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1  |   INTRODUCTION

In humans, RNA editing causes nucleotide substitutions in 
RNA as compared to the corresponding DNA sequence. Of 

all 12 possible types of nucleotide substitutions, adenine-to-
inosine (A-to-I) editing prevails with a clearly defined bio-
logical mechanism. In more detail, A-to-I RNA-editing is 
mediated by adenosine deaminase acting on RNA (ADAR)1 

Received: 30 March 2021  |  Revised: 10 June 2021  |  Accepted: 11 June 2021

DOI: 10.1002/cam4.4146  

R E S E A R C H  A R T I C L E

RNA editing affects cis-regulatory elements and predicts adverse 
cancer survival

Yuan-Ming Wu1,2*  |   Yan Guo3*   |   Hui Yu3  |   Tao Guo4

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2021 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

*Equal contribution

1School of Basic Medical Sciences, 
Guizhou Medical University, Guiyang, 
China
2Stem Cell and Tissue Engineering 
Research Center, Guizhou Medical 
University, Guizhou, China
3Comprehensive Cancer Center, 
University of New Mexico, Albuquerque, 
NM, USA
4Guizhou Provincial People’s Hospital, 
Guiyang, China

Correspondence
Tao Guo, Guizhou provincial people’s 
hospital, Guiyang, Guizhou, China, 
550002.
Email: guotao04b@sina.com

Funding information
The study was supported by the Special 
Grant for Central Government Supporting 
Local Science and Technology 
Development [grant no. (2019) 4008]; 
the open research fund of the Key 
Laboratory Of Environmental Pollution 
Monitoring and Disease Control, Ministry 
of Education (Qianjiaohe KY Zi [2019] 
045); the Guizhou Provincial Health 
Commission Science and Technology 
Fund. [2019] 1137; the National 
Natural Science Fund and Grants Fund. 
[2017] 5724. YG was supported by 
P30CA118100 from National Cancer 
Institute, USA.

Abstract
Background: RNA editing exerts critical impacts on numerous biological processes 
and thus are implicated in crucial human phenotypes, including tumorigenesis and 
prognosis. While previous studies have analyzed aggregate RNA editing activity at 
the sample level and associated it with overall cancer survival, there is not yet a large-
scale disease-specific survival study to examine genome-wide RNA editing sites’ 
prognostic value taking into account the host gene expression and clinical variables.
Methods: In this study, we solved comprehensive Cox proportional models of 
disease-specific survival on individual RNA-editing sites plus host gene expression 
and critical demographic covariates. This allowed us to interrogate the prognostic 
value of a large number of RNA-editing sites at single-nucleotide resolution.
Results: As a result, we identified 402 gene-proximal RNA-editing sites that gen-
erally predict adverse cancer survival. For example, an RNA-editing site residing 
in ZNF264 indicates poor survival of uterine corpus endometrial carcinoma, with a 
hazard ratio of 2.13 and an adjusted p-value of 4.07 × 10−7. Some of these prognostic 
RNA-editing sites mediate the binding of RNA binding proteins and microRNAs, 
thus propagating their impacts to extensive regulatory targets.
Conclusions: In conclusion, RNA editing affects cis-regulatory elements and pre-
dicts adverse cancer survival.
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and it accounts for over 95% of all RNA-editing events.2 Given 
the overwhelming predominance of A-to-I RNA-editing and 
doubts of non-canonical editing events,3 most studies tend to 
focus on the type of A-to-I RNA-editing only. While early 
studies regard RNA-editing as a binary event, that is, judging 
its presence or absence qualitatively, recent studies begin to 
quantify RNA-editing level – a quantitative attribute that can 
be calculated as, for example, the ratio between edited reads 
(reads supporting alternative allele) and total reads. Chigaev 
et al. have taken this quantitative perspective to observe ele-
vated RNA-editing levels in tumors compared to paired nor-
mal samples in 11 cancer types.3

RNA editing has the potential to impact cellular processes 
and affect diseases such as cancers. For example, Peng et al. 
demonstrated experimentally that nonsynonymous A-to-I 
RNA-editing can result in alternative protein sequences,4 and 
these changes may subsequently affect anti-cancer drug sen-
sitivity.5 As a concrete example, RNA editing in AZIN1 in 
hepatocellular carcinoma can trigger more aggressive tumors 
by causing higher cell proliferation through the neutralization 
of antizyme-mediated degradation of ornithine decarboxylase 
and cyclin D1.6 In another study, RNA editing was shown to 
cause important gain or loss of binding sequences of RNA 
binding proteins (RBPs), microRNA (miRNA) seeds, and 
miRNA-matching 3’-UTRs, thus leading to reprogrammed 
regulatory cascades.7

The research field witnessed sporadic studies of RNA-
editing’s cancer prognostic value,8,9 and both increased10,11 
and decreased12,13 RNA-editing levels have been noted in 
various tumors. Two recent review articles14,15 have put to-
gether around twenty genes that bear RNA-editing sites 
(RESs) of prognostic marker value. Paz-Yaacov et al.16 sum-
marized A-to-I RNA-editing events in each tumor sample as 
RNA-editing index, and, in such a sample-aggregated per-
spective, proposed that increased editing activity is associ-
ated with poor prognosis. In the current work, we followed 
the same direction to investigate RNA-editing’s cancer prog-
nostic value; our innovation lies foremost in that we set in-
dividual RESs as the research units so that we managed to 
analyze transcriptome-wide RNA-editing events at a single-
nucleotide resolution. Other than that, we devised the study 
along the following three aspects of novelty. First, the pre-
vious studies did not account for correlation between gene 
expression and RNA editing level, which posed a risk for 
identifying false positive RESs that were simply proxies of 
their host genes’ expression. In our study, we first showed that 
RNA editing level is often strongly correlated to host gene 
expression, and we went on to let this important awareness 
guide our survival analyses. Second, we adjusted for clinical 
variables (age, sex, stage) in our Cox model, which was not 
done in most previous studies. Last and most importantly, we 
analyzed disease-specific survival, which was advocated as a 
more accurate outcome variable than overall survival.17

We collected 99,071 distinct A-to-I RNA-editing sites 
originating from patient samples of various cancers and ex-
plored their prognostic value with proper adjustment of cru-
cial covariates. First, we showed that RNA-editing level is 
positively associated with the expression of the host gene. 
This finding validated our intuitive hypothesis and justified 
our deliberate adjustment of gene expression in the next-step 
survival analysis. Several thoughtful survival models were ap-
plied to nearly a hundred thousand A-to-I RNA-editing sites, 
and, after multiple test adjustments, we fetched 402  gene-
proximal RNA-editing sites that were significantly associated 
with survival, mostly in the adverse direction. Some of these 
prognostic RNA-editing sites disrupted regulation cascades 
by modifying RBP binding sequences or miRNA-matching 
3′-UTRs.

2  |   METHODS

2.1  |  Data acquisition and annotation

Technically, RNA-editing events usually are detected with 
RNA-Seq data. The RNA-editing-occurring genomic posi-
tion is recognized as an RNA-editing site (RES). A-to-I RNA-
editing events originating from RNA-Seq data of The Cancer 
Genome Atlas (TCGA) were obtained as supplementary data 
from previous studies.3,5 These data were detected in 5672 
patient subjects of 17 cancer types, comprising 99,071 dis-
tinct RESs. A catalog of these RNA-editing events, including 
the related cancer type information, is provided in Table S1. 
TCGA uses a stable acronym series to code the long yet ac-
curate cancer names, and the acronyms of the 17 cancer types 
(BLCA, BRCA, CESC, CRC, GBM, HNSC, KICH, KIRC, 
KIRP, LGG, LIHC, LUAD, LUSC, PRAD, STAD, THCA, 
and UCEC) are explained in Table S1.

We leveraged ANNOVAR18 to annotate genomic regions 
for RESs. Based on the dissection of the human reference 
genome, a RES was allocated to one of nine possible ge-
nomic regions: exonic, intronic, 5′-UTR, 3′-UTR, ncRNA, 
upstream, downstream, intergenic, and splicing. Whenever a 
RES was allocated to the intergenic region, it was considered 
a gene-distal RES; RESs allocated to any other genomic re-
gions, including gene upstream and gene downstream regions 
(within 1000 bp of transcription start site or transcription end 
site), were collectively termed gene-proximal RESs. For each 
gene-proximal RES, a host gene was identified as the nearest 
gene whose gene body hosted or approximated the RES in 
question. The whole set of 99,071 RESs was thus allocated 
to 6254 distinct host genes. Of note, all chromosome coordi-
nate positions specified in this manuscript were based on the 
human GRCh37 reference genome.

From Genomics Data Commons, we downloaded TCGA 
RNA-seq gene expression data in the format of fragment per 
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kilobase million; from the same source, we obtained clinical 
covariate information for the TCGA patient cohort, includ-
ing age, gender, and cancer stage. From TCGA Pan-Cancer 
Clinical Data Resource,17 we acquired disease-specific sur-
vival information.

2.2  |  Term definition

By definition, an RNA-editing event must involve a RES, 
and one same RES may be involved in different RNA-editing 
events where different subjects or patient cohorts were con-
cerned. Therefore, we defined RNA-editing level for a RES 
in one subject, RNA-editing frequency for a RES in one co-
hort (typically a cancer type), and RNA-editing density for a 
gene that hosts multiple RESs.

As indicated in Equation (1), RNA-editing level (L) of 
RES i in subject j (of cohort C) was expressed as the ratio of 
edited reads (R+

(i,j)
) over total reads (R+

(i,j)
and R−

(i,j)
). Edited 

reads support alternative, non-reference allele at the particu-
lar genomic position. RNA-editing level took value over in-
terval [0,1].

As indicated in Equation (2), RNA-editing frequency (F) 
of RES i in a cancer type-specific cohort (denoted as C) was 
expressed as the ratio of subjects showing RNA-editing at 
RES i over total cohort size. RNA-editing frequency took 
value over interval [0,1]. In all cancer types and all genomic 
regions, we did observe RESs with a full frequency (1).

As indicated in Equation (3), RNA-editing density (D) of 
gene g was expressed as the rate of RESs within their host 
gene body, expressed as the number of RESs with non-zero 
RNA-editing level (in any subject of any cohort) divided by 
the length of the host gene. Here, G designated the gene body 
of the host gene g, interpretated as a set of continuous sites, 
and therefore ||G|| designates the gene length in nt; i was the 
location identifier of an RES, with i ∈ G meaning gene g was 
the host gene of RES i. I*(x) designated the indicator func-
tion where a logic expression x was evaluated and either 1 or 
0 was returned. RNA-editing density took value over interval 
(0,1).

2.3  |  Statistical analysis

We conceptualized two models of dependence of RES level 
(L) on host gene expression (E), one continuous (Equation 4) 
and the other binary (Equation 5). Continuous RES level was 
calculated as explained above (Equation 1) and was modified 
slightly to go into the left side of the equations: in the continu-
ous model (Equation 4), original RES level was standardized 
to a new continuous variable (L∗ ) that followed the standard 
normal distribution; in the binary model (Equation 5), it was 
dichotomized to binary values of 0’s and 1’s(L′). Logistic 
function was denoted as logit(x). Gene expression value was 
processed from initial fragment per kilobase million values 
with a state-of-the-art protocol including logarithm and nor-
malization. Linear regression and logistic regression were 
conducted to solve the coefficient (b) in the models.

We modeled patient disease-specific survival with three 
gradually more comprehensive Cox proportional hazard 
models (Equations 6, 7, 8). In the most primitive model 
(Equation 6), death hazard ( �(t)

�0(t)
) was explained by RES level 

(L) only; in an intermediate model (Equation 7), death hazard 
was explained by RES level plus host gene expression (E); in 
the most comprehensive model (Equation 8), RNA-editing 
level contribution to death hazard was adjusted for host gene 
expression as well as multiple clinical variables, including 
stage (Stg), age (Age), and sex (Sex). These Cox models were 
resolved within each cancer type separately, where data of all 
subjects relevant to one-specific RES were utilized to resolve 
the coefficients (cl, ce, cstg, cage, csex). Of note, for gender-
specific cancer types (BRCA, PRAD, and OV), the sex term 
(csex ⋅ Sex) was omitted in the most comprehensive model 
(Equation 8).

(1)LC
i
(j) =

R+
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R+
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+ R−

i,j
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⟩

0
}
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(4)L∗ = a + b ⋅ E

(5)logit
(
Prob(L� = 1

)
) = a + b ⋅ E

(6)
� (t)

�0 (t)
= exp

(
cl ⋅ L

)

(7)
� (t)

�0 (t)
= exp

(
cl ⋅ L + ce ⋅ E

)

(8)
� (t)

�0 (t)
= exp

(
cl ⋅ L + ce ⋅ E +

(
cstg ⋅ Stg + cage ⋅ Age + csex ⋅ Sex

))

(9)
� (t)

�0 (t)
= exp

(
ce ⋅ E +

(
cstg ⋅ Stg + cage ⋅ Age + csex ⋅ Sex

))

(10)
� (t)

�0 (t)
= exp

(
cl ⋅ L +

(
cstg ⋅ Stg + cage ⋅ Age + csex ⋅ Sex

))
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To specifically pinpoint the contribution to death haz-
ard from RNA-editing level, we constructed a variant to the 
most comprehensive model so that the RES term was left 
out (Equation 9). The two Cox models, with and without the 
RES term (Equations 8 and 9), were compared, and the con-
cordance index (C-index)19 was calculated to assess the sole 
contribution from the RES’ level to patient's death hazard. 
The last Cox model as expressed in Equation (10) was ap-
plied on gene-distal RESs where no host gene was associated 
with a RES.

All statistical analyses were conducted in R environment 
(v4.0.2). Because RES-gene dependence analysis and sur-
vival analysis were conducted for each individual RES re-
peatedly, multiple-test correction was applied to the p-values 
of bulk RESs with the Benjamini–Hochberg method, and ad-
justed p-value <0.05 was considered statistically significant. 
R packages survival and survminer were utilized to perform 
Cox regression and render Kaplan-Meier curves.

2.4  |  Analysis of RNA-editing-associated 
binding sequence

When RNA-editing takes place in cis-regulatory elements, 
regulation of gene expression may be affected and the im-
pact of a RES may be propagated to a large number of regu-
latory targets.7  We leveraged Somatic Binding Sequence 
Analyzer20 to identify RES-affected cis-regulatory elements. 
Technically, we screened three classes of cis-regulatory el-
ements, namely RBP binding sequences, miRNA seed se-
quences, and miRNA-matching 3′-UTR sequences. RBP 
binding sequences numbered 3524 and were downloaded 
from four databases: ATtRACT,21 ORNAment,22 RBPDB,23 
and RBPmap.24  MiRNA seed sequences numbered 2,879 
and were downloaded from mirBase.25 MiRNA-matching 3′-
UTR sequences numbered 2,055,403 and were downloaded 
from starBase v2.0.26 Circos plot27 was used to manifest a 
genome-wide view of RES-affected cis-regulatory elements.

2.5  |  Functional characterization of RNA-
editing sites

A set of 379 cellular pathways,28 each of 5–236 genes, were 
merged from PID,29 PANTHER,30 and INOH31 and were 
used to annotate function themes of RES’ host genes. The 
same set of pathways were adopted in previous studies on 
chronic kidney disease32 and pan-cancer survival mark-
ers.33 Specifically, for each cancer type, we identified the 
host genes of prognostic RESs (output of Equation 8) and 
conducted hypergeometric test against each pathway. Since 
there was a multiple-test issue here, the Benjamini–Hochberg 
method was again utilized to adjust the hypergeometric 

p-values. Adjusted p-value <0.05 was considered statisti-
cally significant.

A series of methods are available to assess the functional 
impact resulting from a variation at a particular genomic 
position. These methods are generally based on multiple 
sequence alignment within a protein family, presuming that 
positions with a low conservation rate are likely to tolerate a 
mutation while positions with a high conversion rate are likely 
to be intolerant to a mutation. In light of such a evolutionary 
perspective, editing impact was predicted for each RES in our 
final report set, using eight algorithms: SIFT,34 Polyphen2 
(including both HDIV and HVAR),35 LRT,36 FATHMM,37 
CADD,38 VEST3,39 and MetaSVM.40 The scores out of dis-
tinct algorithms were normalized to a common scale between 
0 to 1, where a higher value signified a stronger impact.

3  |   RESULTS

3.1  |  RNA-editing level is highest in splicing 
regions

An overall description of the nearly one hundred thousand 
RESs, including information on TCGA cancer types, was 
provided in Table  S1. Of the initial 99,071 RESs, 95.8% 
(94,957) were located in Alu segments. We compared the 
genomic regions of RESs in terms of raw number, level, and 
frequency of RESs. Separate analyses in individual cancer 
types showed consistent patterns, so here we presented con-
sensus results that conglomerated all cancer types.

Considering the raw number of RESs, 3′-UTR and in-
tronic region are the most noteworthy genomic regions, as 
44.2% of the 99,071 RESs occurred in 3′-UTR regions fol-
lowed by 30.7% in introns (Figure 1A). The heavy presence 
of RNA-editing in 3′-UTR and intronic regions is consis-
tent with the previous report.41 In such non-coding regions, 
Alu elements and other long interspersed nuclear elements 
are over-represented, which are conducive to form imper-
fect doublestrand motifs recognized by ADAR. Around 
4.0% RNA-editing falls into the non-coding RNA regions. 
More interestingly, exonic RNA-editing occupied 0.39% of 
all RESs. Splicing junction had the lowest RESs at 0.02% 
occupancy.

In light of RNA-editing frequency (Equation 2), 3′-UTR 
stands out among all nine genomic regions, with a median 
frequency of 0.42 (Figure 1B). Surprisingly, intronic region 
shows the least frequency, with a median of 0.128. In light 
of RNA-editing level (Equation 1), a completely different 
picture is revealed – splicing region shows the highest level, 
with a median of 0.411 (Figure 1C). On the contrary, exonic 
region shows the lowest RNA-editing level, with a median of 
0.26. Exons are more evolutionarily conserved, thus it makes 
sense to display both less number and less RNA-editing level. 

http://pid.nci.nih.gov/
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Splicing junctions have the lowest number of RNA-editing 
yet the highest RNA-editing level. This may indicate the crit-
ical involvement of RNA editing in the transcriptional regu-
latory system.

Lastly, we examined RNA-editing density (Equation 3) 
for genes located to all 24 chromosomes (Figure 1D). Several 

hyper-RNA-edited genes were identified, including the 
three top-ranking ones: HNRNPA1L2, SPN, and POLR2J4. 
HNRNPA1L2 is known to fuse with SUGT1 in cervical42 and 
bladder43 cancers. SPN, a regulatory subunit of PP1A, is a 
known tumor suppressor.44 POLR2J4 is a non-coding RNA 
and has recently been shown to be associated with survival 

F I G U R E  1   Overall description of RNA-editing events in 17 cancer types. (A) RNA-editing sites by genomic regions. (B) RNA-editing 
frequency by genomic regions. (C) RNA-editing level by genomic regions. (D) Manhattan plot for RNA-editing density. Density is assessed for 
gene units (Equation 3). Marked genes are cancer-relevant genes with the highest RNA editing density

F I G U R E  2   Breakdown of gene-
proximal RNA-editing sites by the direction 
of correlation between RNA-editing level 
and host gene expression. (A) RNA-editing 
level was modeled as a continuous variable 
and Gaussian (linear) family regression was 
conducted (Equation 4). (B) RNA-editing 
level was modeled as a binary variable 
and Logistic regression was conducted 
(Equation 5). In both A and B, positive 
dependence relations predominate negative 
ones
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in hepatocellular carcinoma by two independent studies.45,46 
Hosting dense RESs in the gene body may add to the evi-
dence of cancer relevance of these genes.

3.2  |  RNA-editing level is generally 
correlated with host gene expression

A majority of current methods seek to detect RNA editing 
from RNA-seq data, where read counts for an allele are in-
herently correlated with gene expression. As reflected in 
the definition (Equation 1), RNA-editing level is built on 
read counts for the reference allele and the alternative al-
lele. Thus, we hypothesized that the level of a RES is cor-
related with host gene expression. The presumed dependence 
of RNA-editing level on host gene expression was modeled 
in continuous (Equation 4) and binary (Equation 5) models, 
respectively. Regression of the continuous model revealed 
that 51% RESs showed a significant positive correlation with 
host gene expression and 1.7% showed a negative correlation 
(Figure  2A). Regression of the binary model revealed that 
79.1% RESs showed a significant positive correlation with 
host gene expression and 0.7% showed a negative correlation 
(Figure  2B). In both models, a majority of the RES levels 
were found positively dependent on host gene expression. 

This finding highlights the necessity of accounting for gene 
expression in any analysis that revolves around RNA-editing 
level, and we did take this precaution into consideration in 
the following survival analysis where individual RESs were 
evaluated for their prognostic significance.

3.3  |  RNA-editing events predict adverse 
survival in 11 cancers

For gene-proximal RESs, we modeled patients’ disease-
specific survival with three gradually more comprehensive 
Cox models: (1) Survival ~RNA-editing level (Equation 
6); (2) Survival ~RNA-editing level +host gene expression 
(Equation 7); (3) Survival ~RNA-editing level +host gene 
expression +clinical variables (Equation 8). As expected, the 
number of significant RESs substantially decreased with the 
incorporation of additional variables (Figure 3A). The most 
dramatic decrease of significant RES number occurred when 
host gene expression was incorporated to adjust for RES level 
contribution. This observation resonated with our concern of 
the positive correlation between RNA-editing level and host 
gene expression, which was highlighted above with numeri-
cal experiment results (Figure 2). Without adjusting for host 
gene expression, a survival model built on the sole variable 

F I G U R E  3   Prognostic value of gene-proximal RNA-editing sites. (A) Numbers of significant RNA-editing sites resulting from three survival 
models (Equations 6, 7 and 8). The number of significant RNA-editing sites dropped dramatically when host gene expression was adjusted for 
in the model. (B) The number of significant RNA-editing sites by cancer. (C) C-index values generally increased when RNA-editing level was 
incorporated into the survival model (Equation 9 vs. Equation 8). (D-G) Kaplan-Meier curves for four prognostic RNA-editing events residing 
in TRAPPC4 (D), SPC24 (E), SNORA40 (F), and DCAF16 (G), respectively. The prognostic effects were manifested in kidney renal clear cell 
carcinoma (D), liver hepatocellular carcinoma (E), lung squamous cell carcinoma (F), and uterine corpus endometrial carcinoma (G), respectively
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of RNA-editing level (Equation 6) could be capturing merely 
the host gene whose expression dictates the superficial RNA-
editing level. After adjusting for host gene expression and 
clinical variables (Equation 8), levels of 402 RESs were 
found significantly associated with disease-specific survival 
in 11 cancer types (Table S2). Of these 402 RESs, 94% were 
located in Alu regions. Their cancer type and genomic re-
gion distribution are depicted in Figure  3B. Low-grade 
glioma (LGG) had the most significant RESs with 189. Six 
cancer types, breast invasive carcinoma (BRCA), kidney 
Chromophobe (KICH), kidney renal papillary cell carcinoma 
(KIRP), lung adenocarcinoma (LUAD), stomach adenocarci-
noma (STAD), and thyroid carcinoma (THCA) did not return 
any significant RESs as prognostic markers.

The sign of (logged) RES coefficient, or hazard ratio, 
in the Cox model (Equation 8) instructs on the direction 
of prognostic effect of an RNA-editing event. Of the total 
402  significant RESs, 368 (91.5%) had their hazard ratio 
greater than one, indicating that a high editing level results in 
a poor prognostic outcome. Collectively speaking, RNA ed-
iting in our investigated cancer types generally predicts poor 
survival. The top ten RESs associated with survival ranked 
by adjusted p-value are available in Table 1.

We also exerted another procedure to validate the prognos-
tic value of these recommended RESs, where we computed 
C-index between two alternative models, one with RES term 
(Equation 8) and the other without (Equation 9). The differ-
ence of C-index values between the two models indicates the 
incremental goodness of fit brought forth by RNA-editing 
level. Of the 402 significant RESs, 396 showed increased C-
index values, proving net increment of goodness of fit for the 
survival model (Equation 8) attributed unambiguously to the 
incorporated RES (Figure 3C).

Using Kaplan-Meier curves, we show visually four ex-
amples of RNA-editing level's association with survival. In 
the first example, an RES of host gene TRAPPC4 located at 
chr11:118,893,191 (chromosome 11, position 118,893,191) 
was associated with poor survival in kidney renal clear cell 
carcinoma (KIRC) (adjusted p = 0.0051) (Figure 3D). There 
has not been any previous report on TRAPPC4 with kidney 
renal clear cell carcinoma. The second example concerns 
RES of host gene SPC24  located at chr19: 11,257,198 in 
liver hepatocellular carcinoma (LIHC) (adjusted p = 0.0173) 
(Figure  3E). SPC24  has been considered as a biomarker 
for liver cancer and is upregulated in LIHC tumors.47 The 
third example RES resides in SNORA40 at chr11:93,468,111 
and demonstrated prognosis significance in lung squamous 
cell carcinoma (LUSC) (adjust p  =  0.0159) (Figure  3F). 
SNORA40 is a small nucleolar RNA and has been proposed 
as a biomarker for several cancer types.48,49 However, no link 
has been reported for LUSC. The last example RES occurs 
in DCAF16 at chr4:17,804,740 in uterine corpus endome-
trial carcinoma (UCEC) (adjust p  =  0.0137) (Figure  3G). 

DCAF16 is DDB1-CUL4 associated factor. It has been linked 
to cancer previously.

For gene-distal RESs which are located in the intergenic 
region, since they could not be allocated to a nearby host 
gene, the disease-specific survival was modeled with a com-
bination of RES and applicable clinical variables (Equation 
10). As a result, 311 significant gene-distal RESs protruded 
from this screening (Table S3). Of these 311 RESs, 93.9% 
were located in Alu regions. The signs of (logged) RES coef-
ficients also indicated a general negative survival association, 
with 259 (83.3%) RESs having greater than one hazard ratio.

3.4  |  RNA-editing affects cis-
regulatory elements

We performed binding sequences analysis to identify cis-
regulatory elements affected by the 402 prognostic gene-
proximal RESs. Out of 402 RESs, 383 affected cis-regulatory 
elements. Precisely, they caused 1177 gains and 1206 losses 
of RBP binding sequence (Figure 4A, Table 2, and Table S4) 
and 79 altered miRNA-matching 3′-UTRs (Figure  4B, 
Table  3, and Table  S5). We elaborate on two representa-
tive examples, one involving an RBP binding sequence 
(Figure 4C) and the other involving a miRNA-matching 3′-
UTR sequence (Figure 4D). Firstly, a RES that is located at 
chr6: 160,101,723 and designated to host gene SOD2 caused 
a gain of binding sequence for RBP SRSF1 (Figure 4C). This 
RNA-editing event occurred in 95.5% of LGG subjects. Both 
SOD2 and SRSF1 are known for their glioma connections. 
SOD2 is a key enzyme with a dual role in tumorigenesis 
and tumor progression in multiple cancers.50 SOD2 inhibi-
tor treatment was effective to lower cell proliferation in gli-
oma xenograft mouse models.51 The RBP SRSF1 promotes 
glioma tumor via oncogenic splicing of MY01B transcript.52 
Secondly, an RES that is located at chrX:123,046,591 and 
designated to host gene XIAP altered the binding sequence 
to miRNA mir-92a-3p (Figure 4D). XIAP is upregulated in 
glioblastoma,53 and XIAP inhibitor has been shown effective 
to treat glioblastoma tumorspheres in vitro.54 XIAP was iden-
tified as a regulation target of mir-92a-3p. This RES in ques-
tion could potentially disrupt the normal regulation between 
mir-92a-3p and XIAP, possibly upregulating XIAP expres-
sion and leading to tumorigenesis.

3.5  |  Functional characterization of our 
reported RNA-editing sites

By comparing the p-value out of the ultimate survival analy-
sis model (Equation 8), we assigned all gene-proximal RESs 
into two groups: statistically non-significant (adjusted p-
value ≥0.05) and statistically significant (adjusted p-value 
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<0.05). Each RES that was applicable to a mutation impact 
prediction algorithm was assessed with a predicted functional 
impact score, and the average functional impact scores of the 
two separate groups were compared. For all attempted pre-
diction algorithms except FATHMM, the average functional 
impact score of the significant group was higher than that of 
the non-significant group (Figure 5A). This result suggested 
that our refined prognostic RESs generally reside in more 
evolutionarily conserved genomic locations and their editing 
variations should lead to nontrivial functional impacts.

Using the 402  significant RESs’ host genes, we con-
ducted pathway enrichment analysis by cancer and identified 
15  significant pathways after adjusting for false discovery 
(Figure  5B). Many of the identified pathways have known 
associations with cancers. For example, PLK1  signaling 
pathway, a key regulator of cell division, was significant in 
Bladder Urothelial Carcinoma (adjusted p  <  0.0001) and 
liver hepatocellular carcinoma (adjusted p  =  0.01). This 
pathway mediates estrogen receptor-regulated gene tran-
scription in breast cancer55 and it is associated with TP53 
inactivation, DNA repair deficiency in ER-positive, Her2-
negative breast cancer.56 Another example is the EPHA2 
forward signaling pathway which was significant in KIRC 
(adjusted p = 0.0008). EPHA2 expression has been shown 
positively associated with tumor size and Fuhrman nuclear 
grade in KIRC57 and promoting resistance to chemotherapy 
of sunitinib.58

Our initial RES data was previously analyzed by Han 
et al.5 who identified 1025  statistically significant survival 
RESs, 54 of which were also identified by us. The differ-
ences can be contributed to the different types of survival 
data (overall vs disease-specific) and our more robust analy-
sis strategy, where host gene expression and clinical covari-
ates were accounted for. Furthermore, by resorting to several 
recent review articles,14,15,59,60 there were 26 RESs with 

cancer-related clinical significance that were covered by our 
dataset, which resided in 7  genes (AZIN1, BLCAP, COG3, 
COPA, FLNB, GRIA2, and NEIL1). In Table 4, we show the 
results from host gene correlation analysis (Equation 5) and 
three gradually refined Cox models (Equations 6, 7, and 8). 
Raw p-values were used here instead of adjusted p-values be-
cause we were focusing on a small list of predefined RESs. 
The editing level of 15 RESs had significant correlations 
with their host gene expression. One of these 15 RESs had 
significant prognostic values (COG3 I635V in LUSC). Of 
the other 11 RESs, four had significant prognostic values 
after adjusting for host gene expression and clinical variables 
(COG3 I635V in LUAD, AZIN1 S367G in BRCA, AZIN1 
S367G in LUAD, and BLCAP Q5R in BLCA). This analy-
sis demonstrates that RESs with true association with cancer 
prognosis can endure rigorous statistical adjustment for host 
gene expression and basic clinical variables.

4  |   DISCUSSION

Previous studies touched upon RNA-editing's implication in 
human diseases, but have not well elucidated RNA-editing's 
involvement in cancer prognosis. In this study, we adopted a 
quantitative perspective to study RESs in 17 cancer types at 
single-nucleotide resolution, addressing RES genomic distri-
bution, RES-gene correlation, RES survival association, and 
RES regulatory mechanism.

The foremost interesting finding is that the highest RNA-
editing level is observed in splicing junctions, in any can-
cer type or the pan-cancer scope. Previous studies61–63 have 
shown that RNA editing can regulate alternative splicing, 
and ADAR-regulated alternative splicing influences tumor-
igenesis.64 Our finding of the striking RNA-editing level in 
splicing junctions strengthens the belief that RNA-editing 

T A B L E  1   Ten gene-proximal RNA-editing sites with the highest prognosis statistical significance (Equation 8)

RES position Region Host gene HR (95% CI) Ajusted pa  Cancerb 

chr19:57,725,735 3′-UTR ZNF264 2.13 [1.70, 2.66] 4.07 × 10−7 UCEC

chr12:113,827,926 Downstream PLBD2 1.55 [1.33, 1.81] 6.36 × 10−5 LGG

chr18:32,829,377 Intronic ZNF397 1.96 [1.55, 2.49] 6.55 × 10−5 LIHC

chr7:128,454,323 Intronic CCDC136 1.57 [1.35, 1.83] 1.46 × 10−4 LGG

chr5:138,620,224 Intronic MATR3 2.03 [1.55, 2.66] 2.19 × 10−4 LIHC

chr1:154,960,151 5′-UTR FLAD1 1.32 [1.18, 1.49] 3.35 × 10−4 KIRC

chr19:4,653,303 3′-UTR TNFAIP8L1 2.00 [1.55, 2.57] 3.77 × 10−4 UCEC

chr6:160,101,723 Intronic SOD2 1.64 [1.37, 1.95] 3.94 × 10−4 LGG

chr8:144,672,955 Intronic EEF1D 1.50 [1.29, 1.74] 4.10 × 10−4 LGG

Note: Chromosome position is indexed in GRCh37. RES, RNA-editing site.
Abbreviation: HR, Hazard ratio. CI, Confidence interval.
aAdjusted p-value from survival analysis (Equation 8).
bFull cancer names are expanded in Table S1.
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plays an important role in tumorigenesis-relevant alternative 
splicing.

For the first time, we demonstrated that RNA-editing 
level tends to be positively correlated with host gene expres-
sion. This finding may be intuitive, but it casts doubt on RES 
analysis results where host gene expression is not properly 
adjusted – association relations identified through unadjusted 
RNA-editing level may merely be reflecting the latent effect 
of host gene expression. Thus, we recommend that any anal-
ysis that revolves around RNA-editing level should consider 
adjusting for host gene expression. In our survival analyses in 
this work, we elected to adjust for host gene expression and 
other available demographic covariates. After multiple-test 

correction, we identified 402 gene-proximal RESs that were 
significantly associated with disease-specific survival in 11 
cancer types. An overwhelming majority of these 402 signif-
icant RESs were associated with poor survival (as opposed 
to good survival).

The current work consolidated RNA-editing’s crucial in-
volvement in cancers. This was grounded in multiple lines of 
evidence. First, we showed RNA-editing level has prognostic 
value for hundreds of RESs in a wide range of cancers. Second, 
a majority of the prognostic RESs exert functional repercussion 
by altering RBP/miRNA binding sequences, and many targets 
of these RBPs/miRNAs had known cancer relevance. Thirdly, 
quite a few cancer-related cellular pathways emerged in the 

F I G U R E  4   Analysis results of RNA-editing-associated binding sequence. (A) Circos plot presenting RNA-editing-site-affected binding 
sequences for RNA-binding proteins. RNA-binding protein names are printed on the plot and can be read when zoomed in. RNA editing caused 
RBP binding sequence changes are linked by different color lines presenting RNA editing genomic location. The blue bars in the inner circle 
indicate the loss of RBP binding sequence. The red bars in the second circle denote the gain of the RBP binding sequence. The height of the bars 
indicates the RNA editing frequency. (B) Circos plot presenting RNA-editing-site-affected miRNA-matching 3′-UTR sequences. RNA editing site 
is linked to the affected miRNA-matching 3′-UTRs by different color lines representing RNA editing's genomic region. The black bars indicate 
the RNA-editing frequency. (C) An example of gain of RBP binding sequence. RNA-editing in host gene SOD2 caused a gain of binding sequence 
AAGGTG for RBP SRSF1. (D) An example of altered miRNA-matching 3′-UTRs binding sequence. RNA-editing in host gene XIAP caused a 
change in the binding sequence to miRNA miR-92a-3p
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T A B L E  2   Ten most prognostic RNA editing sites that caused gains of binding sequences for RNA-binding protein

RES position Region Host gene HR (95% CI)
Adjusted 
pa  Frequency

Binding 
Sequence RBP Cancerb 

chr6:160101723 Intronic SOD2 1.64 [1.37, 1.95] 0.00039 95.5% AAGGTG HNRNPF LGG

chr8:99056338 Intronic RPL30 0.63 [0.53, 0.76] 0.00117 78.2% TTTTTTG ELAVL1 LGG

chr19: 39384772 Intronic SIRT2 1.53 [1.28, 1.81] 0.00131 51.6% CGCTCCG SRSF1 LGG

chr12:51325383 3′-UTR METTL7A 1.48 [1.26, 1.73] 0.00519 99.6% AGCACC NOVA1 LGG

chr18:65176260 3′-UTR DSEL 1.46 [1.25, 1.72] 0.00613 69.8% CGGTGG FUS LGG

chr11:65180643 3′-UTR FRMD8 1.82 [1.41, 2.36] 0.00672 67.2% TGGAGAT SRSF1 UCEC

chr8:95804969 3′-UTR DPY19L4 1.49 [1.25, 1.77] 0.00944 99.8% CCCGGC SRSF6 LGG

chr18:65174313 3′-UTR DSEL 1.42 [1.22, 1.66] 0.00916 50.6% CGGTGG FUS LGG

chr5:130537253 3′-UTR LYRM7 1.47 [1.24, 1.75] 0.01087 82.3% CTTTTTA TIAL1 LGG

chrX:24095285 3′-UTR EIF2S3 0.64 [0.52, 0.78] 0.01087 100.0% CGAGCGA ZC3H10 LGG

Note: Chromosome position is indexed in GRCh37. RES, RNA-editing site.
Abbreviations: HR, Hazard ratio; CI, Confidence interval.
aAdjusted p-value from survival analysis (Equation 8).
bFull cancer names are expanded in Table S1.

T A B L E  3   Ten prognostic RNA editing sites of the highest statistical significance that altered miRNA-matching 3′-UTR sequences

RES position Region Host gene HR (95% CI) Adjusted pa  Frequency miRNA Cancerb 

chr19:57725735 3′-UTR ZNF264 2.13 [1.70, 2.66] 4.07E−07 7.2% miR−339-5p UCEC

chr18:65174340 3′-UTR DSEL 1.50 [1.27, 1.76] 3.01E−03 78.4% miR−1179 LGG

chr19:21302864 3′-UTR ZNF714 1.55 [1.29, 1.85] 4.90E−03 28.4% miR−371a−5p LGG

chr16:70413590 3′-UTR ST3GAL2 1.70 [1.36, 2.13] 5.19E−03 27.8% miR−216a−5p UCEC

chr12:51324467 3′-UTR METTL7A 1.42 [1.22, 1.64] 6.13E−03 100.0% miR−3614-5p LGG

chrX:24095220 3′-UTR EIF2S3 0.61 [0.49, 0.75] 7.66E−03 100.0% miR−371a−5p LGG

chrX:123046591 3′-UTR XIAP 1.53 [1.26, 1.86] 1.27E−02 100.0% miR−32-5p LGG

chr4:17804740 3′-UTR DCAF16 2.04 [1.47, 2.84] 1.37E−02 49.7% miR−1343-3p UCEC

chr6:160101733 Intronic SOD2 1.43 [1.20, 1.71] 1.39E−02 97.7% miR−338-3p LGG

chr5:134236740 3′-UTR TXNDC15 1.39 [1.19, 1.63] 1.79E−02 100.0% miR−141-3p LGG

Note: Chromosome position is indexed in GRCh37. RES, RNA-editing site.
Abbreviations: HR, Hazard ratio. CI, Confidence interval.
aAdjusted p value from survival analysis (Equation 8).
bFull cancer names are expanded in Table S1.

F I G U R E  5   Functional characterization of prognostic gene-proximal RNA-editing sites (RESs). (A) Eight functional impact prediction scores 
were computed for RESs that were separated into two groups. The clinically relevant RESs (“Significant”) averaged higher functional impact 
scores than non-clinically relevant RESs (“Non-significant”). (B) Pathway enrichment analysis results using the host genes of prognostic RNA-
editing sites. PLK1 signaling events pathway has two colors because it was found enriched in two cancer types
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functional enrichment analysis of prognostic RESs’ host genes. 
Lastly, our refined prognostic RESs generally reside in more 
evolutionarily conserved genomic locations than the other RESs 
that failed our rigorous survival model analysis.

Like the index of mutational burden, RNA-editing number 
or level can be measured in aggregate as another sample-level 
index. While early sporadic studies12,13 reported decreased 
RNA editing level was associated with tumorigenesis or pro-
gression, a recent major study revealed that the increase in 
the total number of RNA-editing events is correlated with 
poor prognosis.16 Here, globally speaking, we found that 
the increase in RNA-editing level of individual RESs may 
predict an adverse cancer prognosis. We may conclude that 
an overall RNA-editing burden can be built upon either the 

number of RESs or the average RNA-editing level. More 
importantly, our work demonstrated that analysis of RNA-
editing level can be conducted at single-nucleotide resolution 
with proper adjustment for basic clinical covariates, which 
offers room for discoveries of additional crucial biological 
mechanisms, such as altered cis-regulatory elements linking 
to RBPs and miRNAs.
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T A B L E  4   Revisiting clinically significant RNA editing sites that were individually implicated in cancers. p-values less than 0.05 were bolded

Gene
Cancer 
type§ 

Residue 
change Chromosome Position

Raw p-value

Equation (5)
Equation 
(6)

Equation 
(7)

Equation 
(8)

NEIL1 LUAD K242R 15 75646087* 3.86 × 10−25 0.063 0.516 0.676

NEIL1 LUAD K242R 15 75646086 4.20 × 10−25 0.070 0.825 0.708

NEIL1 LUSC K242R 15 75646087* 7.16 × 10−13 0.775 0.989 0.921

NEIL1 LUSC K242R 15 75646086 1.11 × 10−12 0.782 0.421 0.405

COG3 HNSC I635V 13 46090371 2.15 × 10−12 0.050 0.072 0.321

COG3 KIRP I635V 13 46090371 3.48 × 10−6 0.263 0.208 0.760

COPA LIHC I164V 1 160302244 5.30 × 10−6 0.093 0.083 0.206

COG3 BRCA I635V 13 46090371 6.14×10−6 0.704 0.504 0.351

COG3 KIRC I635V 13 46090371 7.11 × 10−6 0.075 0.087 0.114

GRIA2 GBM R764G 4 158281294 1.25 × 10−4 0.398 0.411 0.448

AZIN1 CRC S367G 8 103841636 2.94 × 10−4 0.712 0.773 0.969

GRIA2 LGG R764G 4 158281294 0.002 0.869 0.159 0.822

COG3 LUSC I635V 13 46090371 0.003 0.028 0.024 0.007

BLCAP CRC Q5R 20 36147563 0.005 0.877 0.547 0.551

AZIN1 LIHC S367G 8 103841636 0.011 0.094 0.108 0.587

BLCAP LGG Q5R 20 36147563 0.060 0.240 0.329 0.061

COG3 LUAD I635V 13 46090371 0.076 0.024 0.014 0.016

BLCAP GBM Q5R 20 36147563 0.160 0.966 0.968 0.838

FLNB LIHC M2269V 3 58141801 0.196 0.106 0.116 0.099

BLCAP BLCA Q5R 20 36147563 0.526 0.052 0.024 0.010

COPA CRC I164V 1 160302244 0.575 0.106 0.137 0.069

BLCAP CESC Q5R 20 36147563 0.612 0.593 0.528 0.522

BLCAP LIHC Q5R 20 36147563 0.912 0.618 0.953 0.844

AZIN1 BRCA S367G 8 103841636 1.000 0.101 0.104 0.015

AZIN1 LUAD S367G 8 103841636 1.000 0.005 0.005 0.009

AZIN1 LUSC S367G 8 103841636 1.000 0.653 0.583 0.690

*In addition to the precisely matching genomic location of chr15:75646086 which certainly results in the K242R amino acid substitution, we also included the 
immediately adjacent A-to-G editing at chr15:75646087, which would also result in the K242R amino acid substitution if co-occurring with the chr15:75646086 
editing event.
§Full cancer names are expanded in Table S1.
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