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Simple Summary: Inducible T-cell COStimulator (ICOS) is a biomarker of interest in checkpoint
inhibitor therapy, and as a means of assessing T-cell regulation as part of a complex process of adaptive
immunity. The aim of our study is to segment the ICOS positive cells using a lightweight deep-
learning segmentation network. We aim to assess the potential of a convolutional neural network
and transformer together that permits the capture of relevant features from immunohistochemistry
images. The proposed study achieved remarkable results compared to the existing biomedical
segmentation methods on our in-house dataset and surpassed our previous analysis by only utilizing
the Efficient-UNet network.

Abstract: In this article, we propose ICOSeg, a lightweight deep learning model that accurately
segments the immune-checkpoint biomarker, Inducible T-cell COStimulator (ICOS) protein in colon
cancer from immunohistochemistry (IHC) slide patches. The proposed model relies on the Mobile-
ViT network that includes two main components: convolutional neural network (CNN) layers for
extracting spatial features; and a transformer block for capturing a global feature representation from
IHC patch images. The ICOSeg uses an encoder and decoder sub-network. The encoder extracts the
positive cell’s salient features (i.e., shape, texture, intensity, and margin), and the decoder reconstructs
important features into segmentation maps. To improve the model generalization capabilities, we
adopted a channel attention mechanism that added to the bottleneck of the encoder layer. This ap-
proach highlighted the most relevant cell structures by discriminating between the targeted cell and
background tissues. We performed extensive experiments on our in-house dataset. The experimental
results confirm that the proposed model achieves more significant results against state-of-the-art
methods, together with an 8× reduction in parameters.
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1. Introduction

According to the World Health Organization (WHO), colorectal cancer (CRC) is the
third most fatal cancer, causing approximately 0.9 million deaths each year. By the year
2030, the number of new cases is anticipated to rise to 2.2 million per year, resulting in
1.1 million fatalities worldwide [1]. An early diagnosis with proper screening could help to
prevent colorectal cancer. Additionally, early identification may provide a better treatment
response to prevent cancer cells spread and save lives.

The number of molecular stratified therapy opportunities targeting metastatic CRC
is rising with the application of molecular biomarkers to benefit prognosis and treat-
ment decision-making [2]. For instance, patients with metastatic microsatellite instability
(MSI-H)/mismatch repair deficient (dMMR) tumors can benefit from immunotherapy, and
MSI/MMR testing can be employed as a marker of genetic instability with therapeutic
implications [3]. Other innovative therapeutic medicines are approved based on the results
of a companion biomarker, such as PD-L1 immunohistochemistry (IHC) [4]. Translational
oncology has been improved significantly by tissue-based biomarker analysis using IHC,
which maintains spatial and cell-specific information, and allows for reliable biomarker
expression analysis inside the tumor micro-environment [5]. A pathologist can assess
the quantification of biomarker-expressing cells and their location to provide significant
prognostic patient information [6,7]. As a means of evaluating biomarkers in a high vol-
ume/high throughput manner, Tissue microarrays (TMA) can be incorporated into the
development pipeline of biomarker research [8,9]. Ultimately, manual TMA examination
with IHC is a long and laborious procedure in evaluating biomarker-expressing cells,
making it unsuitable for effective TMA investigation [10,11]. As a result, a Computer-
Aided Diagnosis (CAD) system is necessary for examining the TMA and helping to train
pathologists in their investigation workflows.

With today’s CAD image analysis technology, large-scale quantitative evaluation of
IHC on TMAs is feasible. Recently, there has been a lot of research conducted on the
advantages of computer-assisted quantitative cell count studies [12], cell segmentation
tasks [13], and the effect of the automatic versus manual estimation [14]. Current artificial
intelligence (AI) guided CAD systems show promising outcomes using deep learning
algorithms in digital pathology, for example in predicting colon cancer metastases [15],
nuclei segmentation [16], lymphocyte identification [17], in assessing tumor grade [18],
and predicting molecular signatures [19]. Most of the developed CAD systems focus
on identifying tiles in whole-slide images. These CAD systems have some limitations
for successfully segmenting biomarker-expressing cells on IHC-stained tissue images. In
our previous work [20], the evaluation of immune and immune-checkpoint biomarkers
proposed utilizing deep learning techniques by automated identification of cells positive
for the ICOS. The results were encouraging, but the Efficient-UNet model utilized a huge
number of parameters (i.e., 66 million), making them difficult to implement in real-world
clinical situations.

There is always a trade-off between the model complexity in terms of parameters
and its performance. Usually, an attempt to reduce the number of trainable parameters
through a pruning strategy or adopting a lightweight model may achieve the lower results.
Therefore, it is important to design a model with lower computational complexity while
keeping a similar performance or achieving better results. The lightweight model deploy-
ment creates many opportunities in various applications in pathology. It offers the use of a
digital image without requiring additional processing resources, and allows to perform
image analysis. Moreover, the application of this work will help to deploy on a cloud server
where a pathologist can easily access to segment the positive cells from IHC slides.

We propose a lightweight model viz ICOSeg in segmenting ICOS positive cells. ICOS
is a biomarker of interest in checkpoint inhibitor therapy and as a means of assessing
T-cell regulation as part of a complex process of adaptive immunity. We merge the con-
volutional neural network (CNN) and transformer to capture the local and global feature
representation with lower computational complexity. Figure 1 shows examples of patches,
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which highlight the ICOS positive cells in brown extracted from IHC slides. This study is
an extension of our previous work [20] and shows higher computational complexity for
similar tasks.

Figure 1. Examples of IHC patches extracted at 40× magnification containing ICOS positive (i.e.,
brown cytoplasmic and blue nuclear staining) and ICOS negative (blue nuclear stain only) cells in
colon cancer.

The main contributions of this paper are listed as follows:

• We propose an efficient, lightweight segmentation method called ICOSeg in segment-
ing ICOS positive cells that combines the CNN and transformer as a feature extractor
with a lower latency rate. The proposed model extracts the local spatial features
through CNN, and global representation learned using transformer block;

• We use the channel attention mechanism in the final encoder layer that enables the
network to extract rich features and discriminate between the targeted cell’s structure
and background pixels;

• We perform extensive experiments incorporating ablation studies and employ four
pixel-wise evaluation metrics (i.e., Dice coefficient, aggregated Jaccard index, sensitiv-
ity, and specificity) that confirm the effectiveness of the proposed method;

• Experimental results confirm that ICOSeg efficiently outperforms several state-of-the-
art methods (i.e., U-Net, Attention U-Net, FCN, DeepLabv3+, U-Net++, and Efficient
U-Net) with lower trainable parameters.

The remainder of this paper is structured as follows. Section 2 discusses the proposed
ICOSeg method in detail. The dataset description with experimental plans and limitations
of our work is explained in Section 3. We conclude by summarizing our findings and
suggest some future lines of research in Section 4.

2. Methods

In this section, we present the architectural details of the proposed ICOSeg segmenta-
tion model motivated by the existing work [21].

2.1. ICOSeg Architecture

The proposed model consists of an encoder and decoder network. The IHC slide
patch containing cells feeds to encoding layers, extracting the relevant spatial and global
features. However, decoding layers allows reconstructing the feature representation into a
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segmentation map. We explore the encoder structure by [21], that merges the potential of
learning local and global features of convolutions and transformers, respectively. Figure 2
shows the general overview of the proposed ICOSeg positive cell segmentation model.
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Figure 2. Overview of proposed segmentation model. The input IHC patch image feed to the
encoder layer that extracts the spatial and global feature information. The decoder reconstructs the
features into the segmentation map. Where C refers to the feature concatenation. The dash (- -) line
corresponds to the skip connection between each encoder and decoder layers.

Encoder: This consisted of five key stages using convolutional and MobileVit blocks.
The first stage combined the two layers with a strided 3 × 3 convolutional layer that helped
to extract the spatial features from the input patch images. The extracted feature maps are
down-sampled by the factor of 2. MobileNetv2 (i.e., MV2) block [22] helped encode the
cell’s feature maps in low-dimensional spaces and advanced feature representation power.
Note that MV2 blocks in the encoder were mainly responsible for the down-sampling
of the resolution of the intermediate feature maps. Stage two incorporated three MV2
blocks that allowed for enriching the spatial features and applied feature down-sampling.
Stage three integrated the MV2 block and MobileViT block which, together, captured the
global representation of the features. The MobileViT block learned contextual information
with less computational complexity. In addition, it merged the advantage of Transformer
and convolution. Stage four follows the stage three combination and featured maps
downsampled by a factor of 2. The final stage combined the MV2 block, MobileViT block,
and point-wise convolutional layers, which provided the bottleneck features that fed to
the decoder layers. All the encoding layers helped to extract salient features, such as
shape, texture, intensity, and margin. The last encoder layer used the channel attention [23]
mechanism that highlights the targeted cell-related features and distinguished between
relevant and the background pixels. It dynamically recalibrated channel-wise feature maps
feedback through modeling precisely the interdependencies between channels.

The main functionality of a MobileViT block required an input tensor I ∈ Rh×w× and
involved an n× n convolutional layer followed by a point-wise convolution to create the
map of IL ∈ Rh×w×d. This convolutional layer enabled learning feature representations to
capture local information, such as shape or intensity. To learn the global representation, un-
folded IL into another N non-overlapped vector (i.e, patch) with a shape IU ∈ Rp×Npatch×d.
Where p is the area of a small patch and Npatch = hw

p in which h and w refer to the height
and width of that specific patch. To overcome the issue of not losing the spatial order of
pixels, inter-patch connections are encoded using Transformers.

IG(p) = Transformer (IU(p)), 1 ≤ p ≤ P (1)

where p ∈ {1...P}. Further, the output vector Ig was again folded into a vector of shape to
receive IF ∈ Rh×w×d. This output feature vector used the point-wise (1× 1) convolutional
layer to project into a low dimensional space. This resultant feature was concatenated with
the input feature map of I. To merge these concatenated features, an n× n convolutional
layer was applied.
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Decoder: We employed five decoding layers with a kernel size of 4 × 4 and stride
of 2 × 2 that downsampled the features by two. Each decoder layer was followed by
batch normalization and the non-linear ReLU activation function helped to confound the
overfitting. The skip connection was used in between the encoding and decoding layers to
narrow down the semantic gaps during feature reconstruction at the decoding stage. We
used a threshold value of 0.5 to generate the binary segmentation map.

2.2. Loss Function

In this study, we used the combination of Binary cross-entropy (BCE) and Dice loss
functions. The BCE loss can be formulated as follows:

LBCE(gtmask, pmask) = −(gtmask·log(pmask) + (1− gtmask)·log(1− pmask)), (2)

Additionally, the Dice loss can be explained as follows:

LDice(gtmask, pmask) = 1− Dice(gtmask, pmask) = 1− 2|gtmask|.|pmask|
|gtmask|2 + |pmask|2

, (3)

Therefore, the total loss is the weighted summation of LBCE and LDice described below:

LTotal(gtmask, pmask) = γLBCE(gtmask, pmask) + (1− γ)LDice(gtmask, pmask) (4)

where gtmask is the ground truth mask, pmask corresponds to predicted mask generated by
the model, and γ is weighting factor. Here, we used the γ equal to 0.4.

3. Experimental Results and Discussion
3.1. Dataset

In this article, we used the ICOS IHC data from our previous research [20]. ICOS-
stained IHC slides were scanned with 40× obj. magnification. These are relatively large in
pixels fed into the input of deep models. Therefore, we generated definitive input patches
that were employed to train models. The patches were 256 × 256 pixels in size. The entire
dataset was split into training, validation, and test sets with the ratio of 60%, 10%, and 30%,
respectively, which is the same split, that was used in the previous work [20].

3.2. Training Details

We used the input patch and rescaled with the size of 224 × 224 pixels. The extracted
patches were normalized from 0–255 pixel values to the range 0–1. An ADAM optimizer
with an initial learning rate of 0.0001 was employed to optimize the proposed model
reasonably. During the training, we applied the step decay if the dice coefficient on a
validation set did not increase two consecutive epochs . We used a batch size of 8 patch
images and trained the model from scratch for 50 epochs. To increase the samples size, we
performed the data augmentation approach consisting of rotation at 90 degrees, horizontal
flipping, and scaling with a probability of 0.5. The selected strategy was used to mitigate
overfitting and provide more variability of features in the training network.

Model development platform: We developed the model using the PyTorch neural
network library on the National High-Performance Computing (HPC) Kelvin-2 managed
by Queen’s University Belfast (QUB). The model was trained on the 32 GB GPU memory
with CUDA version 11.2. We evaluated the model on our local workstation, including
GPU RTX2080 Ti of 11 GB video RAM. It is worthwhile to note that all the computational
measurement and frame per second (FPS) speed was computed on a local workstation.

3.3. Evaluation Metrics

We pixel-wise assessed each method’s segmentation results using four evaluation
metrics. It includes the dice coefficient score (Dice), Aggregated Jaccard Index (AJI),
sensitivity, and specificity. These metrics were measured using true positive (TP), false
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positive (FP), false-negative (FN) rates, and true negative (TN). We assumed gtmask and
pmask are the ground truth mask and predicted mask generated by the model for the
same input patch images, respectively. The common area of segmented cells in gtmask and
pmask, referred to TP = gtmask ∩ pmask. The segmented region which is out of the common
region to gtmask corresponds to the FP that is defined as gtmask ∩ pmask. Further, FP is the
region defined by the ground truth that is not segmented through the model formulated as
gtmask ∩ pmask. Lastly, TN enfolds the background pixels.

The employed metrics can be formulated as follows:

Dice =
2TP

(2TP + FP + FN)
, (5)

Sensitivity =
TP

(TP + FN)
, (6)

Speci f icity =
TN

(TN + FP)
, (7)

The aggregated Jaccard index (AJI) can be defined as:

AJI =
∑M

i=1

∣∣∣gtmaski ∩ p∗mask j(i)
∣∣∣

∑S
i=1

∣∣∣gtmaski ∪ p∗mask j(i)
∣∣∣+ ∑S∈Ind pmaskS

(8)

where, gtmaskt is the ith ground-truth mask of ICOS cells pixels, pmaskS is the predicted cells
segmentation mask generated through the model, p∗mask j(i) is the connected component
from the predicted binary mask that advances the Jaccard index, and Ind is the list of
indices of pixels that do not belong to any element in the ground-truth pixels.

3.4. Results

In this subsection, we present and discuss the segmentation results of the proposed
model with several state-of-the-art methods. We conducted an ablation study including the
effect of attention mechanism and the effect of the loss functions.

3.4.1. Effect of Attention Block

Table 1 shows the performance of the proposed model with and without the attention
block employed for ICOS positive cells segmentation. We first built the segmentation model
without adding the attention block called Baseline, which only combines the plain encoder
and decoder structure. The developed baseline model obtained the Dice score of 75.09% and
AJI of 59.67%. On seeing the great success of the attention technique on multiple datasets
however, we also merged it into our encoder layers. We achieved a better segmentation
result than Baseline since the attention block highlighted the most relevant features and
ignores the irrelevant ones. Defined kernels must focus on the target nuclei region. Some
artifacts however, due to the dye and blurring in certain areas could infer the results. The
attention approach enables the filters to focus on capturing the appropriate features and
learn the pattern to discriminate between artifacts and nuclei. The proposed model (i.e.,
baseline + attention block) improved 1% in all the computed metrics. The attention block
did not add any extra burden on computational complexity. The proposed model allowed
segmentation of the patches with 154 frames per second (FPS) on the current GPU.

Table 1. Examining the effect of adopted attention block on segmentation result (mean ± standard
deviation) incorporated with Baseline model. The best results are highlighted in bold.

Model
Metrics Para (M) FPS

Dice AJI Sensitivity Specificity

Baseline 75.09 ± 13.52 59.67 ± 12.90 81.34 ± 15.99 99.54 ± 0.43 8.1 161
Proposed 76.01 ± 13.35 60.88 ± 12.85 82.45 ± 15.96 99.61 ± 0.40 8.1 154
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3.4.2. Effect of the Loss Function

Table 2 demonstrates the ablation study conducted to measure the effect of a different
combination of loss functions on the proposed model. The weighted sum of LBCE +
LDice outperformed the segmentation results in all metrics than other individual loss
function. This combined loss function achieved the 2–3% better performance in Dice and
AJI scores. Additionally, advance the model sensitiveness by 4% compared to only LBCE.
The LBCE obtained lower scores than the proposed combination and generated more false-
positive with higher standard deviation. In turn, LDice reduces the pixel-wise false positives
leading to better segmentation results. Overall, the combined loss functions provide more
generalizability and help converge the model faster with minimal error.

Table 2. Ablation study of the loss functions. The best results are highlighted in bold.

Model
Metrics

Para (M) FPS
Dice AJI Sensitivity Specificity

LBCE 73.28± 15.77 57.41± 14.55 78.82± 16.61 99.23± 0.70 8.1 154
LDice 74.97± 13.83 59.30± 13.72 80.65± 16.08 99.58± 0.41 8.1 154

LBCE + LDice (Proposed) 76.01± 13.35 60.88± 12.85 82.45± 15.96 99.61 ± 0.40 8.1 154

3.4.3. State-of-the-Art Result Comparison

Table 3 presents the result of the proposed model and compared with six state-of-the-
art methods. Specifically, we employed the U-Net [24], FCN [25], attention U-Net [26],
DeepLabv3+ [27], U-Net++ [28], and Efficient U-Net [20]. The proposed model outper-
formed the compared methods in segmenting the ICOS positive cells with AJI, sensitivity,
and Dice coefficient scores of more than 76%. The second highest U-Net++ achieved the
Dice score of 74.93% and AJI with 55.20%, which is 1–5% lower than our proposal. How-
ever, U-Net, attention U-Net, and FCN secured similar results in segmenting the positive
cells. The proposed model surpasses the DeepLabv3+ with 4.6% and 9.5% on Dice and
AJI scores, respectively. We compared the proposed model with previous work performed
by [20]. Our model results significantly exceed the earlier work with a margin of 2.5%
and 2% in Dice score and AJI. Additionally, we computed each method of computational
complexity with corresponding FPS at the inference level. We observed the proposed model
shows the lowest trainable parameters of 8.1 M among all and attained the second-best
154 FPS on current GPU. Conclusively, the significant benefit of incorporating the CNN
in local level features extraction and Transformer block with attention mechanism allows
capturing a global representation of cells structure. The other methods only considered the
standard CNN to work well but exhibit some limitations to segmenting the challenging
cell structures in the presence of undefined boundaries or artifacts. These issues, at some
level addressed by the proposed model, lead to better segmentation results than the rest.

Table 3. Segmentation results (mean ± standard deviation) of the proposed model compared with
six state-of-the-art methods. The best results are highlighted in bold.

Model
Metrics Params (M) FPS

Dice AJI Sensitivity Specificity

U-Net [24] 73.66± 12.61 53.49± 12.75 70.69± 15.46 99.71± 0.29 34.5 116
FCN [25] 73.79± 12.59 53.98± 12.57 72.01± 15.7 99.68± 0.35 135.53 57

Attention U-Net [26] 74.91± 13.58 55.66± 13.07 74.14± 16.05 99.65± 0.36 34.87 106
DeepLabv3+ [27] 71.38± 14.63 51.21± 14.19 66.68± 17.78 99.74± 0.27 59.33 103

U-Net++ [28] 74.93± 12.31 55.20± 12.57 72.74± 15.40 99.69± 0.31 9.61 168
Efficient-UNet [20] 73.44 58.98 81.81 99.30 66.0 83

Proposed 76.01 ± 13.35 60.88 ± 12.85 82.45± 15.96 99.61± 0.40 8.1 154
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We measured descriptive statistics of each method’s results using box-plot analysis.
Figure 3 shows the box-plots generated with the help of the Dice coefficient and AJI scores
obtained by all the evaluated methods. The multiple color boxes highlight the score range of
different segmentation methods; the black line inside each box shows the median value, box
limits incorporate interquartile spans Q2 and Q3 (from 25% to 75% of samples), upper and
lower whiskers are measured as 1.5× the distance of upper and lower limits of the box, and
all values outside the whiskers are assumed outliers. We noticed that the proposed model
achieved better results than the rest. However, compared methods generated multiple
outliers with the lowest Dice and AJI scores.

U-Net FCN Attention U-Net DeepLabv3+ U-Net++ Proposed
Models

0.2

0.3

0.4

0.5

0.6

0.7
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Di
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U-Net FCN Attention U-Net DeepLabv3+ U-Net++ Proposed
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Figure 3. Boxplots of Dice and AJI scores on test dataset. Multiple color boxes highlight the score
range of different segmentation methods; the black line inside each box shows the median value, box
limits incorporate interquartile ranges Q2 and Q3 (from 25% to 75% of samples), upper and lower
whiskers are measured as 1.5× the distance of upper and lower limits of the box, and all values
outside the whiskers are assumed outliers.

3.4.4. Qualitative Evaluation

The eight qualitative examples obtained by the proposed ICOSeg for ICOS positive
cell segmentation are depicted in Figure 4. We used color maps to represent the following
description: orange/yellow denotes true positive, green denotes false positive, and red
indicate false negative. All the examples presented yielded better results. Visual inspection
confirms that ICOSeg generates very few false positives. For any deep neural network,
splitting the two connected cells boundaries containing similar dye artifact in certain area
is challenging task. The proposed method attempted to capture the majority of the positive
cells in patch images.

AJI = 62.28 AJI = 74.73 AJI = 66.36 AJI = 68.34

AJI = 70.50 AJI = 73.79 AJI = 75.13 AJI = 65.81

Figure 4. Illustration of proposed model segmentation result. Color maps shows the following
description: orange/yellow (true positive), green (false positive), and red (false negative).
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In addition, we provided a comprehensive comparison of ICOSeg with six state-of-the-
art methods. Images with the associated mask shown to visualize the cell’s textural patterns
and boundaries. Figure 5 represents the two qualitative examples for ICOS positive cell
segmentation. This visual finding, combined with quantitative evidence, confirms that the
proposed model outperforms the other methods. Figure 5 (i.e., example 1) attempted to
segment the small cell boundaries correctly; however, when compared methods performed
well but produced more false positives. Similarly, example 2 depicts undefined cell bound-
aries. The ambiguous cell boundaries were not segmented by any of the six methods, which
resulted in it being identified as a single structure. With the combined effect of CNN and
transformer, the proposed model allows better feature representation in situations where
other models do not show significant improvement.

Proposed, AJI = 63.69 Image Mask

Image Mask

U-Net, AJI = 53.30 

FCN, AJI = 51.84 Attention U-Net, AJI = 59.08 DeepLabv3+, AJI = 46.75 U-Net++, AJI = 53.35

FCN, AJI = 59.19 Attention U-Net, AJI = 63.37 DeepLabv3+, AJI = 58.27 U-Net++, AJI = 61.94

Proposed, AJI = 67.21 U-Net, AJI = 62.31 

Example 1

Example 2

Figure 5. Illustration of proposed model segmentation results compare with five state-of-the-art
methods. Color maps shows the following description: orange/yellow (true positive), green (false
positive), and red (false negative).

Figure 6 provides descriptive statistics of the total cell count identified by ICOSeg
compared to actual cells of the ground-truth. We count the total number of cells in each
patches by finding its contour from image processing operations. There are 642 cells marked
by the pathologist in a test set. However, ICOSeg correctly identified the 495 cells with the
same set of patches. This plot shows the majority of the patch contains an average of five to
seven patches. However, some patches have more than 10 cells represented as outliers in a
distribution plot.
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Figure 6. Boxplot of total cell identified by ICOSeg compared to actual cells of the ground-truth.

3.5. Limitation

Figure 7 shows four qualitative examples that illustrate the limitations of the proposed
model on IHC patch images. Example one exhibits an area representing the structure of the
normal cell. However, it was marked by a pathologist but failed to recognize by ICOSeg.
Next, the second example (see in Figure 7b) has two cells marked in which only one of
them correctly identified. The top-left cell presents the structure that more correlates to
the normal cells, the proposed model failed to recognize it which was clinically found
to be an outlier. In addition, the third and fourth examples (see in Figure 7c,d) show
similar characteristics of some positive cells’ ambiguous boundaries that the model failed
to provide precise segmentation.

(a) (b)

(c) (d)

Figure 7. Illustration of four examples shows the limitation of ICOSeg failed to accurately identify
and segment the cells boundaries. The red refers to the ground-truth, green corresponds to the
ICOSeg prediction and orange/yellow represents the overlap of cell boundary both are common in
ground-truth and prediction. The four different examples (a–d) refers to the positive cells in brown.

4. Conclusions

In this article, we presented an automated lightweight ICOSeg model for ICOS positive
cell segmentation. This study is an extension of our previous work that demonstrates higher
computational complexity for similar tasks. Our proposed method differs from earlier
research findings in several ways. We included the use of Transformers in the encoder for
global feature representation with lower computational complexity and attained better
segmentation results compared to CNN alone. We used the feature extractor motivated
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by the MobileViT by adding a channel attention mechanism at the last encoding layer and
built the decoder sub-network to reconstruct the features into a binary segmentation map.
The proposed model outperformed multiple state-of-the-art segmentation methods with
less trainable parameters with higher FPS speed. The lower computational complexity
allowed the feasibility of translating the model into a limited resource system. The future
work would include extending the potential of our proposed model to multiple protein cell
datasets for other cancer types.
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