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The filter problemwithmissing value for genetic regulation networks (GRNs) is addressed, in which the noises exist in both the state
dynamics and measurement equations; furthermore, the correlation between process noise and measurement noise is also taken
into consideration. In order to deal with the filter problem, a class of discrete-time GRNs with missing value, noise correlation, and
time delays is established.Then a new observationmodel is proposed to decrease the adverse effect caused by the missing value and
to decouple the correlation between process noise and measurement noise in theory. Finally, a Kalman filtering is used to estimate
the states of GRNs. Meanwhile, a typical example is provided to verify the effectiveness of the proposed method, and it turns out to
be the case that the concentrations of mRNA and protein could be estimated accurately.

1. Introduction

According to the genetic central dogma, a specific protein can
be generated by a complex gene expression process (including
transcription process, translation process, and other interac-
tion process) among DNAs, RNAs, and gene products [1, 2].
To guide the gene expression correctly, each stage of the gene
expression should be regulated. The regulation functions for
each stage form genetic regulatory networks (GRNs). Cleary,
gene expression levels can be determined byGRNs. For this, a
lot of GRNsmodels have been built to track the concentration
of mRNA and protein, like Boolean model [3, 4], Bayesian
model [5–7], differential equation model [8–11], and state-
space model [12, 13]. However, due to the uncertainties of the
system, time-varying delays [14–16] and data missing [17, 18]
in real gene expression process, the measurements obtained
from the sensor are usually contaminated by noise and cannot
represent the true values well. Thus, a lot of filtering methods
are proposed to reveal the true values.

In studying the stability of genetic regulatory networks,
noise disturbances are one of the main factors that cannot
be ignored, and it is mainly composed of process noise
and measurement noise. In order to restrain these noise

disturbances, many filtering methods like 𝐻∞ filter [19]
and Kalman filter [20] are proposed to obtain stable GRNs.
Although process noise and measurement noise were usually
taken into consideration, the correlation between process
noise and measurement noise always is ignored in these
methods, so it does not have the generality from this point
of view. In this paper, in order to make the filtering method
more representative, the correlation between process noise
and measurement noise would be taken into consideration;
meanwhile, the correlation will also be decoupled in theory.

Generally, gene expression levels (the concentration of
mRNAand protein) can bemeasured by theDNAmicroarray
technology, but there are many reasons which can cause
value miss like dust or scratch on the slide, inappropriate
thresholds in preprocessing, insufficient resolution of the
microarray, experimental errors during the laboratory pro-
cesses, or image corruption [18]. So, the measured value
for gene expression levels would contain a certain degree
of distortion that would cause concentration value deviating
from real concentration. To overcome this drawbacks, the set-
values filtering for GRNs with missing value was proposed
in [17, 21]; although this method has dealt with the specific
well, it did not give a detailed explanation about missing
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Table 1: The parameter descriptions of system (1).

Parameter Description𝑀(𝑘) The concentrations of mRNA𝑁(𝑘) The concentrations of protein𝐴(𝑘) The degradation rates of mRNA𝐶(𝑘) The degradation rates of protein𝐵(𝑘) The coupling coefficient of the genetic networks𝐷(𝑘) The translation rate

𝑍 The bounded constant which denotes the
dimensionless transcriptional rate [21]

value in a detailed mathematical formula, so, in this paper,
the observation model with missing value will be given;
meanwhile, a Kalman filtering will also be designed to obtain
stable GRNs with missing value.

In this paper, an estimation problem for a class of discrete-
time GRNs model with time-varying delays, missing values,
and correlation of noise is considered.The rest of the paper is
organized as follows. In Section 2, a discrete model of genetic
regulation networks is introduced; we also built observation
model with missing value to give a detailed explanation
about it in mathematical formula; meanwhile, the correlation
between process noise and measurement noise is decoupled
in theory. In Section 3, a Kalman filtering is designed to
estimate the real concentrations of GRNs; meanwhile, the
stability of Kalman filtering is analyzed. In the Section 4, a
typical example is provided to illustrate the effectiveness of
the proposed method.

2. Problem Formulation

Clearly, a discrete-time model of genetic regulatory networks
(GRNs) can be described as follows [21–23]:

𝑀(𝑘 + 1) = 𝐴 (𝑘)𝑀 (𝑘) + 𝐵 (𝑘) 𝑓 (𝑁 (𝑘 − 𝜎)) + 𝑍,
𝑁 (𝑘 + 1) = 𝐶 (𝑘)𝑁 (𝑘) + 𝐷 (𝑘)𝑀 (𝑘 − 𝜎) , (1)

where the descriptions of system’s parameters are shown in
Table 1.

In addition, 𝑓(⋅) ∈ R is a monotonic function in Hill
form,which represents the feedback regulation of the protein.
Here, 𝑓𝑖(𝑥) = (𝑥/𝛽𝑖)𝐻𝑖/(1 + (𝑥/𝛽𝑖)𝐻𝑖), where 𝐻𝑖 is the Hill
coefficient and 𝛽𝑖 is positive constant.

Let 𝑀∗ and 𝑁∗ denote the equilibrium points of system
(1); define

𝑀(𝑘) ≜ 𝑀 (𝑘) − 𝑀∗,
𝑁 (𝑘) ≜ 𝑁 (𝑘) − 𝑁∗. (2)

Thus, system (1) can be rewritten as

𝑀(𝑘 + 1) = 𝐴 (𝑘)𝑀 (𝑘)
+ 𝐵 (𝑘) [𝑓 (𝑁 (𝑘 − 𝜎)) − 𝑓 (𝑁∗)] ,

𝑁 (𝑘 + 1) = 𝐶 (𝑘)𝑁 (𝑘) + 𝐷 (𝑘)𝑀 (𝑘 − 𝜎) .
(3)

Based on the first-order Taylor expansion, 𝑓(𝑁(𝑘 − 𝜎)) −𝑓(𝑁∗) = (𝜕𝑓/𝜕𝑁)|𝑁=𝑁∗𝑁(𝑘−𝜎), system (3) can be expressed
as

𝑀(𝑘 + 1) = 𝐴 (𝑘)𝑀 (𝑘) + 𝐵 (𝑘) 𝜕𝑓𝜕𝑁
𝑁=𝑁∗ 𝑁(𝑘 − 𝜎) ,

𝑁 (𝑘 + 1) = 𝐶 (𝑘)𝑁 (𝑘) + 𝐷 (𝑘)𝑀 (𝑘 − 𝜎) . (4)

In practice, the actual GRNs might be influenced by
the dynamic reaction of the networks, time delays, and
molecular noise. Based on system (4), discrete-time GRNs
with observation equation and noises are considered:

𝑚(𝑘 + 1) = 𝐴 (𝑘)𝑚 (𝑘) + 𝐵 (𝑘)𝑚 (𝑘 − 𝜎)
+ 𝐹 (𝑘)𝑤 (𝑘) ,

ℎ (𝑘) = 𝐸 (𝑘)𝑚 (𝑘) + V (𝑘) ,
(5)

where 𝑚(𝑘) ≜ [𝑀(𝑘)𝑇 𝑁(𝑘)𝑇]𝑇, ℎ(𝑘) ∈ R𝑛 is the sampled
output, V(𝑘) is the external noise, 𝑤(𝑘) is the process noise,𝐹(𝑘) is the noise driven matrix, and 𝐸(𝑘) is the observation
matrix. In addition,

𝐴 (𝑘) ≜ [𝐴 (𝑘) 00 𝐶 (𝑘)] ,
𝐵 (𝑘) ≜ [[

0 𝐵 (𝑘) 𝜕𝑓𝜕𝑁
𝑁=𝑁∗𝐷𝑘 0 ]] .

(6)

Then, in order to solve the time-delay of the system (5), a
new state vector is defined as follows:

𝑥 (𝑘) ≜ [𝑚𝑇 (𝑘) 𝑚𝑇 (𝑘 − 1) ⋅ ⋅ ⋅ 𝑚𝑇 (𝑘 − 𝜎)]𝑇 . (7)

Using the new state variable (7) gives

𝑥 (𝑘 + 1) = Φ (𝑘) 𝑥 (𝑘) + Γ (𝑘) 𝑤 (𝑘) ,
𝑧 (𝑘) = 𝐻 (𝑘) 𝑥 (𝑘) + V (𝑘) , (8)

where 𝑤(𝑘) and V(𝑘) are white, zero-mean, correlated noises;
furthermore,

Φ (𝑘) =
[[[[[[[[[[

𝐴 (𝑘) 0 ⋅ ⋅ ⋅ 0 𝐵 (𝑘)𝐼𝑛 0 ⋅ ⋅ ⋅ 0 00 𝐼𝑛 ⋅ ⋅ ⋅ 0 0... ... d
... ...0 0 ⋅ ⋅ ⋅ 𝐼𝑛 0

]]]]]]]]]](𝑛×𝜎)×(𝑛×𝜎)
,

𝑤 (𝑘) = [𝑤𝑇 (𝑘) 0 ⋅ ⋅ ⋅ 0]𝑇
(𝑛×𝜎)×1

,
V (𝑘) = V (𝑘) ,
Γ (𝑘) = diag (𝐹 (𝑘) 0 ⋅ ⋅ ⋅ 0)

(𝑛×𝜎)×(𝑛×𝜎)
.

(9)
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As for the measurements model with missing value, it
can be expressed as that measurement values lost at a certain
probability, so, the measurements model with missing value
can be described as follows [24]:

𝑦 (𝑘) = 𝜉 (𝑘) 𝑧 (𝑘) + (1 − 𝜉 (𝑘)) 𝑦 (𝑘 − 1) , (10)

where 𝑦(𝑘) is received by the estimator, the initial state 𝑥(0) is
independent of 𝜉(𝑘), 𝑤(𝑘), and V(𝑘) and satisfies the fact that
E[𝑥(0)] = 𝜇0, E[(𝑥(0) − 𝜇)(𝑥(0) − 𝜇)𝑇] = 𝑃0, and 𝜉(𝑘) ∈ R

obey the Bernoulli distribution, and it is uncorrelated with
other random variables. There are two basic properties about𝜉(𝑘):

Prob {𝜉 (𝑘) = 1} = E {𝜉 (𝑘)} fl 𝛼 (𝑘) ,
Prob {𝜉 (𝑘) = 0} = 1 − E {𝜉 (𝑘)} fl 1 − 𝛼 (𝑘) , (11)

where 0 ≤ 𝛼(𝑘) ≤ 1. If 𝛼(𝑘) = 0, it means the measurements
value is lost at 𝑘, and there is no missing value with 𝛼(𝑘) = 1.
More properties about the distribution of 𝜉(𝑘) are showed in
[24].

Then, substituting the observation equation of system
(8) into (10), thus, a discrete-time model of GRNs with the
observation equation with missing value is established as
follows:

𝑋(𝑘 + 1) = Φ̃ (𝑘)𝑋 (𝑡) + Γ̃ (𝑘)𝑊 (𝑘) ,
𝑦 (𝑘) = �̃� (𝑘)𝑋 (𝑘) + 𝜉 (𝑘) V (𝑘) , (12)

where

𝑋 (𝑘) = [ 𝑥 (𝑘)𝑦 (𝑘 − 1)] ,
𝑊 (𝑘) = [𝑤 (𝑡)

V (𝑡)] ,
Φ̃ (𝑘) = [ Φ (𝑘) 0𝜉 (𝑘)𝐻 (𝑘) (1 − 𝜉 (𝑘)) 𝐼𝑚] ,
Γ̃ (𝑘) = [Γ (𝑘) 00 𝜉 (𝑘) 𝐼𝑚] ,
�̃� (𝑘) = [𝜉 (𝑘)𝐻 (𝑘) (1 − 𝜉 (𝑘)) 𝐼𝑚] .

(13)

Let 𝑄𝑤(𝑘) denote the autocovariance matrix of 𝑤(𝑘), 𝑄V(𝑘)
denote the autocovariancematrix of V(𝑘), and 𝑆(𝑘) denote the
cross-covariance matrix of 𝑤(𝑘) and V(𝑘).

For (12), there is some statistical information:

𝑊(𝑘) ∼ N (0, 𝑄𝑊 (𝑘)) ,
V (𝑘) ∼ N (0, 𝑄V (𝑘)) , (14)

where

𝑄𝑊 (𝑘) = E[𝑤 (𝑘)𝑤𝑇 (𝑘) 𝑤 (𝑘) V𝑇 (𝑘)
V (𝑘) 𝑤𝑇 (𝑘) V (𝑘) 𝑤𝑇 (𝑘)]

= [𝑄𝑤 (𝑘) 𝑆1 (𝑘)𝑆𝑇1 (𝑘) 𝑄V (𝑘)] ,
𝑆 (𝑘) = E[𝑤 (𝑘)

V (𝑘)] V𝑇 (𝑘) = E[𝑤 (𝑘) V𝑇 (𝑘)
V (𝑘) V𝑇 (𝑘)]

= [𝑆𝑇1 (𝑘)𝑄V (𝑘)]

(15)

and where 𝑆1 = 𝑤(𝑘)V𝑇(𝑘).
To simplify the calculation, Φ̃(𝑘), Γ̃(𝑘), and �̃�(𝑘) can be

broken down into some simple separations as follows:

Φ̃ (𝑘) = [ Φ (𝑘) 0𝜉 (𝑘)𝐻 (𝑘) (1 − 𝜉 (𝑘)) 𝐼𝑚]
= [ Φ (𝑘) 0𝛼 (𝑘)𝐻 (𝑘) (1 − 𝛼 (𝑘)) 𝐼𝑚]

+ (𝜉 (𝑘) − 𝛼 (𝑘)) [ 0 0𝐻 (𝑡) −𝐼𝑚]
≜ Φ0 (𝑘) + (𝜉 (𝑘) − 𝛼 (𝑘))Φ1 (𝑘) ,

Γ̃ (𝑘) = [Γ (𝑘) 00 𝜉 (𝑘) 𝐼𝑚]
= [Γ (𝑘) 00 𝛼 (𝑘) 𝐼𝑚] + (𝜉 (𝑘) − 𝛼 (𝑘)) [0 00 𝐼𝑚]
≜ Γ0 (𝑘) + (𝜉 (𝑘) − 𝛼 (𝑘)) Γ1 (𝑘) ,

�̃� (𝑘) = [𝜉 (𝑘)𝐻 (𝑘) (1 − 𝜉 (𝑘)) 𝐼𝑚]
= [𝛼 (𝑘)𝐻 (𝑘) (1 − 𝛼 (𝑘)) 𝐼𝑚]

+ (𝜉 (𝑘) − 𝛼 (𝑘)) [𝐻 (𝑡) −𝐼𝑚]
≜ 𝐻0 (𝑘) + (𝜉 (𝑘) − 𝛼 (𝑘))𝐻1 (𝑘) .

(16)

Since the process noises of this system are correlated
with the observation noises, to decouple the relevance about𝑤(𝑘) and V(𝑘), according to system (12), 𝑦(𝑡) − �̃�(𝑘)𝑋(𝑘) −𝜉(𝑘)V(𝑘) = 0; obviously,

𝐽 (𝑘) (𝑦 (𝑡) − �̃� (𝑘)𝑋 (𝑘) − 𝜉 (𝑘) V (𝑘)) = 0 (17)
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and then adding (17) to the state equation of (12), we have

𝑋(𝑘 + 1) = Φ̃ (𝑘)𝑋 (𝑘) + Γ̃ (𝑘)𝑊 (𝑘)
+ 𝐽 (𝑘) (𝑦 (𝑡) − �̃� (𝑘)𝑋 (𝑘) − 𝜉 (𝑘) V (𝑘))

= (Φ̃ (𝑘) − 𝐽 (𝑘) �̃� (𝑘))𝑋 (𝑘) + 𝐽 (𝑘) 𝑦 (𝑘)
+ Γ̃ (𝑘)𝑊 (𝑘) − 𝐽 (𝑘) 𝜉 (𝑘) V (𝑘) ,

(18)

where 𝐽(𝑘) ∈ 𝑅𝑛×𝑚. Clearly, the last two terms in (18) are the
process noises

Φ∗ (𝑘) = Φ̃ (𝑘) − 𝐽 (𝑘) �̃� (𝑘) ,
𝑊∗ (𝑘) = Γ̃ (𝑘)𝑊 (𝑘) − 𝐽 (𝑘) 𝜉 (𝑘) V (𝑘) . (19)

Since Kalman filtering requires that the process noise and
the measurement noise must be white uncorrelated Gaussian
noise, then consider the correlation between process noise
and measurement noise firstly:

E [𝑊∗ (𝑘) V𝑇 (𝑘)] = Γ0 (𝑘) 𝑆1 (𝑘) − 𝛼 (𝑘) 𝐽 (𝑘)𝑄V (𝑘) . (20)

Let E[𝑊∗(𝑘)V𝑇(𝑘)] = 0, and then 𝐽(𝑘) is
𝐽 (𝑘) = 𝛼−1 (𝑘) Γ0 (𝑘) 𝑆1 (𝑘)𝑄−1V . (21)

Clearly, if 𝐽(𝑘) is chosen as (21),𝑊∗(𝑘) and V(𝑘) are uncorre-
lated.

Secondly, we discuss𝑊∗(𝑘),
E [𝑊∗ (𝑘)] = Γ̃ (𝑘)E [𝑊 (𝑘)] − 𝛼 (𝑘) 𝐽 (𝑘)E [V (𝑘)]

= 0,
E [𝑊∗ (𝑘)𝑊∗𝑇 (𝑡)] = cov [𝑊∗ (𝑘) ,𝑊∗𝑇 (𝑡)]

= var [𝑊∗ (𝑘)] 𝛿𝑘𝑡,
var [𝑊∗ (𝑘)] = 𝑄∗

= Γ0𝑄𝑤Γ𝑇0 − 𝛼 (𝑘) Γ0𝑆 (𝑘) 𝐽𝑇 (𝑘)
+ 𝛼 (𝑘) (1 − 𝛼 (𝑘)) Γ1 (𝑘)𝑄𝑤Γ𝑇1 (𝑘)
− 𝛼 (𝑘) (1 − 𝛼 (𝑘)) Γ1 (𝑘) 𝑆 (𝑘) 𝐽𝑇 (𝑘)
− 𝛼 (𝑘) 𝐽 (𝑘) 𝑆𝑇 (𝑘) Γ𝑇0 (𝑘)
− 𝛼 (𝑘) (1 − 𝛼 (𝑘)) 𝐽𝑇 (𝑘) 𝑆𝑇 (𝑘) Γ𝑇1 (𝑘)
+ 𝛼 (𝑘) 𝐽 (𝑘)𝑄V𝐽𝑇 (𝑘)

(22)

so if 𝐽(𝑘) = 𝛼−1(𝑘)Γ0(𝑘)𝑆1(𝑘)𝑄−1V , 𝑊∗(𝑘) is a white, zero-
mean noise.

3. Main Results

In this section, the Kalman filtering is designed for obtaining
the minimum variance estimation. Firstly, the expression of

the filtering error𝑃 is calculated, and then the Kalman gain𝐾
can be obtained by minimizing the covariance matrix of the
filtering error𝑃; at last, the recursion of the filtering error𝑃 is
calculated; thus, the design of Kalman filtering is completed.

According to system (12) and (18), the state prediction
equation can be calculated as

𝑋 (𝑘 + 1 | 𝑘) = Φ̃ (𝑘)𝑋 (𝑘 | 𝑘)
+ 𝐽 (𝑘) [𝑦 (𝑘) − �̃� (𝑘)𝑋 (𝑘 | 𝑘)] (23)

and the measurement update equation is

𝑦 (𝑘 + 1) = �̃� (𝑘 + 1)𝑋 (𝑘 + 1 | 𝑘) . (24)

So, the optimal state estimation is

𝑋(𝑘 + 1 | 𝑘 + 1)
= 𝑋 (𝑘 + 1 | 𝑘)

+ 𝐾 (𝑘 + 1) [𝑦 (𝑘 + 1) − 𝑦 (𝑘 + 1)] ,
(25)

where 𝐾(𝑘 + 1) denotes the Kalman gain.
Then, the posterior estimation error can be computed as

follows:

𝑒 (𝑘 + 1 | 𝑘 + 1) = 𝑋 (𝑘 + 1) − 𝑋 (𝑘 + 1 | 𝑘 + 1)
= 𝑋 (𝑘 + 1) − 𝑋 (𝑘 + 1 | 𝑘) − 𝐾 (𝑘 + 1)
⋅ [�̃� (𝑘 + 1)𝑋 (𝑘 + 1) + 𝜉 (𝑘 + 1) V (𝑘 + 1)
− �̃� (𝑘 + 1)𝑋 (𝑘 + 1 | 𝑘)] = [𝐼
− 𝐾 (𝑘 + 1)𝐻0 (𝑘 + 1)] 𝑒 (𝑘 + 1 | 𝑘) − (𝜉 (𝑘 + 1)
− 𝛼 (𝑘 + 1))𝐾 (𝑘 + 1)𝐻1 (𝑘 + 1) 𝑒 (𝑘 + 1 | 𝑘) − 𝜉 (𝑘
+ 1)𝐾 (𝑘 + 1) V (𝑘 + 1)

(26)

and the covariance matrix of estimation error can be
described as

𝑃 (𝑘 + 1 | 𝑘 + 1)
= E [𝑒 (𝑘 + 1 | 𝑘 + 1) 𝑒𝑇 (𝑘 + 1 | 𝑘 + 1)] . (27)

Substituting (26) into (27) gives

𝑃 (𝑘 + 1 | 𝑘 + 1)
= E [𝑒 (𝑘 + 1 | 𝑘 + 1) 𝑒𝑇 (𝑘 + 1 | 𝑘 + 1)]
= [𝐼 − 𝐾 (𝑘 + 1)𝐻0 (𝑘 + 1)] 𝑃 (𝑘 + 1 | 𝑘)
⋅ [𝐼 − 𝐾 (𝑘 + 1)𝐻0 (𝑘 + 1)]𝑇 + 𝛼 (𝑘 + 1)
⋅ (1 − 𝛼 (𝑘 + 1))𝐾 (𝑘 + 1)𝐻1 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)
⋅ 𝐻𝑇1 (𝑘 + 1) + 𝛼 (𝑘 + 1)𝐾 (𝑘 + 1)𝑄V𝐾𝑇 (𝑘 + 1)



Computational and Mathematical Methods in Medicine 5

= 𝑃 (𝑘 + 1 | 𝑘) − 𝐾 (𝑘 + 1)𝐻0 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)
− 𝑃 (𝑘 + 1 | 𝑘) [𝐾 (𝑘 + 1)𝐻0 (𝑘 + 1)]𝑇 + 𝐾 (𝑘 + 1)
⋅ [𝐻0 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇0 (𝑘 + 1)] + 𝛼 (𝑘)
⋅ (1 − 𝛼 (𝑘))𝐻1 (𝑘 + 1) 𝑞 (𝑘 + 1)𝐻𝑇1 (𝑘 + 1)
+ 𝛼 (𝑘 + 1)𝑄V (𝑘 + 1)𝐾𝑇 (𝑘 + 1) .

(28)

Then, 𝐿 is designed to minimize 𝑃(𝑘 + 1/𝑘 + 1), and
𝐿 = 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇0 (𝑘 + 1)

⋅ [𝐻0 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇0 (𝑘 + 1)
+ 𝛼 (𝑘) (1 − 𝛼 (𝑘))𝐻1 (𝑘 + 1) 𝑞 (𝑘 + 1)𝐻𝑇1 (𝑘 + 1)
+ 𝛼 (𝑘 + 1)𝑄V (𝑘 + 1)]−1𝐻0 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘) ;

(29)

thus, 𝑃(𝑘 + 1/𝑘 + 1) can be rewritten as

𝑃 (𝑘 + 1 | 𝑘 + 1) = 𝑃 (𝑘 + 1 | 𝑘 + 1) − 𝐿 + 𝐿 = 𝑃 (𝑘
+ 1 | 𝑘) − 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇0 (𝑘 + 1) [𝐻0 (𝑘 + 1)
⋅ 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇0 (𝑘 + 1) + 𝛼 (𝑘) (1 − 𝛼 (𝑘))
⋅ 𝐻1 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇1 (𝑘 + 1) + 𝛼 (𝑘 + 1)
⋅ 𝑄V (𝑘 + 1)]−1𝐻0 (𝑘 + 1) 𝑃𝑇 (𝑘 + 1 | 𝑘) + (𝐴 − 𝐶)
⋅ 𝐵−1 (𝐴 − 𝐶)𝑇 ,

(30)

where

𝐴 = 𝑃 (𝑘 + 1)𝐻𝑇0 (𝑘) ,
𝐵 = 𝐻0 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇0 (𝑘 + 1) + 𝛼 (𝑘) (1

− 𝛼 (𝑘))𝐻1 (𝑘 + 1) 𝑞 (𝑘 + 1)𝐻𝑇1 (𝑘 + 1) + 𝛼 (𝑘 + 1)
⋅ 𝑄V (𝑘 + 1) ,

𝐶 = 𝐾 (𝑘 + 1) [𝐻0 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇0 (𝑘 + 1)
+ 𝛼 (𝑘) (1 − 𝛼 (𝑘))𝐻1 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)
⋅ 𝐻𝑇1 (𝑘 + 1) + 𝛼 (𝑘 + 1)𝑄V (𝑘 + 1)] .

(31)

Let 𝐴 = 𝐶; the covariance matrix of estimation error is
minimized. Thus

𝑃 (𝑘 + 1)𝐻𝑇0 (𝑘) = 𝐾 (𝑘 + 1) [𝐻0 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)
⋅ 𝐻𝑇0 (𝑘 + 1) + 𝛼 (𝑘) (1 − 𝛼 (𝑘))𝐻1 (𝑘 + 1)
⋅ 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇1 (𝑘 + 1) + 𝛼 (𝑘 + 1)𝑄V (𝑘 + 1)] .

(32)

Furthermore,

𝐾 (𝑘 + 1) = 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇0 (𝑘 + 1) [𝐻0 (𝑘 + 1)
⋅ 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇0 (𝑘 + 1) + 𝛼 (𝑘) (1 − 𝛼 (𝑘))
⋅ 𝐻1 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇1 (𝑘 + 1) + 𝛼 (𝑘 + 1)
⋅ 𝑄V (𝑘 + 1)]−1 ,

𝑃 (𝑘 + 1 | 𝑘 + 1) = 𝑃 (𝑘 + 1 | 𝑘) − 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇0 (𝑘
+ 1) [𝐻0 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇0 (𝑘 + 1) + 𝛼 (𝑘)
⋅ (1 − 𝛼 (𝑘))𝐻1 (𝑘 + 1) 𝑃 (𝑘 + 1 | 𝑘)𝐻𝑇1 (𝑘 + 1)
+ 𝛼 (𝑘 + 1)𝑄V (𝑘 + 1)]−1𝐻0 (𝑘 + 1) 𝑃𝑇 (𝑘 + 1 | 𝑘) .

(33)

According to (18) and (25), the estimation error �̃�(𝑘+1/𝑘)
can be obtained

𝑋(𝑘 + 1 | 𝑘) = 𝑋 (𝑘 + 1) − 𝑋 (𝑘 + 1 | 𝑘)
= Φ̃ (𝑘)𝑋 (𝑘) − 𝐽 (𝑘) �̃� (𝑘)𝑋 (𝑘) + 𝐽 (𝑘) 𝑦 (𝑘)

+ 𝑊∗ − Φ̃ (𝑘)𝑋 (𝑘 | 𝑘)
= [Φ0 (𝑘) − 𝐽 (𝑘)𝐻0 (𝑘)]𝑋 (𝑘)

+ (𝜉 (𝑘) − 𝛼 (𝑘)) [Φ1 (𝑘) − 𝐽 (𝑘)𝐻1 (𝑘)]𝑋 (𝑘)
+ 𝑊∗;

(34)

thus

𝑃 (𝑘 + 1 | 𝑘) = E [𝑋 (𝑘 + 1 | 𝑘)𝑋𝑇 (𝑘 + 1 | 𝑘)]
= [Φ0 (𝑘) − 𝐽 (𝑘)𝐻0 (𝑘)] 𝑃 (𝑘 | 𝑘)
⋅ [Φ0 (𝑘) − 𝐽 (𝑘)𝐻0 (𝑘)]𝑇 + (𝜉 (𝑘) − 𝛼 (𝑘))
⋅ [Φ1 (𝑘) − 𝐽 (𝑘)𝐻1 (𝑘)] 𝑃 (𝑘 | 𝑘)
⋅ [Φ1 (𝑘) − 𝐽 (𝑘)𝐻1 (𝑘)]𝑇 + 𝑄∗.

(35)

The linear optimal filtering, (23), (25), (33), and (35),
is uniformly asymptotically stable when the linear discrete-
time-varying stochastic system (12) is uniformly controllable
and observable [24].

4. Numerical Example

In this section, an example will be provided to show the
effectiveness of the proposed method. In Escherichia coli
[25], the dynamics of the networks have been experimentally
studied, and the model of 3-gene repressilator is given as
follows:

�̇�𝑖 = −𝑀𝑖 + 𝛼𝑖1 + 𝑁𝐻𝑗 ,
�̇�𝑖 = −𝛽𝑖𝑁𝑖 + 𝛾𝑖𝑀𝑖,

(36)
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where𝑀𝑖 denotes the concentrations of three mRNA and𝑁𝑖
denotes the concentrations of three repressor-proteins, 𝛼𝑖 is
the feedback regulation coefficient, 𝛽𝑖 denotes the ratio of the
protein decay rate to the mRNA, and𝐻 is the Hill coefficient,𝑖 = lacl, tetR, cl; 𝑗 = cl, lacl, tetR.

The discrete-time GRNs model based on the method in
[26] can be obtained as

𝑀𝑖 (𝑘 + 1) = 𝑒−ℎ𝑀𝑖 (𝑘) + (1 − 𝑒−ℎ) 𝛼𝑖1 + 𝑁𝐻𝑗 (𝑘 − 𝜎) ,
𝑁𝑖 (𝑘 + 1) = 𝑒−𝛽𝑖ℎ𝑁𝑖 (𝑘) + (1 − 𝑒−𝛾𝑖ℎ)𝑀𝑖 (𝑘 − 𝜎) . (37)

Let ℎ = 1, theHill coefficient𝐻 = 2, the time-delay 𝜎 = 1,𝑓(𝑥) = 𝑥2/(1 + 𝑥2), and the other parameters are taken as
follows:

𝛼1 = 1.2656,
𝛼2 = 0.6328,
𝛼3 = 1.4238,
𝛽1 = 𝛽2 = 𝛽3 = 0.6703,
𝛾1 = 0.6,
𝛾2 = 0.4,
𝛾3 = 0.5,
𝐹 = diag (0.2, 0.3, 0.2, 0.3, 0.2, 0.4) .

(38)

So, the parameters of system (4) can be obtained:

𝐴 = [[[
0.3679 0 00 0.3679 00 0 0.3679

]]]
,

𝐵 = (1 − 𝑒−ℎ)[[[
0 0 −𝛼1−𝛼2 0 00 −𝛼3 0

]]]
,

𝐶 = [[[
𝛽1 0 00 𝛽2 00 0 𝛽3

]]]
,

𝐷 = [[[
𝛾1 0 00 𝛾2 00 0 𝛾3

]]]
.

(39)

According to system (3), we can get that the mRNA and
proteins will adjust each other; they will also degrade along
with the time, so the GRNs would tend to be equilibrium if
there are no noise disturbances, and the unique equilibrium
can be checked easily when 𝑤(𝑡) = 0; thus, the system’s states𝑀(𝑘) and𝑁(𝑘) with 𝑤(𝑡) = 0 are shown in Figures 1 and 2.
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Figure 1: The concentration of mRNA with 𝑤(𝑡) = 0.
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Figure 2: The concentration of protein with 𝑤(𝑡) = 0.

From Figures 1 and 2, we can get that the states of
the GRNs stay at a point stably, so the equilibrium can be
calculated; that is,

𝑀∗ = (0.6695, 0.3444, 0.8833) ,
𝑁∗ = (0.4016, 0.1378, 0.4416) . (40)

Now, check the states of system (37) under the excitation
of external disturbances; let the initial states be

𝑀(−1) = [0.8695, 0.4444, 0.6833]𝑇 ,
𝑀 (0) = [0.7695, 0.3444, 0.7833]𝑇 ,
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Figure 3:The trajectory of concentration of𝑀lacl (missing rate 10%).
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Figure 4: The trajectory of concentration of 𝑀tetR (missing rate
10%).

𝑁(−1) = [0.5016, 0.0378, 0.7416]𝑇 ,
𝑁 (0) = [0.4016, 0.2378, 0.6416]𝑇 ,

(41)

and 𝑄𝑤 = 12, 𝑄V = 36, and E[𝑤𝑖V𝑇𝑗 ] = 1.2 (where𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛); the estimate values of the
concentration of mRNA and proteins are shown in Figures
3–8.

According to Figures 3–8, the blue lines show the estimate
values of mRNAs and protein, and the green lines illustrate
the equilibrium of GRNs; we can get that the concentration of
mRNAs and protein tends to the equilibrium well under the
excitation of external disturbances, so, the Kalman filtering

1

The estimate of M＝Ｆ

The equilibrium state of

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.05

1.1

5 10 15 20 25 300
Time t

M＝Ｆ(0.8833)

M
＝
Ｆ

Th
e c

on
ce

nt
ra

tio
n 

of

Figure 5:The trajectory of concentration of𝑀cl (missing rate 10%).
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Figure 6: The trajectory of concentration of𝑁cl (missing rate 10%).

designed in this paper is effective for the GRNs with missing
value and noise correlation.

In order to test out the influence of the missing rate, the
experiments with four missing rates of 10%, 20%, 30%, and
50% are carried out. In addition, the normalized root mean
squared error (NRMSE) [27] is used to indicate the influence
level of the missing rate, and the NRMSE is defined as

NRMSE = √mean (𝑥𝑘 − 𝑥𝑘)2
mean𝑥2

𝑘

. (42)

So, the NRMSE are shown in Table 2.
Comparedwith theNRMSE obtained by set-membership

filtering given in [17], in spite of the missing rate increases
from 10% to 30%, the NRMSE listed in Table 2 increases
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Figure 7:The trajectory of concentration of𝑁lacl (missing rate 10%).
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Figure 8:The trajectory of concentration of𝑁tetR (missing rate 10%).

slightly; however, the NRMSE increases greatly with the
increasing of the missing rate in [17]. Moreover, at the low
level of missing rate, the set-membership filtering has a better
performance, but at the high level of missing rate, themethod
proposed in this paper is more appropriate than the set-
membership filtering, and the cut-off point roughly equals
14.66%. Thus, it shows that the proposed method is more
effective for the filtering problem for GRNs.

5. Conclusion

In this paper, a discrete model of genetic regulation networks
is introduced; we also built an observation model with
missing value to give a detailed explanation about it in
mathematical formula; meanwhile, the correlation between

Table 2: The average values of NRMSE.

Method Method
Kalman Set-membership [17]

10% 0.5389 0.4125
20% 0.5785 0.7074
30% 0.5800 —
50% 0.6824 0.8792

process noise and measurement noise is decoupled in theory.
Finally, a Kalman filtering is designed to obtain stable GRNs;
meanwhile, the simulation result shows that the method
proposed in this paper is effective for the GRNs with missing
value, and compared with the set-membership filtering, the
Kalman filtering has a better performance when the missing
rate stays at a high level.
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