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Abstract

Six volunteers experienced severe inflammatory response during the Phase I clinical trial of a monoclonal antibody that was
designed to stimulate a regulatory T cell response. Soon after the trial began, each volunteer experienced a ‘‘cytokine
storm’’, a dramatic increase in cytokine concentrations. The monoclonal antibody, TGN1412, raised serum concentrations of
both pro- and anti-inflammatory cytokines to very hich values during the first day, while lymphocyte and monocyte
concentrations plummeted. Because the subjects were healthy and had no prior indications of immune deficiency, this
event provided an unusual opportunity to study the dynamic interactions of cytokines and other measured parameters.
Here, the response histories of nine cytokines have been modeled by a set of linear ordinary differential equations. A
general search procedure identifies parameters of the model, whose response fits the data well during the five-day
measurement period. The eighteenth-order model reveals plausible cause-and-effect relationships among the cytokines,
showing how each cytokine induces or inhibits other cytokines. It suggests that perturbations in IL2, IL8, and IL10 have the
most significant inductive effect, while IFN-c and IL12 have the greatest inhibiting effect on other cytokine concentrations.
Although TNF-a is a major pro-inflammatory factor, IFN-c and three other cytokines have faster initial and median response
to TGN1412 infusion. Principal-component analysis of the data reveals three clusters of similar cytokine responses: [TNF-a,
IL1, IL10], [IFN-c, IL2, IL4, IL8, and IL12], and [IL6]. IL1, IL6, IL10, and TNF-a have the highest degree of variability in response
to uncertain initial conditions, exogenous effects, and parameter estimates. This study illuminates details of a cytokine storm
event, and it demonstrates the value of linear modeling for interpreting complex, coupled biological system dynamics from
empirical data.
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Introduction

Cytokines are signaling peptides, proteins, or glycoproteins that

are secreted by many cell types, including immune, epithelial,

endothelial, and smooth muscle cells. They either enhance or

inhibit inflammation in response to pathogens, ‘‘non-self’’

molecules, and toxins. Cytokines allow context-dependent com-

munication within the body [1,2,3,4,5]. If the interactions that

lead to cytokine production are destabilized, a "cytokine storm" (or

hypercytokinemia) can result, producing unbridled inflammation

within tissues and key organs. Cytokine storms are associated with

sepsis and septic shock [6], influenza, acute respiratory distress [7],

host response to blood transfusion or bone marrow transplanta-

tion, and toxic response to medication. They have been implicated

in the 1918 Spanish flu pandemic, the 2003 severe acute

respiratory syndrome (SARS) outbreak, and the H5N1 avian

influenza infections first recognized in 1987 [8,9].

Activation of CD4+ (helper and regulatory) T cells normally

requires two signals, one from an antigen-MHC complex to the T-

cell receptor, and a concurrent co-stimulatory signal to a cell

surface receptor, CD28, that is provided by antigen-presenting

cells [10,8,11]. TGN1412 is a genetically engineered CD28

antibody agonist that can activate T cells without a co-stimulatory

antigen signal [12,11]. The drug’s manufacturer saw a potential

application in patients with chronic lymphocytic leukemia, whose

T-cell population had been destroyed by chemotherapy along with

the cancerous B cells. They also saw potential applications in

boosting regulatory T cells to treat autoimmune and inflammatory

diseases such as rheumatoid arthritis, where effector T cells

become overactive and pathogenic [12].

With efficacy demonstrated in animal models, Phase I clinical

trials were scheduled for testing in humans. In March 2006, six

healthy male volunteers received TGN1412, and two volunteers

received a placebo. Great care was taken in establishing a dosage

that was deemed to be safe in humans [12]. Within an hour of

infusion, the six who received the drug experienced adverse effects

while those who received placebo did not. The drug’s recipients

had headaches, muscle pain, nausea, diarrhea, decreased blood

pressure, and increased heart rate, all indications of systemic

inflammatory response syndrome (SIRS) [13,11]. Severe depletion

of lymphocytes and monocytes occurred four hours after drug

infusion and continued until the fourth day. C-reactive protein,

serum creatinine, and neutrophil concentrations increased well

above normal levels during the same time period. Eventually, all

six patients experienced multi-organ failure, with infiltrates in the

lung, intravascular coagulation, renal failure, and lung injury [11].

Critical care and subsequent treatment included dialysis, mechan-

ical ventilation, and, in one case, surgery to counter peripheral

ischemia [11,14]. The periods of illness extended beyond one

month and may have induced permanent damage for all

patients. Biological explanations of the event are offered in
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[15,16,17,18,19,20]. Infection, underlying disease, or endotoxins

did not cause this unique event; hence, it allowed unusual insight

into the course and impact of immune-mediated cytokine storms.

The analysis presented here particularly focused on time-

dependent coupled interactions among the nine cytokines

measured. The ability of the model to capture dynamics suggests

that the nonlinearities and complexities of cytokine storms may not

prove an insurmountable problem for mathematical biologists.

Data and Methods

We have analyzed cytokine levels that were collected during the

first five days of the 2006 TGN1412 clinical trial. TGN1412

dosage was 0.1 mg per kg of body mass, which averaged 79.7 kg

for the six patients. The drug was infused at a rate of 2 mg/min

over an average time of 3.97 min. The infusion time was short

compared to measurement intervals and the time scale of

response. Effects of different infusion durations are estimated

from the derived dynamic model in the sequel.

When the patients began to experience adverse side effects,

clinicians treated the subjects with corticosteroids, chlorphenir-

amine, acetaminophen, ondansetron, metaraminol, methylpredni-

solene, and an anti-IL2 receptor antagonist antibody. All subjects

received aggressive individualized treatment while in intensive

care. Consequently, the recorded cytokine histories reflect not only

the natural reactions of the subjects but their response to therapy.

Concentrations of Tumor Necrosis Factor (TNF)-a, Interferon

(IFN)-c, Interleukin (IL) 10, IL8, IL6, IL4, IL2, IL1, and IL12

were measured eight hours before drug infusion, and 1, 4, 26, and

40 hours post-infusion. Clinicians then took measurements every

six hours through day 4 and daily until day 10. These values were

linearly interpolated to points tabulated at 6-hr intervals through

day 5 for our analysis. TNF-a, IFN-c, IL1, IL2, and IL8 are

generally characterized as pro-inflammatory cytokines, IL4 and

IL10 as anti-inflammatory cytokines, and IL6 and IL12 as either,

depending on the signaling pathway [21].

Ordinary differential equations are often used to describe

population dynamics of immune cells, pathogens, and signaling

proteins [9,22,23,24]. Here, we present linear, time-invariant

models whose parameters are estimated from the median time

series data for the six TGN1412 clinical subjects [11]. The models

describe the evolution of nine cytokine concentrations without

regard to the cells that secrete or are affected by them; cellular

sources and sinks reported in the literature are discussed in a later

section. Separate second-order equations for the concentrations

and rates-of-change of each cytokine are constructed, and best-fit

time constants are found by numerical search. All nine cytokines

are then analyzed concurrently in an eighteenth-order system. A

unified search over all of the higher-order system’s parameters

improves the fit to the measured variables and provides an

integrated model of the cytokine storm event. The coupled model

illustrates multi-class interactions among the cytokines, identifies

response modes and mode shapes (i.e., eigenvalues and eigenvec-

tors), and reveals similarities in principal components. The data

set, differential- and difference-equation models, and numerical

search algorithm are described. The effects of uncertainty in initial

conditions, exogenous effects, and parameter estimates are

evaluated using a stochastic extension of the linear model.

Normal cytokine concentrations range from 3.7 pg/mL (IFN-c
and IL10) to 48 pg/mL (IL1) or less, several orders of magnitude

below the maximums shown in Fig. 1. The points identified as

‘‘Measurement’’ in Fig. 1 are the median values for all six patients

referenced to the baseline at infusion time, as presented in Fig. 3 of

[11]); inter-quartile error bars, which often span the measurement

range, also are shown in this figure. Supplementary material shows

considerable patient-to-patient variation in cytokine profiles.

Signal saturation limits for the cytometric bead array immunoas-

says were 5,000 pg/mL; thus, higher cytokine values could not be

detected. Because individual signals frequently reached saturation

limits during the first few days of the event, estimates of several

peak cytokine levels (particularly IL6, IL10, TNF-a, and IFN-c)

may be conservative. The median rather than the mean (or

average) for the six individuals is presented because saturation

would bias the mean computation for the original data.

Results

Modeling the Response of Individual Cytokines
The growth and decay of an individual cytokine’s response to its

initial state is first represented by a second-order, linear, time-

invariant ordinary differential equation. Denoting the serum

concentration by x1(t) and its rate of change by x2(t),

dx1 tð Þ=dt~x2 tð Þ
dx2 tð Þ=dt~{ax1 tð Þ{bx2 tð Þ

�
, given x1 0ð Þ and x2 0ð Þ ð1; 2Þ

Acceleration of the cytokine concentration is represented by

d2x1 tð Þ
.

dt2~dx2 tð Þ
.

dt ¼D _xx2 tð Þ. In vector-matrix form, the

differential equation is expressed as.

_xx1 tð Þ
_xx2 tð Þ

� �
~

0 1

{a {b

� �
x1 tð Þ
x2 tð Þ

� �
,

x1 0ð Þ
x2 0ð Þ

� �
given ð3aÞ

or, with the (261) state vector, x(t), and (262) stability matrix, A, in

the general form,

_xx tð Þ~Ax tð Þ, x 0ð Þ given ð3bÞ

The initial concentration, x1(0) = 0, is referenced to the

cytokine’s basal level, and the initial rate of change, x2(0), is

stimulated by the TGN1412 infusion. a and b are positive

constants that express the sensitivity of the cytokine’s acceler-

ation,x2(t), to concentration and rate of change. For this analysis, a,

b, and x2(0) are determined by least-squares fit to the trial’s median

response. The effects of clinical treatment are subsumed in the

values of a and b.

The cytokine’s response modes are characterized by the

eigenvalues, l1 and l2 (rad/day), of A, which are the roots of

the characteristic equation,

D sð Þ ¼D sI{Aj j~
s {1

a szbð Þ

�����
�����~s2zbsza

~ s{l1ð Þ s{l2ð Þ~s2{ l1zl2ð Þszl1l2~0

ð4Þ

Consequently, eq. 3 can be expressed as.

_xx1 tð Þ
_xx2 tð Þ

� �
~

0 1

{l1l2 l1zl2ð Þ

� �
x1 tð Þ
x2 tð Þ

� �
,

x1 0ð Þ
x2 0ð Þ

� �
given ð5Þ
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With real-valued eigenvalues, the response time constants, t1

and t2 (days), are the negative inverses of l1 and l2, and the two

response modes reflect exponential growth or decay. If the

eigenvalues are complex, the roots are complex conjugates (s 6

jv), and they define a single mode of response with natural

frequency, vn, damping ratio, f, and period, P. These are,

respectively,
ffiffiffi
a
p

, b=2
ffiffiffi
a
p

, and 2p=vn. For f ,1, the mode is

underdamped and oscillatory.

The (261) eigenvectors, ei, of A describe the relative response of

each state element in the mode defined by l i. They are solutions

to the nth-order equation,

liI{Að Þei~0, i~1,n ð6Þ

where n = 2 for the second-order model. The equation can be

multiplied by an arbitrary constant, a, without changing the

equality, and so the absolute magnitude and phase of ei have no

significance. For the second-order system (eq. 5), the eigenvectors

can be expressed as

e1~a
1

l1

� �
; e2~a

1

l2

� �
ð7; 8Þ

The system’s differential equation is converted to a difference

equation to facilitate parameter identification. The state can be

propagated from one sampling instant, tk, to the next, tk+1, using a

(262) state-transition matrix, W Dtð Þ, where Dt~tkz1{tk, and

W Dtð Þ~eADt. Hence, equation 3b is equivalent to.

x tkz1ð Þ~eADtx tkð Þ~W Dtð Þx tkð Þ, x 0ð Þgiven ð9Þ

Because eADt is the inverse Laplace transform of sI{A½ �{1
, the

second-order difference equation can be expressed as,

x1 tkz1ð Þ

x2 tkz1ð Þ

" #
~

l1el2Dt{l2el1Dt
� �

l1{l2ð Þ
el1Dt{el2Dt
� �

l1{l2ð Þ
l1l2 el2Dt{el1Dt
� �

l1{l2ð Þ
l1el1Dt{l2el2Dt
� �

l1{l2ð Þ

2
6664

3
7775

x1 tkð Þ

x2 tkð Þ

" #
,

x1 0ð Þ

x2 0ð Þ

" #
given

ð10Þ

The extrapolations of eq. 9 and 10 are exact, and the identity of

the continuous-time model is not lost. Therefore, the discrete-time

model is employed in the numerical search for a, b, and x2(0), or,

equivalently, l1, l2, and x2(0).

Model parameters are chosen to minimize the error between

the cytokine concentration propagated by eq. 10, x1(tk), and the

clinical trial measurements, z(tk). Positive and negative errors are

equally unacceptable; hence a positive-definite quadratic cost, J,

that sums the squares of the errors, e(tk), at 6-hr intervals is an

appropriate metric:

Figure 1. Comparison of clinical trial data [11] and estimates from uncoupled second-order models of cytokine response.
doi:10.1371/journal.pone.0045027.g001
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J~
X20

k~0

e tkð Þ2~
X20

k~0

z tkð Þ{x1 tkð Þ½ �2 ð11Þ

J is minimized using the downhill simplex (or Nelder-Mead)

algorithm, as implemented in MATLAB’s fminsearch [25]. The

iteration for each cytokine model is terminated when its error cost

falls below an acceptable tolerance, as defined by the default

settings for the MATLAB algorithm.

Functional minimization of eq. 11 for each cytokine generates

nine sets of l1, l2, and x2(0) (Table 1). The initial rate of change in

concentration represents each cytokine’s response to drug input.

The eigenvalues are negative; hence, all modes are stable. The five

pro-inflammatory cytokines are the fastest to respond to TGN1412

infusion. Time constants of response range from 0.14 to 0.65 days.

The responses also can be modeled as critically and overdamped

oscillations (f $1), with periods, P, from 1.5 to 4.1 days. The

eigenvectors for each mode are determined by inspection from

Table 1 and eq. 7 and 8.

Uncoupled cytokine models fit the measured cytokine responses

reasonably well (Fig. 1), but they reveal nothing about cytokine

interactions. Modeled concentrations peak within a day and decay

at the same rates as the data. Fit errors are most pronounced at the

peaks of TNF-a, IL1, IL6, and IL10, and the tails of TNF-a, IFN-

c, IL1, and IL6. The concentration of IL12 is an order of

magnitude smaller than that of the other cytokines.

The models allow us to predict responses to unit initial-

conditions in concentration and rate of change. Because the

models are linear, the response shapes are independent of initial-

condition magnitude. Unit drug infusion is modeled as an

impulsive force, producing initial rates of change in the cytokines

(Fig. 2). Given equal starting points, IFN-c ‘s rate is the quickest to

rise and decay, and it achieves the lowest concentration peak. IL6

is the slowest to respond, but it reaches the highest peak. The IL6

concentration lingers for about four days, while the IFN-c response

is essentially over in two days. The decay in cytokine production

rates correlates with the decrease in measured T-cell and

monocyte populations [11]. Predicted responses to incremental

changes in cytokine concentration are shown in Fig. 3. The

relative speeds and magnitudes of each response are unchanged;

however, the presence of two exponential modes is less obvious.

The negative rates of change peak during the first day, while the

concentrations decay smoothly to zero.

An Integrated Model of Cytokine Response
Uncoupled Stability Matrix. The individual cytokine mod-

els provide the starting point for creating a single coupled model of

response. The broad description of system dynamics (eq. 3b and 9)

is unchanged, but the dimensions of the state vector, stability

matrix, and state transition matrix are increased. Each cytokine is

represented in the state vector by its concentration and rate of

change:

x tð Þ~ x1 tð Þ x2 tð Þ x3 tð Þ x4 tð Þ � � � x17 tð Þ x18 tð Þ½ �T ð12Þ

The odd components of x(tk) are concentrations, the even

components of x(tk) are their rates of change, and dim(x) = (1861).

With no cytokine coupling, A is block-diagonal; its 18 coefficients

are the same as those identified for the individual models.

Table 1. Eigenvalues, Time Constants, Periods, Damping
Ratios, and Initial Rates of Change for Uncoupled, Second-
Order Cytokine Models.

Component l1, d21 l2, d21 t1, d t2, d P, d f, -
x2(0),
pg/mL-d

TNF-a 22.63 22.63 0.38 0.38 2.39 1 32821

IFN-c 27.21 22.05 0.14 0.49 1.63 1.2 55328

IL10 22.08 22.08 0.48 0.48 3.02 1 12047

IL8 26.71 21.84 0.15 0.54 1.79 1.22 50804

IL6 21.55 21.55 0.65 0.65 4.05 1 16437

IL4 24.17 24.17 0.24 0.24 1.51 1 29489

IL2 24.08 24.08 0.25 0.25 1.54 1 42780

IL1 22.71 22.71 0.37 0.37 2.32 1 35535

IL12 24.13 24.13 0.24 0.24 1.52 1 4947

doi:10.1371/journal.pone.0045027.t001

Figure 2. Response to unit initial rates of change for TNF-a,
IFN-c, IL10, and IL6.
doi:10.1371/journal.pone.0045027.g002

Figure 3. Response to unit initial concentrations for TNF-a, IFN-
c, IL10, and IL6.
doi:10.1371/journal.pone.0045027.g003

Cytokine Storm Dynamics

PLOS ONE | www.plosone.org 4 October 2012 | Volume 7 | Issue 10 | e45027



A~

0 1 0 0 � � � 0 0

a2,1 a2,2 0 0 � � � 0 0

0 0 0 1 � � � 0 0

0 0 a4,1 a4,1 � � � 0 0

� � � � � � � � � � � � � � � � � � � � �
0 0 0 0 � � � 0 1

0 0 0 0 � � � a18,17 a18,18

2
666666666664

3
777777777775
¼D AUC ; dim Að Þ~ 18|18ð Þ ð13Þ

The corresponding state transition matrix, W Dtð Þ, is,

W Dtð Þ~eADt~

w1,1 w1,2 � � � w1,18

w2,1 w2,2 � � � w2,18

� � � � � � � � � � � �
w18,1 w18,2 � � � w18,18

2
6664

3
7775; dim W Dtð Þ½ �~ 18|18ð Þ ð14Þ

where AUC denotes the uncoupled stability matrix and Dt = 6 hr.

The state transition matrix (eq. 14) propagates the state vector for

evaluating the error cost, J, beginning with zero concentrations

and the rates of change presented in Table 1:

x tkz1ð Þ~W Dtð Þx tkð Þ, k~0,20

x 0ð Þ~

0 x2 0ð Þ 0 x4 0ð Þ 0 x6 0ð Þ 0 x8 0ð Þ 0 x10 0ð Þ 0 x12 0ð Þ 0 x14 0ð Þ 0 x16 0ð Þ 0 x18 0ð Þ½ �T
ð15Þ

The error cost, J, is defined as,

J~
X20

k~0

eT tkð ÞQe tkð Þ~
X20

k~0

z tkð Þ{xc tkð Þ½ �T Q z tkð Þ{xc tkð Þ½ � ð16Þ

where z(tk) is the (961) vector of clinical measurements at tk, and

xc(tk) is the (961) vector of cytokine concentrations predicted by

the model [i.e., the even components of x(tk)]. e(tk) is the (961)

difference between them at 21 time points. The (969) diagonal

matrix, Q, normalizes the cytokine residuals to give them

equivalent weight in the cost function:

qii~1

,X20

k~0

z2
i tkð Þ, i~1,9 ð17Þ

The approach is confirmed by applying the search algorithm to

identify the uncoupled eighteenth-order model, AUC. The 27-

parameter minimization reproduces the 18 eigenvalues and 9

initial rates of change of Table 1 to at least 3 significant digits.

Coupled Stability Matrix
With cytokine coupling, each of the 72 off-diagonal (262) blocks

of A contains a concentration sensitivity coefficient in its lower-left

element:

A~

0 1 0 0 � � � 0 0

a2,1 a2,2 a2,3 0 � � � a2,17 0

0 0 0 1 � � � 0 0

a4,1 0 a4,3 a4,4 � � � a4,17 0

� � � � � � � � � � � � � � � � � � � � �
0 0 0 0 � � � 0 1

a18,1 0 a18,3 0 � � � a18,17 a18,18

2
666666666664

3
777777777775
¼D AC ð18Þ

Fixing the initial rates of change at previous values (Table 1), the

cost function is minimized with respect to 90 parameters: the 18

(l1, l2) parameters of the diagonal blocks and the 72 coupling

parameters. The Nelder-Mead algorithm is robust, and it is

guaranteed to find a local minimum of the cost function [26]. A

positive-definite quadratic cost function with a LTI dynamic

constraint theoretically possesses just one (global) minimum, but

local minima may arise from numerical imprecision, e.g., finite

word length, rounding, or truncation of computations. These local

minima may be far removed from the global minimum of the

unconstrained cost function (eq. 16). To assure that the

minimization defines a coupled stability matrix, AC, in the

neighborhood of AUC, we assign a small penalty to the sum of

the squares of the off-diagonal parameters. This procedure is

called regularization, and it is widely used in statistics and machine

learning. Denoting the coupling parameters by the (7261) vector,

Table 2. Concentration Coefficients of the Fully Coupled Cytokine Model, CC.

TNF IFN IL10 IL8 IL6 IL4 IL2 IL1 IL12

TNF99 226.413 0.345 20.383 20.186 20.632 20.680 20.206 0.672 20.818

IFN99 20.554 218.641 0.078 1.576 1.542 0.128 0.184 0.696 20.903

IL1099 20.487 0.846 23.320 0.145 20.727 20.111 20.030 20.017 0.617

IL899 0.992 20.207 1.566 213.571 0.058 20.823 20.316 0.046 23.356

IL699 0.412 21.688 20.303 0.042 22.784 0.640 0.769 0.955 0.065

IL499 221.129 21.072 20.278 0.271 0.101 216.305 0.776 0.778 20.237

IL299 20.503 20.775 0.422 0.506 20.242 20.022 215.226 20.181 20.957

IL199 0.053 20.090 20.376 0.891 20.575 0.227 0.289 27.571 0.604

IL1299 220.877 20.075 0.275 20.228 0.320 0.343 1.554 20.271 219.448

Positive off-diagonal elements represent inductive acceleration of one cytokine by another; negative coefficients represent inhibitive acceleration. Input cytokines are
listed in the first row. (.)’’ represents d2(.)/dt2 in the first column of the table.
doi:10.1371/journal.pone.0045027.t002

ð13Þ

ð14Þ

ð15Þ
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pC, a soft constraint weighted by rC is added to the error cost:

J~
Xkf

k~0

z tkð Þ{xc tkð Þ½ �T Q z tkð Þ{xc tkð Þ½ �zrCpT
CpC ð19Þ

A large value of rC forces pC to zero, producing the same

parameter vector as the uncoupled minimization. As the penalty

weight is reduced, significant coupling parameters are revealed.

When the penalty is several orders of magnitude smaller than the

error cost specified by eq. 16, the pC estimate stabilizes and

becomes insensitive to the value of rC.

The 90-parameter minimization reduces the error cost by 20%;

however, the trace of the estimated AC is about 3% higher than the

trace of AUC. (The trace of A equals the negative sum of its

eigenvalues, and it is called the ‘‘total damping’’ of the system.)

The coupling parameters should redistribute the eigenvalues but

not change the total damping of the system model. Therefore, we

penalize the square of the difference between the traces of AUC and

AC in the augmented error cost function,

J~
Xkf

k~0

z tkð Þ{xc tkð Þ½ �T Q z tkð Þ{xc tkð Þ½ �zrC pT
C pCzrT Tr AUCð Þ{Tr ACð Þ½ �2 ð20Þ

where rT is a small coefficient. The trace penalty is several orders

of magnitude smaller than the fit-error cost at the minimum. With

its use, the difference in the traces is reduced to less than 0.1% and

the fit-error cost is lowered by an additional 1%.

The odd columns and even rows of AC portray the sensitivities

of cytokine response to cytokine concentration; they are presented

as the (969) concentration coefficient matrix, CC (Table 2). The diagonal

elements of the reduced matrix are negative, indicating stable self-

regulation of each cytokine. The sense and magnitude of coupling

effect that one cytokine has on another is given by each off-

diagonal element. The even, diagonal terms of AC are negative,

[25.2, 28.6, 24.4, 28.0, 23.3, 28.1, 28.0, 25.5, 28.8],

providing damping in the coupled system.

Inductive and inhibitive effects are most readily visualized in

Fig. 4, which illustrates the three highest-magnitude coupling

paths for each cytokine, as well as the self-inhibition of each

Figure 4. Most significant inductive and inhibitive accelera-
tions in the cytokine coupling matrix. Arrowhead denotes
induction; ‘‘T’’ represents inhibition.
doi:10.1371/journal.pone.0045027.g004

Figure 5. Unit initial-concentration response for nine cytokines based on the coupled.
doi:10.1371/journal.pone.0045027.g005

ð20Þ
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cytokine. There are three two-way paths in the figure. TNF-a
mutually inhibits both IL4 and IL12, while IL6 enhances and is

inhibited by IFN-c. TNF-a, IFN-c, and IL4 are involved in six

strong coupling pathways, and IL6 and IL8 participate in seven.

The three largest effects of IL1, IL2, and IL8 are inductive; the

three largest effects of IL12 are inhibitory.

Time Histories and Response Motifs
Coupled responses to unit initial conditions are shown in Fig. 5.

As each cytokine concentration decays, it excites responses in the

remaining cytokines, whose initial values are taken to be zero. For

clarity, only the most significant couplings are shown; nevertheless,

the simulation includes all cytokines and their coupling effects. It is

apparent that the coupling is small but significant. The pro-

inflammatory cytokines TNF-a, and IL8, and IL1 induce other

Figure 6. Motifs of response to unit initial cytokine concentrations.
doi:10.1371/journal.pone.0045027.g006

Table 3. Eigenvalues, Periods, Damping Ratios, and Three
Highest Eigenvector Magnitudes of AC.

Mode l, d21 P, d f, - EV #1 EV #2 EV #3

1 –0.84 – – IL10 IL6 IL8

2 –1.46 j0.75 3.93 0.89 IL6 TNF IL10

3 –1.88 – – IL8 TNF IL1

4 –2.276 j0.61 2.66 0.97 IL1 IL8 IFN

5 –3.286 j0.60 1.89 0.98 IL1 IL10 IFN/IL4

6 –3.226 j0.98 1.86 0.96 IL1 IL4 TNF

7 –3.75 – – IL10 IL12 TNF

8 –4.026 j0.20 1.56 0.99 IL4 IL12 IL2

9 –4.416 j0.71 1.40 0.99 IL4 IL12 IFN/IL8

10 –5.296 j0.82 1.17 0.99 IL8 IFN IL12

11 –5.82 – – IL8 IFN IL12

doi:10.1371/journal.pone.0045027.t003

Figure 7. Shapes of the first three cytokine principal compo-
nents, y1(tk), y2(tk), and y3(tk).
doi:10.1371/journal.pone.0045027.g007
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pro-inflammatory cytokines while down-regulating anti-inflamma-

tory ones. Conversely, IL10 and IL4 perturbations inhibit TNF-a.

The stimulated cytokines exhibit different time scales of response,

with some peaking before others (e.g., responses to IL6, IL10, and

IL12).

The interplay among cytokines is demonstrated in Fig. 6, where

the initialized cytokine is plotted on the vertical (z) axis, and the

two most highly perturbed cytokines are plotted on the horizontal

(x and y) axes. Thus the initial condition for each plot is (0, 0, 1),

and, after five days, the state approaches (0, 0, 0). The symbols (+),

(–), or (+/2) represent accepted pro-, anti-, or mixed-inflamma-

tory classifications of each cytokine. These state-space plots

portray motifs of the most significant cytokine responses. When

the three cytokines respond on similar time scales, the curves are

rounded; when the time scales are significantly different, the

curves contain ‘‘hairpin’’ kinks. For example, an initial perturba-

Figure 8. Similarity of cytokine response shapes as described by the first three principal component coefficients. A) Coefficients of the
first three principal components. B) Dendrogram relating closeness of cytokine covariances.
doi:10.1371/journal.pone.0045027.g008
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tion in IFN-c stimulates a fast, small IL10 response with a slower

and larger IL6 response, as verified by Fig. 5.

Eigenvalues and Most Significant Eigenvector
Components

The estimated stability matrix, AC, possesses four real and seven

complex modes. Table 3 lists the modes in order of increasing

eigenvalue magnitude. It presents the three most significant

eigenvector component magnitudes for each mode, as well as the

periods and damping ratios of the oscillatory modes. All cytokines

are present in all eigenvectors; however, the third largest

eigenvector components are typically much smaller than the first

two. All of the oscillatory modes are heavily damped. Two pairs of

modes, (5 and 6) and (8 and 9), have nearly identical periods,

differing only in the smaller eigenvector components. Neither

TNF-a nor IFN-c is the largest component of any mode, although

each is ranked second or third in several cases. IL2 appears only as

the third component of Mode 8. IFN-c and IL4 are equally

represented in Mode 5, while IFN-c and IL8 have equal

representation in Mode 9. This suggests that these cytokines are

most involved in inter-cytokine coupling. Modes 1 and 7 derive

principally from IL10, while Modes 3 and 11 are largely due to

IL8. Comparing the results to Table 1, IL4 and IL6 are seen to be

the least impacted by inter-cytokine coupling.

Principal Components of the Cytokine Response
Principal components assess the similarity of wave shapes in

each of the nine cytokine histories. They show orthogonal

projections of the original data that are based on singular-value

Figure 9. Modeled time histories of the three cytokine
response groups with experimentally derived initial rates of
change.
doi:10.1371/journal.pone.0045027.g009

Figure 10. Effects of inhibiting pro-inflammatory cytokines.
doi:10.1371/journal.pone.0045027.g010
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decomposition of the covariance matrix,/in (0, tf) [27,28]. Unlike

the modal analysis presented above, principal components do not

address causality or coupling between dynamic variables; they are

drawn together by the common stimulus, TGN1412. The (9 x 1)

principal component vector, y(tk), can be expressed as.

y tkð Þ~Cz tkð Þ, k~0,kf ð21Þ

where C is a square matrix derived from the singular values of Z
that transforms the data, z(tk), into orthogonal components. y1(tk) is

associated with the largest singular value of Z; hence, it describes

the largest variability in the data set. y2(tk) describes the next

highest, and so on. In the present case, the first principal

component is correlated with 92% of the cytokine responses, while

the next two components account for 7% of the correlation (Fig. 7).

The remaining six principal components describe just 1% of the

response shape similarities. All of the cytokines exhibit a single

peak in growth and decay, as in y1(tk). Variations across the sample

produce the two- and three-peak waves found in y2(tk) and y3(tk).

The first three rows of C contain the coefficients for the largest

principal components (Fig. 8A). The figure shows that the IL6

coefficients are far removed from those of the other eight

cytokines. Two coefficient sets (TNF-a and IL1) overlie each

other in the figure. Closeness connotes similar wave shape, but this

three-dimensional depiction is ambiguous. The ambiguity is

eliminated by computing the distances between coefficient triplets

and linking their closeness in a tree, or dendrogram (Fig. 8B). The

cytokines are grouped according to their distance from each other,

with the height of the links indicating that distance. The

dendrogram reveals that TNF-a and IL1 responses are indeed

close and that IL10 response is similar to them. IFN-c, IL2, and

IL4 form a second cluster that also includes IL8 and IL12, while

IL6 is separate from the rest.

These groupings become apparent in the modeled cytokine

response of Fig. 9. We see that TNF-a and IL1 concentrations are

quite close; IL10 has similar shape but lower amplitude (Group A).

IFN-c, IL2, IL4, IL8, and IL12 are similar to each other (Group B)

and have faster response than the first group. IL6 is in a class by

itself, with slow response (Group C). Pro-inflammatory cytokines

appear in Groups A and B, with IFN-c, IL2, and IL8 in the faster

group. IL4 is faster than the other anti-inflammatory cytokine

(IL10), while mixed-category cytokines (IL6 and IL12) appear in

the fastest and slowest groups.

Applications of the Dynamic Cytokine Model
The mathematical model of cytokine-storm response allows us

to investigate several additional topics that take advantage of the

clinical trial data. The model can be used to study the effects of

inhibiting individual cytokines, to predict the effects of different

TGN1412 infusion rates, and to reveal effects of empirical

uncertainty. These analyses are based on a linear model of a

specific event, in which median cytokine concentrations are driven

not only by TGN1412 and immune response but also by beneficial

treatment in intensive care. There was considerable variation in

the responses of the trial’s six subjects.

Inhibiting Selected Cytokines
The effects of inhibiting individual cytokines are revealed by

solving the dynamic equation (eq. 3b) with requisite rows of AC (eq.

18) set to zero. For example, zeroing the first two rows eliminates

Figure 11. Effects of inhibiting anti- and mixed-inflammatory cytokines.
doi:10.1371/journal.pone.0045027.g011
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all effects of TNF-a. Canceling individual effects provides an

assessment of the significance of the missing variable’s dynamic

coupling on the remaining eight cytokines. We examine missing

cytokines in two sets: pro-inflammatory and anti2/mixed-

inflammatory cytokines. Figure 10 shows that eliminating TNF-a
has a weak effect on IL12, but little effect on other cytokines. The

result suggests that TNF-a concentration is not a driving factor on

the dynamics of the cytokine network. This is not surprising, given

the variable role of TNF-a in immune cell biology [29]. Lack of

IFN-c induces more significant changes in IL10 and IL6.

Inhibiting IL8 causes IL10 and IL12 to reach higher peaks and

to decay more slowly. Losing IL2 produces an oscillatory response

in IL12.

Inhibiting anti-inflammatory cytokines (IL10 and IL4) produces

small effects on IL6 and IL12, with negligible effects on pro-

inflammatory cytokines (Fig. 11). Loss of IL6 affects several

cytokines, slowing the decay of TNF-a, IL10, and IL1, increasing

the decay of IFN-c, and producing oscillatory response in IL12.

This result suggests that sustained presence of IL6 during the

clinical trial has strong effect on the other cytokines. Eliminating

IL12 does not significantly impact the other cytokines, in part

because its response is an order of magnitude smaller than the

others’ response.

Effects of the Duration of TGN1412 Infusion
The TGN1412 stimulus can be modeled explicitly by adding a

forcing term to the dynamic equation,

_xx tð Þ~Ax tð ÞzBu tð Þ, x 0ð Þgiven ð22Þ

and subsuming the previous initial rate of change in that term. The

TGN1412 infusion rate is represented by u(t), and it affects

cytokine propagation through the (1861) matrix, B. The odd

elements of B are zero, and the even elements are derived from the

estimated initial rates (Table 1). Assuming that the clinical infusion

lasts for 4 min and occurs at 2 mg/min or 2880 mg/day,

B = (2880/8)x(0) = 360x(0). Maintaining a fixed dose of 8 mg,

the TGN1412 infusion rate is inversely proportional to the

infusion duration, tinfusion. We see the results of increasing the

infusion duration from 4 minutes to 3 days in Fig. 12, with

pharmacokinetic effects neglected. The 4-min–infusion simulation

is virtually identical to the results for instantaneous infusion. There

is little change in profile for durations lasting several hours (not

shown). For a one-day infusion duration at a rate of 0.0056 mg/

min, several cytokine peaks remain close to their recorded values.

Significant reduction in peak values requires infusion periods of 2–

3 days, for which infusion rates are 1/720-1/960 of the trial

values. However, stretching the infusion period prolongs the

Figure 12. Effects of TGN1412 infusion duration of four minutes to three days on cytokine response. Dosage = 8 mg.
doi:10.1371/journal.pone.0045027.g012

Cytokine Storm Dynamics

PLOS ONE | www.plosone.org 11 October 2012 | Volume 7 | Issue 10 | e45027



period when cytokine concentrations remain at unacceptably high

levels. This model suggests that reducing infusion rate and

increasing infusion period would have attenuated but not

prevented the TGN1412 cytokine storms.

Stochastic Effects on Cytokine Concentration
Observed cytokine concentrations are structured-but-random

variables that vary from one patient to the next. Within each

patient, cytokine levels are influenced by many signals other than

TGN1412. Serum concentrations do not expose localized

distributions within the body. Errors occur in sampling and

analysis, and measurements are ‘‘snapshots’’ rather than contin-

uous observations. Consequently, we can never know cytokine

concentrations with deterministic accuracy. At best, we can

estimate probability distributions of the concentrations and their

rates. Probability distributions, whether Gaussian or not, are

characterized to second order by their means and covariances

[30]. We examine the propagation of these variables through the

system equations derived in Sec. 3 and 4.

The mean vector,/, and covariance matrix, P(t), for an

ensemble of multi-dimensional random variables, x(t), are.

�xx tð Þ ¼D E x tð Þ½ �~
ð?

{?

x pr xð Þdx ð23Þ

P tð Þ ¼D E x tð Þ{�xx tð Þ½ � x tð Þ{�xx tð Þ½ �T
n o

~

ð?
{?

x{�xx½ � x{�xx½ �T pr xð Þdx ð24Þ

pr(x) is the probability density function of x and E[.] denotes the

expected value of the argument. Expected values can be

propagated through time by dynamic models, given initial

conditions and known inputs. Equation 22 is a deterministic

equation when A, x(0), B, and u(t) are known exactly. It generates

the expected (mean) value, �xx tð Þgiven , when the actual initial

condition is unknown but has the mean value, �xx 0ð Þgiven , and u(t)

is random. If u(t) = 0 and A is known, the stochastic differential

equation for the time-varying mean is

E _xx tð Þ½ �~E A�xx tð Þ½ �~AE x tð Þ½ �
_�xx�xx tð Þ~A�xx tð Þ, E x tð Þ½ �~�xx 0ð Þ given

ð25Þ

The (1861) cytokine mean vector is propagated over discrete

intervals of time, Dt, by.

�xx tkz1ð Þ~eADt�xx tkð Þ~W Dtð Þ�xx tkð Þ, �xx 0ð Þ given ð26Þ

Figure 13. Effects of uncertainty in initial conditions, random disturbances, and system parameter variations on cytokine standard
deviations. A) Standard deviation with initial concentration uncertainty. B) Standard deviation with initial rate uncertainty. C) Standard deviation
with process noise. D) Standard deviation with parameter variations.
doi:10.1371/journal.pone.0045027.g013
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Cytokine covariance is propagated as the expectation of the

outer product of eq. 26. With no uncertain forcing, the (18618)

covariance matrix estimate, P(tk), depends only on its initial

condition,

E x tkz1ð Þ{�xx tkz1ð Þ½ � x tkz1ð Þ{�xx tkz1ð Þ½ �T
n o

~W Dtð ÞE x tkð Þ{�xx tkð Þ½ � x tkð Þ{�xx tkð Þ½ �T
n o

WT Dtð Þ

P tkz1ð Þ~W Dtð ÞP tkð ÞWT Dtð Þ, P 0ð Þgiven

ð27Þ

The diagonal elements of P(tk) are the estimated variances of

x(tk), and their square roots are the corresponding standard

deviations, si tkð Þ, i~1,n. xi(tk) and si(tk) have the same units;

plotting [xi(tk) 6 si(tk)] vs. tk would produce an envelope containing

,68% of probable responses if the random variables were

Gaussian.

Choosing P(0) to be a diagonal matrix allows us to estimate how

initial uncertainties in the cytokines and their rates would

propagate during the cytokine storm (Fig. 13). For these examples,

we assume that the computation interval, Dt, is 0.01 days. With

unit initial variances in all concentrations (zero even elements and

ones in the odd elements of P(0)), the standard deviations decay as

seen in Fig. 13A. Unit initial rate variances (zero odd elements and

ones in the even elements of P(0)) produce the concentration

standard deviations shown in Fig. 13B. Equations 25 and 27 are

linear in x(tk) and P(tk); the standard deviation responses are similar

but not identical to the cytokine mean value responses (Fig. 1–4).

Initial uncertainties in IL 6 and IL10 are the slowest to decay,

while those in IL12 and IFN-c are the fastest.

To assess the effects of continued random forcing of the

cytokines by elements other than TGN1412 (e.g., unspecified

immunological response), we add an (18618) disturbance covari-

ance, W, to eq. 27 and set the initial error covariance matrix to

zero:

P tkz1ð Þ~W Dtð ÞP tkð ÞWT Dtð ÞzW, P 0ð Þ~0 ð28Þ

For illustration, W is taken to be a diagonal forcing matrix with

zero odd elements and ones in the even elements. The cytokine

standard deviations reach steady values after several days

(Fig. 13C), modeling quasi-homeostatic differences in cytokine

levels. The ratios of these levels are of interest because they are

only loosely related to TGN1412 stimulation. IL6 and IL10

concentrations show the largest continuing uncertainty, while IL12

and IFN-c are the lowest.

Small random uncertainties in stability matrix coefficients can

be assessed within the same format. The effects of unit variances in

the damping elements of AC, a2i,2i, i = 1,9, are shown in Fig. 13D.

Following [30], the disturbance covariance, W(tk), takes the form,

W tkð Þ~L tkð ÞWDLT tkð ÞDt ð29Þ

where L(tk) contains the elements of x(tk) in (0, tf) on its main

diagonal and WD is a diagonal matrix with ones in the even terms

and zeros in the odd terms. The assumed parameter uncertainties

Table 4. Cells That Secrete and are Regulated by the Measured Cytokines.

Group A Group B Group C

TNF-a IL1 IL10 IFN-c IL2 IL4 IL8 IL12 IL6

Innate System

Monocyte S S S R R R S, R

Macrophage S, R S, R S, R R R S, R S S

Dendritic Cell S, R S S, R S, R S R S S

Mast Cell S S, R S S S S S, R S

Neutrophil S, R S, R R S S, R S S, R

Eosinophil S S, R S S S, R S S

Basophil S S, R R S S

NK S, R S, R S, R S S, R S, R R

Adaptive System

B R S, R S, R S, R R S, R S, R S, R

Th1 S, R S, R S, R S, R S, R S, R S, R S, R

Th2 S, R S, R S, R S, R S, R S, R S, R S, R

CTL S, R S, R S, R S, R S, R S S, R S, R

Other

Fibroblast S, R S, R R S S

Epithelial Cell S S S R S, R S, R

Endothelial Cell S, R S, R R S, R S, R

Smooth Muscle S, R S, R R S S S, R

Adipose Tissue S, R S S, R

Cell types that secrete the cytokine are denoted by S; those that are regulated by the cytokine are indicated by R.
doi:10.1371/journal.pone.0045027.t004
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are typically 10–25% of the nominal parameter values; hence, the

response effects are more pronounced than those of the other three

uncertainty examples. Figure 13 shows that IL1, IL6, and TNF-a
have higher response to these parameter uncertainties, while IL4,

IL10, and IL12 have less.

Discussion

The TGN1412 clinical trial provides a narrow window through

which to assess causal and coordinated associations of cytokines

during a drug-induced ‘‘storm.’’ It allows us to assess the relative

responses of nine important signaling molecules and to infer their

inter-regulatory effects. Cytokine concentrations are expected to

respond (via cellular intermediaries) to the TGN1412 stimulus, to

the aggressive immunosuppressive treatment that the patients

received, and to coupling effects among cytokines. The cytokine

response induced by TGN1412 and by treatment cannot be

separated in the present data. However, coupling among cytokines

and sensitivity of the dynamics to removal of individual cytokines

can nonetheless be explored.

While cytokines are associated principally with the immune

system, they also are linked to epithelial and endothelial cells,

smooth muscle, and adipose tissue. Thus, it is not surprising that

clinical signs included headaches, muscle pain, nausea, diarrhea,

vasodilation, and hypotension. When recruited, immune cells

secrete cytokines, and cytokines regulate cellular activity; thus, it is

of interest to examine possible underlying cellular relationships

from the cytokine profiles. Additional laboratory results shown in

[11] can be compared to the principal components of cytokine

response. Cytokine Group B [IFN-c, IL2, IL4, IL8, and IL12] had

the fastest response to TGN1412 (Fig. 9), peaking about six hours

after TGN infusion. It was during this time that T cell, monocyte,

and platelet concentrations crashed. While cytokine production

depends on the concentration of cells that secrete them as well as

per-cell secretion rates, a sudden burst of cytokine production by

activated cells could lead to their apoptotic death and to reduced

cell populations. Group B cytokines returned to near basal levels

after two days, at which point these cells were recovering to

normal values.

The neutrophil profile is reminiscent of the slower IL6 (Group

C) response, peaking 1–2 days after infusion; modeled neutrophil

concentration remains above its upper reference range for more

than 10 days in response to the systemic damage caused by the

event. The growth and decay of serum creatinine, which is

elevated during renal dysfunction, occurred on a time scale that

parallels Group A [TNF-a, IL1, and IL10] response. C-reactive

protein concentration, a strong indicator of inflammation, peaks

2–3 days after infusion, on a slower time scale than any of the

cytokine groups. It returns to normal levels about 10 days after the

event.

Cells that secrete the subject cytokines and that are regulated by

them are listed in Table 4, with S denoting ‘‘secreted by’’ and R

indicating ‘‘regulated by’’. This table is based on a literature search

[3,4,5,6,21,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44]. Cells

of the innate and adaptive immune systems are involved in all

phases of the cytokine storm that was induced by TGN1412. IL8,

which is a pro-inflammatory member of the fast Group B, is not

identified as interacting with adaptive cells. It is associated with the

innate immune system (monocyte, macrophage, neutrophil,

dendritic and mast cells), as well as several tissue groups, and

[44] indicates that it is the only cytokine secreted by neutrophils.

Excepting their association with IL4, IL8, and IL12, innate

immune cells and ‘‘other’’ tissue types are underrepresented in

Group B, appearing primarily in the slower Groups A and C.

Further insights about cytokine dynamics could be gained by

additional empirical trials involving the drugs that were used to

treat the TGN1412 cytokine storm. These drugs – corticosteroids,

chlorpheniramine, acetaminophen, ondansetron, metaraminol,

methylprednisolene, and the anti-IL2 receptor antagonist antibody

– could be administered safely to healthy subjects at low dosages

for short periods of time. Cytokine concentrations would be

measured at regular intervals, and the analysis presented in this

paper could be applied to the data. Ancillary data, including

clinical metrics, could be collected in the process. Unlike

pharmacologic clinical trials focused on the safety or efficacy of

new drugs, the empirical trials would be directed at gaining new

knowledge about fundamental biology. Cross comparisons would

allow the cytokine coupling effects to be distinguished from the

direct effects of the drug stimuli, in a secure, well-controlled

environment. This approach could lead the way toward develop-

ing a strong theoretical basis not only for understanding cytokine

storms but for explaining many aspects of human physiology.

Conclusion
The cytokine storm event produced by the 2006 Clinical Trial

of TGN1412 can be simulated well by an eighteenth-order, linear,

time-invariant dynamic system. Each cytokine’s response is

assumed to be proportional to its current concentration and its

current rate of change; thus, its response is represented by a

second-order differential equation. Nine interacting cytokines are,

therefore, represented by an eighteenth-order system. Coefficients

of the model are found by minimizing an error cost function using

the downhill-simplex method. The system model provides

evidence for the regulation of cytokines by other cytokines,

identifying inductive and inhibitive relationships among the nine

cytokines as well as similarities in temporal histories.

The present analysis illustrates that reducing the dosage rate of

TGN1412 while increasing the duration of infusion (i.e., for fixed

total dosage), would have little effect on peak cytokine concentra-

tions until the infusion duration exceeded one day. This effect

would not be beneficial, as the period during which cytokines were

at unacceptably high levels also would increase. This suggests that

the drug, not the dose used during the trial, was the crux of the

problem. Analysis of the data’s principal components reveals that

cytokine response profiles fall into three groups: [TNF-a, IL1, and

IL10], [IFN-c, IL2, IL4, IL8, and IL12], and [IL6]. Association of

these cytokines with cellular secretion and regulation suggest that

the adaptive immune system had a dominant effect in the cytokine

storm (perhaps unsurprising, given the source of the stimulus). As

suggested by the literature review, the pro-inflammatory cytokine,

IL8, was most likely produced by innate system cells and non-

immune tissue.

This paper presents a sequence of general analytical procedures

that are useful for interpreting temporal biomedical data for a wide

variety of systems. Time constants, natural frequencies, damping

ratios, and mode shapes of response modes are estimated, response

to initial conditions other than those of the clinical trial are

predicted, and stochastic effects are assessed. It is envisioned that

extensions of this analysis to empirical biological trials using safe

pharmaceutical agents to stimulate dynamic response could

establish new paradigms in the mathematical theory of biology.
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