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Abstract
Background: Cell-cycle-related proteins, such as cyclins or cyclin-dependent kinases, may have
functions beyond that of cell cycle regulation. The expression and translocation of cyclinD1-CDK4
in post-mitotic neurons indicate that they may have supplementary functions in differentiated
neurons that might be associated with neuronal plasticity.

Results: In the present study, our findings showed that the expression of CDK4 was localized
mostly in nuclei and cytoplasm of pyramidal cells of CA1 at postnatal day 10 (P10); whereas at P28
staining of CDK4 could be detected predominantly in the cytoplasm but not nuclei. Basal synaptic
transmission was normal in the presence of CDK4 inhibitor. Short-term synaptic plasticity (STP)
was impaired in CDK4 inhibitor pre-treated slices both from neonatal (P8-15) and adolescent (P21-
35) animals; however there was no significant change in paired-pulse facilitation (PPF) in slices pre-
incubated with the CDK4 inhibitor from adolescent animals. By the treatment of CDK4 inhibitor,
the induction or the maintenance of Long-term potentiation (LTP) in response to a strong tetanus
and NMDA receptor-dependent long-term depression (LTD) were normal in hippocampus.
However, long-term depression (LTD) induced either by group I metabotropic glutamate
receptors (mGluRs) agonist or by paired-pulse low-frequency stimulation (PP-LFS) was impaired in
CDK4 inhibitor pretreated slices both from neonatal and adolescent animals. But the effects of the
CDK4 inhibitor at slices from adolescent animals were not as robust as at slices from neonatal
animals.

Conclusion: Our results indicated that the activation of cyclinD1-CDK4 is required for short-
term synaptic plasticity and mGluR-dependent LTD, and suggested that this cyclin-dependent
kinase may have different roles during the postnatal development in mice hippocampus area CA1.
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Background
Cyclin D1, a member of the G1 cyclins, plays an impor-
tant role in the G1 phase progression of the cell cycle in
proliferating cells via activation of cyclin-dependent
kinase 2 (CDK2), CDK4, or CDK6. The cyclinD/CDK4/6
complexes induce the phosphorylation of retinoblastoma
(Rb) protein and the release of E2F, which trigger G1 cell
cycle progression. Normally, Rb binds to the members of
the E2F family of transcription factors [1]. The expression
and location of cyclin D1 and CDK4 in G1 cell cycle acts
as the primary sensors of positive and negative environ-
mental signals [2-4]. Studies report that the expression
and translocation of cyclinD1-CDK4 are regulated by sev-
eral signaling molecules, including PI3K/AKT/mTOR/
p70S6K1 signaling [5-8], JNK [9], Rho [10] and NF-kap-
paB [11]. All of them are present in the hippocampus,
where they participate in the regulation of synaptic func-
tionality and gene transcription [12-14]. However, the
expression of cell cycle markers in the postnatal or adult
brain is still a matter of controversial debate. Ectopically
expressed cyclinD1 sequestered in the cytoplasm of post-
mitotic neurons, whereas it efficiently entered the nucleus
of proliferating progenitor cells [15-17]. Even in the adult
mouse hippocampus, cyclinD1-CDK4 were found in ter-
minally differentiated pyramidal and granule neurons,
and also were found in dendrites and mossy fibers[18].

Paradoxically, increasing evidence suggests that, cell cycle
arrest and terminal differentiation of neurons may not be
necessarily incompatible with CDK activity but raise the
possibility that CDKs and cyclins have physiological
impact general effects, such as metabolic regulation [19],
basal transcription [20,21], apoptosis [22,23] or mecha-
nisms of neuronal and synaptic plasticity [24]. A further
function might be implicated in regulating microtubules
stability [25] thereby influencing morphoplastic proc-
esses. The present results suggest that the expression of cell
cycle-related markers may have supplementary functions
in differentiated neurons that might be associated with
neuronal plasticity. In this study, we initiated to investi-
gate the potential functions of cyclinD1-CDK4 in neuro-
nal plasticity during the postnatal development in mice
hippocampus area CA1.

Results
Neuronal expression and sub-cellular localization of 
cyclinD1-CDK4 during the postnatal development in 
hippocampus area CA1
At P10, hippocampal genesis is almost completed and the
typical lamination is finished. Perikarya of the stratum
pyramidal display the characteristic pyramidal shape [18].
The immunofluorescent detection of CDK4 demonstrated
a neuronal expression at P10 (Fig. 1A–F). Expression of
CDK4 was localized both in nuclei and cytoplasm of
pyramidal cells of CA1 regions. In addition, mossy fibers

were immuno-reactive as well (data not shown). At P28.
The sub-cellular localization of CDK4 was different. Stain-
ing of CDK4 could be detected predominantly in the cyto-
plasm but only sporadically in neuronal nuclei of
pyramidal neurons of the CA subfields (Fig. 1G–L). Fur-
ther quantitative immunoblotting analysis confirmed the
similar expression levels of CDK4 in P10 and P28 mice
hippocampus (Fig. 1M).

Basal synaptic transmission was normal in the presence of 
CDK4 inhibitor
Having localized CDK4 in the hippocampus, we next
determined the role of cyclinD1-CDK4 in synaptic plastic-
ity. We first examined whether the complex were required
for normal basal synaptic transmission. We compared
extracellular recordings of the SC-CA1 synapses in hippoc-
ampal slices (n = 12 slices from 4 animals) to slices pre-
treated with CDK4 inhibitor (n = 16 slices from 5

Expression and localization of cyclinD1-CDK4 during the postnatal development in hippocampus area CA1Figure 1
Expression and localization of cyclinD1-CDK4 during 
the postnatal development in hippocampus area 
CA1. Immunofluorescent microscopic localization of CDK4 
in hippocampus area CA1 at PND10 (A-F) and at PND28 (G-
L). Blue indicates nuclear DAPI counterstain, and red indi-
cates CDK4. C, F, I, L are the merged image. Scale bar: in A 
(applies to A-C and G-I), 121 µm; in D (applies to D-F and J-L), 
48 µm. Detection of CDK4 on Western blots (M). PND 
(postnatal day)
Page 2 of 9
(page number not for citation purposes)



BMC Developmental Biology 2007, 7:57 http://www.biomedcentral.com/1471-213X/7/57
animals). There was not significantly different both at
neonatal and adolescent animals (P = 0.897 and 0.826
respectively, analysis of variance (ANOVA); Fig. 2A, B).
Furthermore, the fEPSP slope corre-sponding to a given
presynaptic fiber volley was also unaffected by CDK4
inhibitor application throughout development (P = 0.883
and 0.437, respectively, analysis of variance (ANOVA);
Fig. 2C, D). Bath application of 5 µM CDK4 inhibitor to
slices from P8-15 and P21-35 animals did not affect the
fEPSP slope, even after 1 h in the perfusion buffer (n = 16
slices from 5mice; Fig. 2E, F). Previous studies have shown

that these concentrations are adequate to inhibit CDK4
kinase activity in cells [26].

CyclinD1-CDK4 mediated short-term synaptic plasticity
We next examined whether the complex were involved in
paired-pulse facilitation, a form of short-term plasticity.
As shown in Fig. 3, at six different inter-stimulus intervals
ranging from 30 to 300 ms, the mean paired-pulse facili-
tation ratio (second fEPSP slope/first fEPSP slope) was
reduced in CDK4 inhibitor pre-incubated slices (n = 11
slices from 3 mice) as compared with control (n = 10
slices from 3 mice), at time intervals from 30 to 200 ms (p
< 0.01, Fig. 3A), at the neonatal stage (P8-15), surprisingly
there was no significant decrease in PPF when applied to
slices from adolescent animals (P21-35) (n = 12 slices
from 4 mice respectively; P = 0.217, Fig. 3B). These results
demonstrated that cyclinD1-CDK4 may have the effect of
modulating pre-synaptic function at the neonatal stage
but not at the adolescent stage. This difference may be the
consequence of the expression and translocation of
cyclinD1-CDK4 in neuronal cells in area CA1 at different
development stage [18].

As a second measure of short-term synaptic plasticity, we
next compared the time evolution of the fEPSP slopes dur-
ing and following a brief tetanic stimulation. The Schaffer
collaterals were stimulated by a short 40 Hz train (8 stim-
uli) followed by a test stimulus delivered 300 ms after the
end of the burst. We found that in the CDK4 inhibitor pre-
treated slices facilitation was greatly reduced during the
burst (stimuli 2, 3, 4, 5, 6, 7)(n = 12, 11 slices from 4 mice
for P8-15, P21-35; P < 0.01 and 0.005, respectively; Fig.
3C and 3D) compared with control slices (n = 11, 10 slices
from 3mice for P8-15, P21-35, respectively) and while the
300 ms after the burst was not significantly different
(ANOVA, P = 0. 86 and 0.37 compared with control,
respectively). These observations suggested that cyclinD1-
CDK4 may regulate the availability of vesicles from the
readily releasable pool during repetitive stimulation dur-
ing the postnatal development.

CyclinD1-CDK4 had no effect on the induction or the 
maintenance of Long-term potentiation in the 
hippocampal CA1 region
To examine the role of cylinD1-CDK4 in long-term synap-
tic plasticity, we tested LTP at the SC-CA1 synapses. LTP
was induced by HFS (100-Hz, 1s) to the Schaffer collateral
inputs. The amount of LTP was quantified as the average
fEPSP slope 45 min after HFS relative to the baseline
mean slope. Inhibition of CDK4 had no significant effect
on the induction or maintenance of LTP after 45 min both
for P8-15 (control 163 ± 3%, 13 slices from 5 mice; con-
trol + CDK4I 164 ± 6%, 11 slices from 5 mice; Fig. 4A) and
P21-35 (control 162 ± 8%, 13 slices from 6mice; control
+ CDK4I 167 ± 6%, 11 slices from 5mice; Fig. 4B). We did

Basal synaptic transmission is normal in the presence of CDK4 inhibitorFigure 2
Basal synaptic transmission is normal in the presence 
of CDK4 inhibitor. (A, B): Incubation in 5 µM CDK4 inhib-
itor(CDK4I) (n = 16 slices) for 30 min before recording had 
no effect on stimulus-response curves of fEPSP slope (mV/
ms) vs. stimulus (mA) at the SC-CA1 synapses in hippocam-
pal slices both from P8-15 and P21-35 mice(control, n= 
12slices). Data are presented as mean ± standard error (SE). 
(C, D): plots of fEPSP slope (mV/ms) vs. presynaptic fiber vol-
ley amplitude (mV) from a random sample of slices from P8-
15 and P21-35 animals. No differences were apparent 
between control (n = 20 slices) and CDK4I pretreated slices 
(n = 20 slices). (E, F)slices (n = 16 slices) were stimulated at a 
stimulus intensity that produced 50% of the maximal fEPSP 
for 15 min.CDK4I was then introduced into the perfusion 
buffer [artificial cerebrospinal fluid (ACSF)] at a concentra-
tion of 5 µM and responses were recorded for 1 h. No 
change in the fEPSP was observed both from P8-15 and P21-
35 mice. Error bars correspond to SE.
Page 3 of 9
(page number not for citation purposes)



BMC Developmental Biology 2007, 7:57 http://www.biomedcentral.com/1471-213X/7/57
not examine whether the expression of this form of LTP or
other forms of LTP, such as those induced by theta stimu-
lation or non-NMDA receptor-dependent LTP in the CA3
region, are equally unaffected by CDK4 inhibitor.

CyclinD1-CDK4 were required for mGluR-dependent LTD 
in the hippocampal CA1 region
A metabotropic glutamate receptor-dependent form of
LTD (mGluR-LTD) is expressed more strongly in neonatal
synapses and can be preferentially induced by DHPG, a
selective group I mGluR agonist. Therefore, the ability to
develop and maintain this form of LTD was tested by
applying DHPG (100 µM) to hippocampal slices. As
shown in Fig. 4, CDK4 inhibitor did not alter the acute
depression of synaptic transmission induced by DHPG, in

contrast, 10 min after washout of DHPG, the fEPSP slope
increased gradually in CDK4 inhibitor pretreated slices,
while in control slices it remained depressed. In control
slices, the fEPSP slope was reduced to 79 ± 2.8% of the
baseline average value 45 min after application of DHPG
(n = 15 slices from 5 mice), whereas, preincubation of
slices with the CDK4 inhibitor, significantly inhibited the
later phase of DHPG-LTD, fEPSP slope had recovered to
95 ± 4.1% of average baseline (n = 12 slices from 6 mice;
ANOVA, p < 0.001) (Fig. 5A) in neonatal animals (P8 -
P15). DHPG-LTD was also reduced by CDK4 inhibitor in
adolescent animals (P21-P35) compared with control
slices (DHPG plus vehicle, 78 ± 3% of the baseline, n = 15
slices from 5 mice; DHPG plus CDK4 inhibitor, 89 ±
3.6%, n = 12 slices from 6 mice, ANOVA, p < 0.01) (Fig.
5B).

When LTD was induced by PP-LFS (paired pulse separated
by 50 ms were delivered at low frequency 1 Hz for 15 min
in the presence of the NMDAR antagonist D-AP-5), the
results on LTD induction and maintenance were similar to
those obtained with DHPG-induced LTD. The later phase
of the PP-LFS-induced LTD almost disappeared by CDK4
inhibitor (fEPSP slope returned to 96 ± 4%, n = 12 slices
from 5 mice) in the P8-15 group while the fEPSP slope in
the P21-35 group (n= 11 slices from 5mice) recovered to
91 ± 3.2% of the baseline at 45 min (ANOVA, p < 0.001
and 0.01, respectively) (Fig. 5C and 5D).

A different form of LTD, NMDA receptor dependent LTD
(NMDAR-LTD), has been described at CA1 synapses.

There was no influence of CDK4 inhibitor on the induction or the maintenance of long-term potentiation in the hippoc-ampal CA1 regionFigure 4
There was no influence of CDK4 inhibitor on the 
induction or the maintenance of long-term potentia-
tion in the hippocampal CA1 region. LTP was induced 
by HFS (100 Hz, 1s). No significant difference was observed 
between LTP in slices from control (n = 13 slices) and CDK4 
inhibitor pretreated slices (n = 11 slices) both at P8-15 (A) 
and P21-35 (B). Values were presented as a percentage of 
baseline (mean ± SEM).

Role of cyclinD1-CDK4 in short-term synaptic plasticityFigure 3
Role of cyclinD1-CDK4 in short-term synaptic plas-
ticity. (A) Comparison of paired-pulse facilitation (PPF) in 
controls (n = 10 slices) and CDK4 inhibitor (5 µM) pre-
treated slices (n = 11 slices). PPF ratio (slope2/slope1) meas-
ured at different interstimulus intervals (ISI) was significantly 
decreased in slices treated CDK4 inhibitor, at the neonatal 
stage (P8-15) (P < 0.01). (B) There was no significant 
decrease in PPF when applied CDK4 inhibitor to slices from 
adolescent animals (P21-35) (n = 12 slices). Data are pre-
sented as mean ± standard error (SE). (C, D) Frequency-
dependent facilitation and posttetanic potentiation (PTP) in 
control and CDK4 inhibitor pre-incubated slices. Ratio of 
responses compared with the slope of the first fEPSP of a 
short stimulus train (8 stimuli of 50 µs duration at 40 Hz), 
followed by a single test stimulus delivered 300 ms after the 
burst. Responses of CDK4 inhibitor pretreated (n = 12 slices 
and 11 slices) slices were significantly inhibited compared 
with control slices (n = 11 slices and 10 slices) at both P8-15 
and P21-35 (P < 0.01 and 0.005, respectively). Data are pre-
sented as mean ± standard error (SE).
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Consistent with the idea that mGluR- and NMDAR-LTD
are mediated by distinct cellular mechanisms [27,28],
CDK4 inhibitor- treated slices showed similar levels of
NMDAR-LTD induced by LFS (1 Hz, 15min, 900 pulses)
to control slices both from neonatal and adolescent ani-
mals as shown in Fig. 5E, F. After 45 min, fEPSP slope was
78 ± 2.2% and 81 ± 2.4% in slices from P8-15 and P21-35
mice respectively, moreover 79 ± 2.5% and 82 ± 3.6% in
CDK4 inhibitor pretreated slices. These results indicated
that cyclinD1-CDK4 are specifically required for mGluR
dependent LTD, but do not play a significant role in
NMDAR-LTD.

Discussion
It has been well documented that neurogenesis persists in
the adult brain but normally only within discrete regions
of the brain containing pluripotent neuronal precursors
(e.g. dentate gyrus of adult brains of rodents, primates and
humans) [29-34]. Several studies have reported the
expression of cyclins and CDKs in terminally differenti-
ated neurons of the dentate gyrus and other brain regions,
especially in the context of seizure, transient global
ischemia, adrenal steroids, stress or apoptotic events [35-
39]. Cell cycle arrest and terminal differentiation of neu-
rons may not be necessarily incompatible with CDK activ-
ity but raise the possibility that CDKs and cyclins have
physiological impact general effects, such as metabolic
regulation [19], basal transcription [20,21] or apoptosis
[22,23]. A further function might be implicated in regulat-
ing microtubules stability [25] thereby influencing mor-
phoplastic processes.

Our study showed that cell cycle regulatory protein CDK4
had been also located in the cytoplasm and nuclei of post-
natal (P10) and even adolescent (P28) neurons in the CA
subfields of the hippocampus. The detection of CDK4 in
postmitotic neurons suggested a physiological role
beyond the regulation of cell cycle G1 checkpoint,
because immunoreactivity of it was detected predomi-
nantly in perikaryal cytoplasm. A putative function of
constitutive cyclin expression in postmitotic neurons has
been previously implicated in mechanisms of neuronal
and synaptic plasticity [24]. Western blot analyses
revealed the presence of CDK4 at the two developmental
stages. However, the study was not designed to identify
relative changes in the expression levels during the devel-
opment.

The expression and translocation of G1 cyclins are regu-
lated mostly by PI3K/AKT/mTOR/p70S6K1 signaling [5-
8], which is activated by distinct tyrosine kinases and are
present in the hippocampus, where they participate in the
regulation of synaptic functionality and gene transcrip-
tion. [40-42]. Our observations of a significant reduction
of PPF in slices pretreated with CDK4 inhibitor from neo-

CDK4 inhibitor impairs mGlu-LTD in the hippocampal CA1 regionFigure 5
CDK4 inhibitor impairs mGlu-LTD in the hippocam-
pal CA1 region. (A, B) DHPG-induced LTD. Slices were 
treated with 100 µM DHPG for 5 min (arrow). The effect is 
prominent in control slices (n = 11 slices), but impaired in 
CDK4 inhibitor reincubated slices (n = 12 slices) at both P8-
15 and P21-35. The effects of the CDK4 inhibitor at slices 
from adolescent animals were not as robust as slices from 
neonatal animals on this form of LTD. (C, D) PP-LFS-induced 
LTD. The protocol consisted in pairs of stimuli with a 50 ms 
interstimulus interval, delivered at 1Hz for 15 min (1800 
pulses total) in the presence of DL-AP-5 (100 µM). CDK4 
inhibitor also inhibited this form of LTD. (E, F) Pooled data 
show that CDK4 was not required for NMDA receptor-
dependent LTD induced by LFS (900 pulses at 1 Hz).
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natal animals (P8-P15) suggested a role of cyclinD1-
CDK4 in neurotransmitter release at the early develop-
ment stage. But there was no significant decrease in PPF
when applied to slices from adolescence animals (P21-
P35). PTP, another form of short-term synaptic plasticity,
was also impaired in CDK4 inhibitor pre-incubated slices
from both neonatal and adolescent animals. All these data
suggested that cyclinD1-CDK4 mediated short-term syn-
aptic plasticity in hippocampal slices.

Distinct transmitter release properties determine differ-
ences in short-term plasticity [43]. This form of synaptic
enhancement is caused by a Ca2+-dependent increase in
release probability and releasable vesicle pool size[44],
the residual elevation in pre-synaptic Ca2+i acting on one
or more molecular targets that appear to be distinct from
the secretory trigger responsible for fast exocytosis and
phasic release of transmitter to single action potentials.
Previous studies suggested that silent synapses are not
only exist post-synaptically but also pre-synaptically[45]
in developing hippocampal neurons. The available silent
synapses can often be rapidly activated, in many
instances. These properties enable silent synapses to par-
ticipate in short-term plasticity[46]. CDK4 inhibitor had
dramatic effects on PPF and PTP at the early development
stage (P8-15) in our experiments, which is apparent
involved in calcium release or the activation of pre-synap-
tic silent synapse. On the other hand, it was surprised to
see such different effect on PPF by CDK4 inhibitor during
the development; these findings demonstrating that
cyclinD1-CDK4 have a developmental effect change that
modulates pre-synaptic function. One hypothesis to con-
sider is that this difference might be due to the develop-
mental change of silent synapse in hippocampal neurons.
However, the exactly mechanism interfered with needs
further study.

Phosphatidylinositol 3-Kinase(PI3K) is required for the
expression but not for the induction or the maintenance
of Long-Term Potentiation in the hippocampal CA1
region[41]. However, there is still lack of information
concerning the involvement cyclinD1-CDK4 long term
synaptic plasticity mechanisms. Our observations found
that cyclinD1-CDK4 inhibitor did not affect the induction
or the maintenance of LTP both at P8-P15 and at P21-35.
Future studies are aimed at determining whether the
expression phase of this form of LTP or other forms of LTP
are affected.

Two mechanistically distinct forms of LTD coexist in syn-
apses in the CA1 region of the hippocampus [27]. Induc-
tion of one form depends on activation of NMDA
receptors [27,28,47], while induction of the other
depends on activation of metabotropic glutamate recep-
tors [27,48-51]. The locus of mGluR-LTD expression is

unclear. Several studies have reported that mGluR-LTD is
associated with increases in paired-pulse facilitation [52]
and changes in miniature EPSC frequency[27,52], sug-
gesting that the expression of mGluR-LTD is pre-synaptic.
In addition, it was reported that the pre-synaptic vesicle
release and cycling are altered during mGluR-LTD [53].
However, these findings do not eliminate the possibility
of a postsynaptic contribution to mGluR-LTD. For exam-
ple, it has been shown that mGluR-LTD is dependent on
postsynaptic protein synthesis [28]. Recently, Nosyreva
and Huber (2005) found that there is a developmental
switch in synaptic mechanisms of hippocampal mGluR-
dependent LTD [54]. In adolescent animals (P21-P35),
mGluR activation induces LTD require protein synthesis,
whereas in neonatal animals (P8 -P15), mGluR-LTD is
independent of protein synthesis, instead, results in pre-
synaptic function. A previous study [42] reported that acti-
vation of the PI3K-Akt-mTOR pathway is required for
mGlu-LTD, and is known to be required for dendritic pro-
tein synthesis, although cannot exclude the possibility of
an additional pre-synaptic function. Determination of
downstream effectors of PI3K-Akt-mTOR pathway will be
necessary for mGluR-LTD to begin to elucidate the identi-
ties of the proteins that are synthesized in dendrites dur-
ing this type of synaptic plasticity.

In this study, we found that mGluR-LTD was impaired in
slices from CDK4 inhibitor pretreated slices both from
neonatal animals (P8 – P15) and adolescent animals
(P21-P35), and the similar effect was present in PPF-LFS-
induced LTD. However, the effect of the CDK4 inhibitor
at slices from adolescent animals was not as robust as
slices from neonatal animals on this form of LTD. This dif-
ference may be due to the distinct role of cyclinD1-CDK4
at the two developmental stages during this form of LTD.
In conclusion, our findings demonstrated that cyclinD1-
CDK4 are required for mGluR-LTD, and the complex may
have two different roles during the developmental stage in
synaptic mechanisms of hippocampal mGluR-dependent
LTD. A more likely possibility is that PI3K is an important
regulator of the protein synthesis dependent phase of LTP
and regulates neuronal protein synthesis in response to
different extracellular stimuli [41,42]. As a downstream
effecter of PI3K-Akt-mTOR pathway, at P21-35, cyclinD1-
CDK4 may be required for mGluR-dependent LTD
through activate the Rb/E2F1 pathway to partly initiate
some dendritic protein synthesis that are necessary for the
expression of mGluR-LTD, The incomplete blockage of
mGluR-LTD, suggest that other signaling pathways may
play an other or additional role in mGluR-LTD. Whereas
at P8-15, may be due to its pres-synaptic function.

Conclusion
In this study we observed the expression and sub-cellular
localization of cyclinD1-CDK4 during the postnatal
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development stage, and cyclinD1-CDK4 may mediate STP
but not basal synaptic transmission. The induction or the
maintenance of long-term potentiation (LTP) in response
to a strong tetanus and NMDA receptor-dependent long-
term depression (LTD) are normal in hippocampus,
whereas mGluR-dependent LTD is significantly inhibited
in slices that pre-incubated by CDK4 inhibitor during the
postnatal development. These findings demonstrate a
function role for cyclinD1-CDK4 in short-term plasticity
and in mGluR-dependent synaptic depression in the hip-
pocampus, and suggest that this cyclin-dependent kinase
may have different roles during the postnatal develop-
ment in mice hippocampus area CA1. Future studies
aimed at the exactly mechanism interfered with, and the
role of activation of cyclinD1-CDK4 in the effect of lead
on synaptic plasticity and cell death in hippocampus fol-
lowing development.

Methods
Animals
Care of animals and experiments were conducted in
accordance with the National Institutes of Health Guide-
line for the Care and Use of Laboratory Animals. Efforts
were made to minimize the number of animals used. All
mice were of the C57B6/129 genetic background. Most of
the experiments were conducted in the brain slices of mice
at postnatal day8 (P8) to 15 (P15), and day21 (P21) to 35
(P35). The number of mice or hippocampal slices used in
each individual experiment was indicated as the "n" value
in the figure legend.

Tissue preparation and fluorescent microscopy
Neonatal or adolescent mice were perfused with ice-cold
saline followed by fixative containing 4% PFA in 0.1 M
PBS, pH 7.4. Brains were removed, postfixed in the same
solution over night, and subsequently cryoprotected by
equilibration with 30% sucrose in PBS. Sections of 30 µm
thickness were cut on freezing microtome and collected in
0.1 M TBS, pH 7.4. Antigen unmasking was performed by
treating sections with 0.05% trypsin for 30 min at room
temperature. After rinsing in PBS, sections were blocked
with 5%bovine serum albumin (BSA) in PBS with 0.3%
Triton X-100 (PBST + BSA) for 30 min. Afterwards, sec-
tions were incubated with anti-CDK4 antibody (1:300,
Santa Cruz Biotechnology) overnight at 4°C. Section-
bound antibodies were revealed by incubation with bioti-
nylated goat anti-rabbit antiserum (1:1000, 1h, Amer-
sham). All incubation steps were separated by intense
washing with TBS. Specificity of labeling was tested by
omitting primary antisera. After such incubation, tissue
was devoid of immunoreactivity as expected. Images were
captured with the digital microscope camera AxioCam-
HRC running on Axiovision 3.1 Software (both Carl Zeiss
Jena) and processed by means of Adobe1 Photoshop1 7.0

(Adobe Systems, Mountain View, CA). Sections were
nuclear counter-stained with DAPI.

Slice preparation
P8-15 and P21-35 mice were decapitated and the brain
was quickly removed and immersed in ice-cold artificial
cerebrospinal fluid (ACSF) saturated with 95% O2/5%
CO2 and containing 124.0 mM NaCl, 3.0 mM KCl, 1.25
mM KH2PO4, 26.0 mM NaHCO3, 2.0 mM MgSO4, 2.5
mM CaCl2, and 10.0 mM glucose. Hippocampi were iso-
lated and cut into 400 µm thick transversal slices by a cus-
tom-made tissue-slicer. Slices were maintained in ACSF at
room temperature for at least 1 h before recording.

Drug application and electrophysiological recordings
Slices were transferred to a submerged recording chamber,
held submerged between two nylon nets, maintained at
30°C, and perfused continuously with ACSF at a rate of
2ml-3ml/min. Field excitatory postsynaptic potentials
(fEPSPs) were recorded with glass microelectrodess (1–3
MΩ) filled with ACSF and positioned in stratum radiatum
of area CA1. Synaptic responses were reliably evoked
every 20sec in the CA1 region of the hippocampus by
stimulating Schaffer collaterals with 0.1 ms pulses. A full
input-output (I/O) curve was constructed at the beginning
of each experiment, the stimulus intensity (0.2 ms dura-
tion, 0.033 Hz) selected for baseline measurement was
adjusted to elicit about 40% of the maximal slope. Paired
pulse facilitation (PPF) was tested by applying two pulses
at different intervals (30–300 ms). LTP was induced using
high frequency stimulation (HFS; 100 Hz for 1 s), after 20
min of stable baseline recordings. mGluR-LTD was
induced by application of 100 µM DHPG (Tocris Cook-
son) for 5 min or by pairs of stimuli (interstimulus inter-
val, 50 ms) delivered at 1Hz for 15 min (1800pulses; PPF-
LFS).

D, L-AP-5 (Sigma) was prepared fresh in ACSF. CDK4
inhibitor (Merck-Calbiochem)(2-Bromo-12,13-dihydro-
5H-indolo [2,3-a]pyrrolo [3,4-c]carbazole-5,7(6H)-
dione) was dissolved in dimethylsulphoxide (DMSO) at a
concentration of 5 µM. DHPG (Tocris Cookson) was pre-
pared as a 1000 × stock in DMSO, used fresh or kept fro-
zen at -20°C. In both cases, the final concentration of
DMSO was at most 0.1% v/v after dilution in the record-
ing bath. Slices were pre-incubated with the inhibitors for
20–30 min before DHPG or paired-pulse low-frequency
stimulation (PP-LFS). The effects of all of the pharmaco-
logical treatments on LTD were evaluated by comparing
control and treated slices.

Data analysis
Normalized data were averaged across experiments and
expressed as means ± SEM. The PPF ratio was obtained by
dividing the field potential slope from the second pulse
Page 7 of 9
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(fEPSP2) by that of the first pulse (fEPSP1). One-way
ANOVA was performed to determine whether there were
significant differences followed by Bonferroni test as post
hoc analysis; p < 0.01 indicated difference significance.
Origin analysis software (Microcal Software, Northamp-
ton, MA) was used in data analysis.
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