
z values according to Splittstoesser et al. or Silva et al. A more 
obvious difference could be expected in relation to cloudy juices 
or in comparison with beers depending on their cloudiness and 
alcohol and sugar content. What becomes already clear, however, 
is the big difference compared to the results of the conventional 
formula. Thus, it could be shown that an optimization of the pas-
teurization process can be realized by a more precise classification 
and characterization in the initial phase of the pasteurization by 
using NIRS as an inline analysis tool.

4  |  CONCLUSION

Using the PLS-DA method, a classification model was created which 
is capable of distinguishing seven different fruit juices in the course 
of inline measurement using NIRS. In addition, these fruit juices 
were characterized in terms of microbiological properties by the two 
parameters Brix and pH values using the PLSR method. The turbid-
ity and viscosity could not be represented by NIRS with high co-
efficients of determination, which led to regression models of low 

(2)
z = −

�1 − �2

lg
D
�1

D
�2

F I G U R E  7  Scatter plots including predicted versus reference values regarding Brix (a) and pH (b) values for training set (RMSEE/ RMSEC) 
and external test set RMSEP (c, d)

TA B L E  1 0  Quality parameter RMSEP of PLSR model in 
comparison to RMSEE and RMSECV for the evaluation of PLSR 
model performance

Y variable RMSEE RMSECV

RMSEP

Internal 
test set

External 
test set

Brix value (°Brix) 0.46 0.48 0.48 2.33

pH value (–) 0.09 0.09 0.1 0.3

Turbidity (EBC) 78.34 78.49 77.19 940.34

Viscosity (mPas) 1.36 1.45 1.39 3185.37
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prediction quality. However, the extract content and the pH value 
are sufficient parameters for the practical application with regard 
to microbiological stability. The practical use of this information for 
process optimization was demonstrated using two examples. A clear 
difference between the two fruit juice examples was not observed, 
yet a strong difference with regard to the conventional method 
(“fruit juice formula”) was found. The applied strategy of inline anal-
ysis using NIRS and chemometrics is therefore suitable for product 
adaptation of the pasteurization process. However, it is questionable 
whether the ambitious plan to individualize pasteurization down to 
fine product properties can succeed. Therefore, it is necessary to 
further investigate how cloudy fruit juices differentiate from clear 
fruit juices or how this applies to different beer types. In conclusion, 
this study has provided a fundamental basis for further investigation 
to realize an individualized pasteurization.
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