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Campylobacter jejuni and C. coli are one of the leading causes of gastrointestinal 

illnesses, and which are considered to be transmitted to humans mainly from 

chicken meats. Considering the less availability of quantitative contamination 

data in the retail chicken meats in Japan, 510 fresh chicken meats retailed 

at five distinct regions in Japan between June 2019 and March 2021 were 

examined. The quantitative testing resulted that 45.7% of the samples 

(254/510) were positive at mean ± standard deviation of 1.15 ± 1.03 logCFU/g, 

whereas 43 samples (8.4%) exceeded 3.0 logCFU/g. Seasonal comparison 

revealed increased bacterial counts in fall compared with spring and summer. 

As for the chicken slaughter age, those slaughtered at >75 days old were less 

contaminated than those at <75 days old. Genome sequencing analyses of 111 

representative C. jejuni isolates resulted in the detection of three antimicrobial 

resistance genes (gyrA substitution T86I, tetO and blaOXA-61) at 25.2, 27.9 

and 42.3%, respectively. In silico MLST analysis revealed the predominance 

of sequence types (ST)-21 clonal complex (CC), followed by ST-45CC and 

ST-464CC. The single nucleotide polymorphism (SNP)-based phylogenetic 

tree largely classified the sequenced C. jejuni isolates into two clusters (I and 

II), where all C. jejuni from highly contaminated samples (STs-21CC, -22CC 

and -45CC) belonged to cluster I, independent of both season and slaughter 

age. To our knowledge, this is the first example to study the current status 

of Campylobacter contamination levels in fresh chicken meats retailed in 

Japan. Our data would be contributable to future quantitative microbial risk 

assessment, to establish effective control measures for campylobacteriosis.
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Introduction

Campylobacter jejuni and C. coli are among the most reported 
foodborne pathogens to cause human gastrointestinal disease 
globally [Geissler et  al., 2017; European Food Safety Authority 
(EFSA) and European Centre for Disease Prevention and Control 
(ECDC), 2021; Sher et  al., 2021]. Human campylobacteriosis is 
usually linked to the consumption of poultry meat, particularly in 
fresh portioned and whole chicken meat products (Kaakoush et al., 
2015; Batz et al., 2021), highlighting the necessity to control this 
pathogen along the poultry production chain. The focus on the risk 
of Campylobacter contamination from poultry meats is due to their 
high international consumption, estimated at 13.9 kg per capita in 
2015–2017 and expected to increase up to 14.6 kg in 2027 [Food and 
Agriculture Organization (FAO) and Organization for Economic 
Co-operation and Development (OECD), 2018]. Similarly, the 
slaughtered weight ranges of poultry meats in Japan have been 
increasing, as previously reported, from 2,171,905 tonnes in 2016 to 
2,331,650 tonnes in 2020 [Ministry of Agriculture, Forestry and 
Fisheries (MAFF), 2021]. To evaluate the risk associated with poultry 
consumption and its reduction measures, quantitative microbial risk 
assessment (QMRA) is currently employed as a structured approach 
that enables the estimation of the illness probability in a population; 
QMRA consists of the detection of the contamination levels of 
human/animal-related pathogens at any process, which may 
jeopardize human health (Chapman et al., 2016; Mikkelä et al., 2016).

In 2020, 20.5% (182/887) of the total cases of foodborne 
gastrointestinal illness in Japan were caused by campylobacteriosis 
[Ministry of Health, Labour and Welfare (MHLW), 2021]. 
Moreover, our previous study estimated that the source of nearly 
80.3% of the detected campylobacteriosis was chicken meats 
(Kumagai et al., 2020). In June 2021, the MHLW in Japan adopted 
the national Food Hygiene Act [Ministry of Health, Labour and 
Welfare of Japan (MHLW), 2020], which enables all poultry 
slaughterhouses to apply HACCP principles, including 
microbiological monitoring system with validation and verification 
programmes [Ministry of Health, Labour and Welfare of Japan 
(MHLW), 2020]. However, there is a lack of a nationwide monitoring 
system for poultry meat products at the retail level in Japan.

European agency has suggested QMRA as a tool to reduce the 
impact of human campylobacteriosis emerging from broiler meat 
[EFSA Panel on Biological Hazards (BIOHAZ), 2010], in which 
the use of the QMRA model was suggested to estimate the impact 
of the presence of Campylobacter spp. in the broiler meat chain on 
human campylobacteriosis. Furthermore, the model used 
available quantitative data to rank/categorize the designated 
intervention approaches along the farm-to-fork continuum. In 
this context, some countries have already initiated the acquisition 
of a quantitative baseline data regarding Campylobacter 
contamination mainly at the poultry slaughter level (Bai et al., 
2014; Lynch et al., 2022), while these data at the retail level were 
limited [Public Health England (PHE), 2019]. The Food Safety 
Commission of Japan (FSCJ), a national organization for risk 
assessment, recently revised the risk profiles of C. jejuni and C. coli 

in chicken meats and advised for the acquisition of such 
quantitative data through standardized microbiological methods 
[Food Safety Commission of Japan (FSCJ), 2021].

Given the background, this study aimed to quantitatively 
detect thermotolerant Campylobacter spp. from a total of 510 
chicken thigh meat portions retailed in five distinct regions across 
Japan. Combined with their epidemiological history, possible 
factors influencing the levels of Campylobacter contamination 
were analyzed and discussed. Moreover, we used whole genome 
sequencing on the C. jejuni isolates.

Materials and methods

Food samples

Fresh-chilled chicken thigh meat products (total n = 510) were 
purchased from retail markets in five different regions (A–E; 
Supplementary Figure 1) across Japan between June 2019 and May 
2021. The samples were transported at <10°C and subjected to 
microbiological examination within 3 h.

Enumeration of thermotolerant 
Campylobacter spp.

Considering the fact that greater dissemination of the 
thermophilic Campylobacter spp. relies on the skin rather than on 
the underlying muscle parts in retail chicken meat portions 
(Hansson et  al., 2015), we  selected skin parts as target for the 
bacterial testing. We  quantitatively detected thermotolerant 
Campylobacter spp. from chicken meats essentially based on ISO 
10272-2:2017 [International Organization for Standardization 
(ISO), 2017]. In brief, from each chicken meat product, a sample of 
25 g of skin was cut using sterile scissors and tweezers, followed by 
morcellation and homogenisation for 1 min in 100 ml of buffered 
peptone water (BPW; Oxoid, Hampshire, United  Kingdom). 
We  spread aliquots of 1-mL BPW suspension with its serial 
dilutions on modified charcoal cefoperazone deoxycholate agar 
(mCCDA) plates (Oxoid), which were incubated at 42°C for 48 h 
under microaerophilic condition using the AnaeroPack-MicroAero 
system (Mitsubishi Gas Chemicals, Tokyo, Japan). We counted the 
number of colonies, where at least five typical or suspected colonies 
per plate were subjected to real-time PCR to confirm the presence 
of C. jejuni or C. coli, as previously described (Kawase et al., 2016). 
Finally, we used this number to calculate the total bacterial count 
in each sample. Because the theoretical limit of detection (LOD) of 
the aforementioned assay was estimated at 0.70 logCFU/g, 
we adopted 1/2 LOD (=0.35 logCFU/g) for Campylobacter-negative 
samples. After the test confirmation, the obtained C. jejuni isolates 
from the samples in regions B, C and E were microaerobically 
grown on Mueller–Hinton agar plates (Becton Dickinson, Franklin 
Lakes, NJ, United States) at 37°C for 20 h and stored in 15% glycerol 
in Tryptic Soy Broth (Becton Dickinson) at −80°C until further 
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use. In this study, we  did not use qualitative method for the 
detection and isolation of thermotolerant Campylobacter spp.

DNA extraction

A total of 111 representatives of C. jejuni isolates from chicken 
meats at regions B, C and E were arbitrarily selected to include highly 
contaminated sample origin (>3.0 logCFU/g). The bacterial isolates 
were grown on Mueller–Hinton agar (Becton Dickinson) at 37°C for 
20 h under microaerophilic conditions using the AnaeroPack-
MicroAero system, followed by centrifugation at 4,000× g for 5 min. 
Accordingly, we extracted DNA from the bacterial pellets using the 
Maxwell Blood DNA Kit (Promega, Madison, WI, USA). 
We measured the concentration and quality of the extracted DNA 
on a TapeStation 4,150 system (Agilent Technologies, Santa Clara, 
CA, USA). The samples were stored at −80°C until further use.

Whole-genome sequencing analysis

To construct libraries of DNA, we used 1 μg of each of the 
bacterial extracts with the Ion Xpress Plus Fragment Library Kit 
(Thermo Fisher Scientific, Waltham, MA, United States). After 
adding barcode adaptors using the Ion Xpress Barcode Adaptors 
1–16 Kit (Thermo Fisher Scientific), we purified the barcoded 
DNA using Agencourt AMPure XP (Beckman Coulter, Brea, CA, 
United  States) and then combined 10 to 11 fragments. Next, 
we constructed a template DNA library on Ion Chef using the Ion 
530 kit and 530 chip (Thermo Fisher Scientific), where 
we conducted sequencing by the Ion GeneStudio S5 sequencer 
(Thermo Fisher Scientific), according to the manufacturer’s  
protocols.

Data analysis

To remove barcode and low-quality sequences, we processed 
the generated fastq files using the CLC Genomic Workbench ver. 
21 (Qiagen, Aarhus, Denmark). Noting that, low-quality sequences 
were defined with <100 bases, maximum ambiguities of 2 and 
homopolymers >6 bases. Then, we assembled the trimmed reads 
de novo to contigs under the default conditions (minimum contig 
length, 1,000 bases; mismatch cost, 2; insertion cost, 3; detection 
cost, 3; length fraction, 0.5; similarity fraction, 0.8; global 
alignment, yes). Accordingly, the assembled files were subjected to 
the DFAST programme1 (Tanizawa et al., 2018; accessed on July 1, 
2022) for genomic annotation. Simultaneously, the total assemblies 
were also subjected to each of the following: MLST 2.0 programme2 
(Larsen et al., 2012; accessed on June 27, 2022) to assign in silico 

1 https://dfast.ddbj.nig.ac.jp/

2 https://cge.cbs.dtu.dk/services/MLST/

sequence types (STs); ResFinder programme ver. 4.13 (Bortolaia 
et al., 2020; accessed on June 25, 2022) to detect acquired genes 
and/or chromosomal mutations mediating antimicrobial 
resistance; and CSI Phylogeny4 (Kaas et al., 2014; accessed on June 
21, 2022) to generate the SNP-based phylogenomic tree under the 
following conditions: minimum depth at SNP positions, 10; 
relative depth at SNP positions, 10; minimum distance between 
SNPs (prune), 10; minimum SNP quality, 30; minimum read 
mapping quality, 25; and minimum Z-score, 1.96.

Antibiotic susceptibility testing

The sequenced C. jejuni isolates (n = 111) were used to 
examine their susceptibility against three antibiotics, namely, 
ciprofloxacin (CPFX), tetracycline (TC) and ampicillin (ABPC) 
via disc diffusion test using Sensi-Disc (Becton Dickinson) 
according to the guidelines of the Clinical and Laboratory 
Standard Institute (CLSI, 2015).

Statistical analysis

The statistical differences of the bacterial counts between 
different groups arranged by the slaughter age of chicken (<75 days 
and > 75 days) and the season (spring, summer, and fall; because 
of less sample numbers, the bacterial count data in winter was 
removed from the seasonal comparison) were calculated using the 
Mann–Whitney U test and the prevalence ratios of the 
AMR-related genes between the two groups (slaughter age at 
>75 days or < 75 days) were comparatively analysed using Pearson’s 
chi-squared test; the level of significance was set to p < 0.05.

Results

Quantitative detection of thermotolerant 
Campylobacter spp. in fresh chicken 
meats retailed in Japan

Overall, Campylobacter spp. were detected in 254 samples 
(49.8%), in which 27 (5.3%), 120 (23.5%), 64 (12.5%) and 43 
(8.4%) samples were contaminated with Campylobacter spp., 
respectively, at the following ranges: 0.70–0.99 logCFU/g, 1.00–
1.99 logCFU/g, 2.00–2.99 logCFU/g and >3.00 logCFU/g, 
respectively (Table 1). In total, the mean ± standard deviation (SD) 
and the maximum reach of Campylobacter counts were 1.15 ± 1.03 
logCFU/g and 4.27 logCFU/g, respectively (Table 1).

Seasonal comparison indicated the highest bacterial counts in 
the samples taken in fall (October to December, means of 4.27 

3 https://cge.cbs.dtu.dk/services/ResFinder/

4 https://cge.cbs.dtu.dk/services/CSIPhylogeny/
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logCFU/g) compared with those collected in spring (April–June, 
means of 3.88 logCFU/g) and summer (July–September, means of 
3.78 logCFU/g), respectively (Table 1; Supplementary Figure 2A).

The comparison by slaughter age of chicken revealed that 
56.7% (237/418) of meat samples from young broilers (slaughtered 
at <75 days old) were Campylobacter-positive with a mean ± SD of 
1.29 ± 1.08 logCFU/g, which was significantly higher than the 
remaining 92 samples from older-aged chicken (slaughtered at 
>75 days old), which showed Campylobacter positivity at 18.5% 
(17/92) with a mean ± SD at 0.52 ± 0.41 logCFU/g (p < 0.01; 
Table 1; Supplementary Figure 2B).

Region comparison was excluded from the quantitative 
analysis because the sample numbers were not normalised 
between the five regions, as presented in Table 1.

Overall, we could show the current status of Campylobacter 
contamination levels in the chicken meat products retailed in 
Japan, in association with the slaughter age and season.

Genomic characterisation of 
Campylobacter jejuni from the retailed 
chicken meat

Throughout the quantitative detection of Campylobacter spp., 
a total of 218 C. jejuni and 26 C. coli were finally isolated from 
52.4% (244/466) of the samples in regions B, C and E (Table 1). 
We  excluded C. coli for further characterization because its 
numbers were relatively scarce compared with C. jejuni. Among 
C. jejuni, 111 representative isolates (68 from chicken slaughtered 

at <75 days old and 43 at >75 days old) were arbitrarily selected. 
Thereby, a WGS was designed using the Ion GeneStudio S5 
sequencing platform. The sequence read numbers ranged from 
1,352,730 to 2,774,038 with an average read length ranging from 
205 to 279 bases, in which de novo assembled genome statistics 
were at 23–92 contigs. The annotation of these assemblies using 
the DFAST programme identified 1,493–2,215 coding sequences 
(CDSs), 31–43 rRNAs, 1–2 tRNAs and coverage ratio of 87.1–
93.5%, respectively (Supplementary Table 1).

MLST profiles
In silico MLST analysis classified the 111 C. jejuni isolates 

into 63 STs, where 45 STs were categorized in 12 clonal complexes 
(CC) and 9 of the remaining 18 STs were novel STs. Among the 
CCs, ST-21CC was the most predominant (24.3%, 27/111), 
followed by ST-354CC (13.5%, 15/111) and then ST-45CC (9.9%, 
11/111). ST-22CC, ST-52CC and ST-607CC were detected only 
in the chicken meats slaughtered at <75 days old, whereas 
ST-353CC was detected only in the chicken meats slaughtered at 
>75 days old. Within ST-21CC that generally showed a broad 
range of host adaptation (Woodcock et al., 2017), ST-50 (n = 9), 
ST-21 (n = 2) and ST-9535 (n = 2) commonly originated from 
chicken meats slaughtered at <75 days old, whereas ST-11191 
(n = 5), ST-4526 (n = 3) and ST-9776 (n = 2) were detected only in 
older slaughtered chicken meats (>75 days old). A total of 14 
C. jejuni isolates from highly contaminated broiler chicken meat 
samples (>3.0 logCFU/g) were classified into ST-21CC (ST-50, 
n = 9), ST-22CC (ST-22, n = 2) and ST-45CC (ST-137, n = 1; 
ST-1326, n = 1; ST-3456, n = 1; Table 2).

TABLE 1 Quantitative detection of Campylobacter spp. from retail chicken meats at 5 distinct regions in Japan between June 2019 and May 2021.

Category No. 
sample

Sample distribution by Campylobacter count (logCFU/g; %) Prevalence 
rate of >3 
logCFU/gND1 0.70–0.99 1.00–1.99 2.00–2.99 3.00–3.99 4.00–4.99 Max Means ± 

SD

Region2

A 20 18 (90.0%) 1 (5.0%) 1 (5.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1.00 0.40 ± 0.16 0.0%

B 295 129 (43.7%) 8 (2.7%) 72 (24.4%) 53 (18.0%) 31 (10.5%) 2 (0.7%) 4.27 1.36 ± 1.12 10.8%

C 74 37 (50.0%) 7 (9.5%) 20 (27.0%) 10 (13.5%) 0 (0.0%) 0 (0.0%) 2.78 0.94 ± 0.75 0.0%

D 24 16 (66.7%) 3 (12.5%) 4 (16.7%) 0 (0.0%) 1 (4.2%) 0 (0.0%) 3.62 0.77 ± 0.82 4.2%

E 97 56 (57.7%) 9 (9.3%) 22 (22.7%) 1 (1.0%) 9 (9.3%) 0 (0.0%) 3.88 0.91 ± 0.94 9.3%

Season3

Spring 86 43 (50.0%) 4 (4.7%) 29 (33.7%) 5 (5.8%) 5 (5.8%) 0 (0.0%) 3.88 0.98 ± 0.88 5.8%

Summer 263 147 (55.9%) 10 (3.8%) 50 (19.0%) 37 (14.1%) 19 (7.2%) 0 (0.0%) 3.78 1.10 ± 1.02 6.8%

Fall 143 57 (39.9%) 11 (7.7%) 37 (25.9%) 20 (14.0%) 16 (11.2%) 2 (1.4%) 4.27 1.39 ± 1.12 12.6%

Winter 18 9 (50.0%) 2 (11.1%) 4 (22.2%) 2 (11.1%) 1 (5.6%) 0 (0.0%) 3.02 0.99 ± 0.87 5.6%

Slaughter age4

<75 D 418 181 (43.3%) 23 (5.5%) 108 (25.8%) 63 (15.1%) 41 (1.0%) 2 (0.5%) 4.27 1.29 ± 1.08 10.3%

>75 D 92 75 (81.5%) 4 (4.3%) 12 (13.0%) 1 (1.1%) 0 (0.0%) 0 (0.0%) 2.18 0.52 ± 0.41 0.0%

Total 510 256 (50.2%) 27 (5.3%) 120 (23.5%) 64 (12.5%) 41 (8.0%) 2 (0.4%) 4.27 1.15 ± 1.03 8.4%

1ND, not detected (<0.7 logCFU/g).
2Regions A to E, shown in Supplementary Figure 1.
3Spring, April to June; Summer, July to September; Fall, October to December; Winter, January to March.
4The source chickens of meat products are categorized by slaughter age (<75 days or > 75 days of slaughter).
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Antimicrobial resistance profiles
ResFinder predicted that 42.3% (47/111) of C. jejuni isolates 

harboured blaOXA-61 gene, 27.9% (31/111), tetO gene; and 25.2% 
(28/111), gyrA mutated at T86I (Table  2). The antimicrobial 
susceptibility testing resulted in the complete agreement between 
the presence of three antimicrobial resistance (AMR)-related 
genes and resistance phenotype against the three antimicrobials 
among the sequenced isolates (Table 2). 24 isolates (18 isolates 
were from meats slaughtered at <75 days old and 6 from those at 
>75 days old) showed resistance to more than two antimicrobials, 
in which 14 isolates were resistant to both TC and CPFX (Table 2). 
The prevalence of three AMR-related genes did not exhibit 
statistical association with the slaughtered age of chicken 
(Table 2).

Association between the MLST and AMR 
profiles

Combined with the MLST profiles, gyrA (T86I) was detected 
in 22/83 (26.5%) isolates belonging to 7 CCs [(ST-21CC (6/27), 
ST-22CC (2/3), ST-45CC (4/11), ST-52CC (2/2), ST-354CC 
(5/15), ST-443CC (1/6) and ST-464CC (2/10)] and 6/28 (21.4%) 
isolates unassigned (UA) to any CCs with no significant difference 
between CCs (p = 0.32; Table 2).

Alternately, tetO was detected in 15/83 (18.1%) isolates 
belonging to 3 CCs [ST-21 CC (7/27), ST-45 CC (7/11) and 
ST-354CC (1/15)], and 16/28 (57.1%) of UA isolates with 
significant difference between CCs (p < 0.01; Table 2).

Similarly, blaOXA-61 was detected in 37/83 (44.6%) isolates 
belonging to 8 CCs [ST-21CC (17/27), ST-22CC (3/3), ST-45CC 
(4/11), ST-48 CC (2/2), ST-206CC (1/1), ST-353CC (2/3), 
ST-443CC (6/6) and ST-464CC (2/10)], and 10/28 (35.7%) of UA 
isolates with significant differences between CCs (p < 0.01; 
Table 2).

The multidrug-resistant isolates were shown in 24/111 
(21.6%) isolates, 13 of which were belonged to ST-21CC (8/27) 
and ST-45CC (5/11), although there were no significant 
differences between CCs (p = 0.33; Table 2).

In summary, we detected the MLST and AMR profiles of 111 
representative C. jejuni from chicken meats retailed in Japan, 
with partial links to slaughter age of chicken and contamination  
levels.

Phylogenetic diversity of Campylobacter 
jejuni isolates from chicken meat 
samples

To examine the possible association of the bacterial genomic 
traits with the slaughtered age of chicken and bacterial 
contamination levels, a single nucleotide polymorphism (SNP)-
based phylogenetic tree was constructed, which was broadly 
divided into two clusters (I and II); the first consisted of 42 young 
broiler-originating isolates (red) and 28 older isolates (green), 
whereas cluster II consisted of 26 young (red) and 15 older ones 

(green; Figure  1), with no apparent statistical phylogenic bias 
based on the chicken slaughter age.

Within the MLST profiles, seven CCs (i.e., ST-21CC, -22CC 
and -45CC) belonged to cluster I  and six (i.e., ST-354CC, 
ST-443CC and ST-464CC) to cluster II (Figure 1). Notably, 14 
isolates that originated from samples exhibiting >3.0 logCFU/g of 
contamination were all distributed in cluster I and none in cluster 
II (isolates underlined in Figure 1).

Thus, these data indicated that the C. jejuni genotypes in 
cluster I were partly associated with highly contaminated chicken 
meat samples.

Discussion

Campylobacter in poultry meat is ranked as the leading 
pathogen–food combination to cause health risks; therefore, it 
negatively impacts the national economy (Kaakoush et al., 2015; 
Batz et al., 2021). The ratio of highly contaminated samples (>3.0 
logCFU/g) in our data was estimated at 8.4%, which was seemingly 
almost similar or less, compared with some recent reports from 
other countries; for example, Asuming-Bediako et al. reported 
that 12.7% (7/55) of the chicken meats retailed in Ghana were >3.0 
logCFU/g (Asuming-Bediako et  al., 2022). Moreover, 18.7% 
(59/315) of chicken meats retailed in Australia were contaminated 
with >2.0 logCFU/g (Habib et al., 2019).

In Japan, most of the chicken meats are retailed as portion 
fillets, not as whole carcass, which suggested that there might 
be  differences due to processing. Therefore, a nationwide 
baseline surveillance at both slaughter and retail stages could 
better estimate the stage-to-stage kinetics of the bacterial 
contamination levels, thereby providing the QMRA data. 
Nevertheless, to the best of our knowledge, this is the first study 
to demonstrate the quantitative distribution of thermophilic 
Campylobacter spp. in chicken meat products retailed 
across Japan.

To date, it is likely that human campylobacteriosis occurred 
more frequently in hot seasons in summer and/or fall compared 
with cold seasons, as proven in Denmark (Nielsen et al., 2013), 
France (Bessède et al., 2014), United States (Williams et al., 2015; 
Sher et al., 2021), Switzerland (Baumgartner and Felleisen, 2011). 
Likewise, in Japan, the greater proportions of campylobacteriosis 
were reported in summer and fall based on the foodborne disease 
statistics report [Ministry of Health, Labor and Welfare of Japan 
(MHLW), 2021]. Our data indicated greater bacterial counts in 
chicken meats retailed in fall than spring and summer, which 
seemed to be in agreement with the foodborne statistics shown 
above. Several factors considerably affect the seasonal variation 
of bacterial counts, one of which seemed to be  linked to the 
geography-associated atmospheric variations. For example, the 
mean temperature which is identified as one of the major 
environmental drivers for the campylobacteriosis occurrence 
(Cousins et  al., 2020), was 22.5°C in region A and 28.4°C in 
region B, on August 2019, according to the Japanese 
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TABLE 2 MLST and antimicrobial-resistance profiles of 111 representative C. jejuni isolates from chicken meat samples retailed in Japan.

Clonal 
complex 
(CC)

No. 
isolate ST2 No. 

isolate

Slaughter 
age of 

chicken3

Prevalence of AMR-related gene No. isolate exhibiting 
resistance to

gyrA 
(T86I) tetO blaOXA-61 CPFX TC ABPC

ST-21 CC 27 21 2 Y (2) 2/2 2/2 2/2 2 2 2

50 9 Y (9) 0/9 0/9 0/9 0 0 0

4,526 3 O (3) 3/3 3/3 3/3 3 3 3

6,709 1 Y (1) 0/1 0/1 1/1 0 0 1

8,132 1 O (1) 0/1 1/1 1/1 0 1 1

9,535 2 Y (2) 1/2 1/2 2/2 1 1 2

9,776 2 O (2) 0/2 0/2 2/2 0 0 2

11,191 5 O (5) 0/5 0/5 5/5 0 0 5

11,572 1 Y (1) 0/1 0/1 1/1 0 0 1

11,574 1 Y (1) 0/1 0/1 0/1 0 0 0

ST-354 CC 15 354 8 O (5), Y (3) 4/8 (O(4)) 0/8 0/8 4 0 0

653 1 Y (1) 1/1 1/1 0/1 1 1 0

1723 1 O (1) 0/1 0/1 0/1 0 0 0

6,196 2 O (1), Y (1) 0/2 0/2 0/2 0 0 0

10,010 1 Y (1) 0/1 0/1 0/1 0 0 0

11,347 1 Y (1) 0/1 0/1 0/1 0 0 0

11,352 1 Y (1) 0/1 0/1 0/1 0 0 0

ST-45 CC 11 11 1 Y (1) 0/1 0/1 0/1 0 0 0

45 3 Y (3) 2/3 3/3 2/3 2 3 2

137 1 Y (1) 0/1 0/1 1/1 0 0 1

538 1 Y (1) 0/1 1/1 1/1 0 1 1

1,326 1 Y (1) 0/1 0/1 0/1 0 0 0

3,456 1 Y (1) 1/1 1/1 0/1 1 1 0

9,295 1 Y (1) 1/1 1/1 0/1 1 1 0

11,192 1 O (1) 0/1 1/1 0/1 0 1 0

11,302 1 O (1) 0/1 0/1 0/1 0 0 0

ST-464 CC 10 4,108 1 O (1) 0/1 0/1 0/1 0 0 0

4,389 3 O (2), Y (1) 1/3 (O) 0/3 0/3 1 0 0

6,477 1 O (1) 0/1 0/1 0/1 0 0 0

6,704 3 Y (3) 0/3 0/3 1/3 0 0 1

11,024 1 O (1) 1/1 0/1 0/1 1 0 0

11,186 1 Y (1) 0/1 0/1 1/1 0 0 1

ST-443 CC 6 440 4 O (2), Y (2) 1/4 (Y) 0/4 4/4 1 0 4

6,512 2 Y (2) 0/2 0/2 2/2 0 0 2

ST-22 CC 3 22 2 Y (2) 2/2 0/2 2/2 2 0 2

567 1 Y (1) 0/1 0/1 1/1 0 0 1

ST-353 CC 3 8,133 2 O (2) 0/2 0/2 2/2 0 0 2

10,013 1 O (1) 0/1 0/1 0/1 0 0 0

ST-48 CC 2 918 2 O (1), Y (1) 0/2 0/2 2/2 0 0 2

ST-52 CC 2 52 2 Y (2) 2/2 0/2 0/2 2 0 0

ST-460 CC 1 11,190 1 O (1) 0/1 0/1 0/1 0 0 0

ST-206 CC 1 2,282 1 O (1) 0/1 0/1 1/1 0 0 1

ST-607 CC 2 3,646 1 Y (1) 0/1 0/1 0/1 0 0 0

11,569 1 Y (1) 0/1 0/1 0/1 0 0 0

UA1 28 407 1 Y (1) 1/1 1/1 1/1 1 1 1

468 1 Y (1) 0/1 0/1 0/1 0 0 0

922 1 Y (1) 0/1 1/1 1/1 0 1 1

1972 2 O (2) 0/2 0/2 0/2 0 0 0

(Continued)
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meteorological agency.5 Continued surveillance at different 
regions with atmospheric information might improve our 
understanding behind the effects of temperature and/or 
geographical differences in the quantitative distribution of 
Campylobacter spp. in meat chickens on the farm. Although this 
study did not include human isolates, future continued 
monitoring and characterization of Campylobacter spp. from 
chicken meats together with human isolates would further unveil 
the seasonal dynamics of Campylobacter.

In this relation, we previously demonstrated that long-term 
grow-out in laying hens affects the C. jejuni colonization fitness, 
which is associated with altered gut microbiota and lipid 
compositions (Asakura et al., 2021). Considering the fact that 
C. jejuni cooperated and competed with diverse commensal 
microbiota, thereby becoming part of the gut microbial 
community (Han et  al., 2017; Sakaridis et  al., 2018), our data 
associated with the slaughter age also indicated that long-term 

5 www.data.jma.go.jp

feeding of chicken might reduce the colonising numbers of 
Campylobacter in the chicken gut.

The increasing availability of WGS datasets has significantly 
enhanced the analyses of bacterial population structure and 
diversity (Sheppard and Maiden, 2015). Several studies have 
attempted to trace the source of infection by identifying the 
genomic elements (SNPs and genes) segregated by the host (Weis 
et al., 2016; Thépault et al., 2018; Berthenet et al., 2019). Moreover, 
the WGS analysis allows the detection and characterisation of 
antimicrobial resistance of Campylobacter isolates (Whitehouse 
et al., 2018; Meistere et al., 2019).

Among the STs associated with high level of contamination in 
poultry meats, it is noteworthy that multiple ST-50 isolates, in 
particular, were identified, although chicken were slaughtered and 
processed in different facilities at different time points. This 
genotype is known as one of the major host generalists (Woodcock 
et al., 2017) and linked to human infection (Ramonaite et al., 
2017). However, we could not conclude the association between 
the specific clonal complexes and contamination levels in the 
chicken meats, because the parts of ST-45CC and ST-22CC 

TABLE 2 (Continued)

Clonal 
complex 
(CC)

No. 
isolate ST2 No. 

isolate

Slaughter 
age of 

chicken3

Prevalence of AMR-related gene No. isolate exhibiting 
resistance to

gyrA 
(T86I) tetO blaOXA-61 CPFX TC ABPC

4,324 1 Y (1) 0/1 0/1 1/1 0 0 1

4,325 1 Y (1) 0/1 0/1 1/1 0 0 1

6,085 1 O (1) 0/1 1/1 0/1 0 1 0

8,071 4 O (1), Y (3) 4/4 1/4 (Y) 4/4 4 1 4

8,287 1 Y (1) 0/1 0/1 0/1 0 0 0

11,187 1 O (1) 0/1 1/1 0/1 0 1 0

11,189 1 O (1) 0/1 0/1 0/1 0 0 0

11,194 1 O (1) 0/1 1/1 0/1 0 1 0

11,195 2 Y (2) 0/2 2/2 0/2 0 2 0

11,342 1 Y (1) 0/1 0/1 1/1 0 0 1

11,343 1 O (1) 1/1 1/1 1/1 1 1 1

11,344 6 Y (6) 0/6 6/6 0/6 0 6 0

11,349 1 Y (1) 0/1 1/1 0/1 0 1 0

11,570 1 Y (1) 0/1 0/1 0/1 0 0 0

Total 111 – 111 Y (68) 17/68 

(25.0%)

22/68 

(32.4%)

28/68 (41.2%) 17 22 28

O (43) 11/43 

(25.6%)

9/43 

(20.9%)

19/43 (44.2%) 11 9 19

Y+ O (111) 28/111 

(25.2%)

31/111 

(27.9%)

47/111 (42.3%) 28 31 47

p-value (Y vs. O)4 0.918 0.146 0.757 – – –

P-value (CCs)5 0.322 <0.01 <0.01 – – –

1UA, Unassigned to any clonal complexes.
2Sequence type (ST). Novel STs are in bold and STs originated from highly contaminated samples (>3.0 logCFU/g) are underlined.
3Y, young broiler chicken slaughtered at <75 days age; O, chicken slaughtered at > 75 days age.
Numbers of isolates are shown in the parenthesis.

4Difference for the prevalence of AMR-related genes between the groups Y and O calculated by Pearson’s chi-squared test.
5Difference for the prevalence of AMR-related genes between CCs calculated by Pearson’s chi-squared test.
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FIGURE 1

The SNPs-based phylogenetic tree of 111 C. jejuni isolates from fresh chicken meats retailed at regions B, C and E in Japan, with MLST (ST and CC) 
and AMR profiles (possession (+/−) of three AMR-related genes). Each isolate is highlighted in red (slaughter age of <75 days) or green (slaughter 
age of >75 days). C. jejuni isolates of highly contaminated samples (>3.0 logCFU/g) are underlined. CCs in which >3 isolates included are 
highlighted with different colours. The prevalence of AMR-related gene is shown as “+” in dark blue-highlight.
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showed association with high level contamination. In addition, it 
was uncertain why C. jejuni isolates belonged to ST-21CC were 
phylogenetically split into two subclusters within cluster 
I. Considering the strain-to-strain variations of virulence property 
even in ST-21CC, which were assessed by multiple infection 
models (Humphrey et al., 2015), these strain’s virulence should 
be  further assessed using these infection models in our 
future study.

Contrarily, several STs classified into cluster II originated from 
samples with less bacterial counts. An in vitro cell invasion 
property-based dose–response modelling was recently proposed 
(Abe et al., 2021), and it would be useful to use this approach to 
investigate possible differences in the virulence-associated 
characteristics clusters I  and II. In addition, ST-4526, which 
previously thrived in Japan in human and chicken (Asakura et al., 
2012), was isolated from meats of chicken slaughtered >75 days 
age. Considering that, this genotype could exhibit an increased 
colonisation fitness in the chicken’s gut (Asakura et al., 2013), the 
reason for which it was isolated from chicken meats being fed for 
long periods.

A recent study demonstrated that compared with infected 
patients with C. jejuni exhibiting TC resistance, those with CPFX 
resistance were more likely to be  hospitalised during fall or 
summer seasons in the United States (Rodrigues et al., 2021). Our 
data demonstrating the widespread of genes conferring resistance 
to TC (tetO), β-lactam (blaOXA-61) and fluoroquinolone (gyrA 
T86I), were shown particularly among the isolates belonging to 
ST-21CC and ST-45CC, which are among the host generalist 
genotypes, thus transmissive between chicken and humans 
(Sheppard et al., 2014; Mourkas et al., 2020). These data suggest 
the necessity to monitor these CCs for antimicrobial resistance in 
both chicken and humans. Indeed, there were significant 
differences of the prevalence of tetO and blaOXA-61 genes between 
CCs. Moreover, a recent study demonstrated the increased 
conjugative efficiency of tetO-carrying plasmids between 
Campylobacter strains at 42°C (resembling poultry reservoir) 
compared with 37°C (Cuevas-Ferrando et  al., 2020), which 
further highlighted the needs to regulate the invasion of these 
CCs into poultry farm in order to decrease the chance of 
spreading TC-resistance. The stable kinetics of fluoroquinolone 
and TC resistance were observed in C. jejuni from farmed 
animals and humans in the United States and United Kingdom 
(van Vliet et  al., 2022) and the association of antimicrobial 
resistance of C. jejuni in broilers with their use at farm was 
recently investigated (Tenhagen et al., 2021), which showed a 
positive association between use of tetracycline and erythromycin 
and subsequent resistance in Campylobacter but no such link was 
found for aminoglycosides. In relation to the latter, for example 
77.1% of the total amounts of oral enrofloxacin distributed in 
Japan (1,829.4 kg) was used in broilers until 7 days before 
slaughter in 2019 [National Veterinary Assay Laboratory (NVAL), 
2019]. Consequently, a spatiotemporal comparative monitoring 
of the antimicrobial resistance of this pathogen to commonly 
used antibiotics in farmed animals, foods and humans is essential, 

where the approach of reducing antimicrobial use in farms would 
be advised from a healthcare viewpoint.

Conclusion

In this research study, we validated the current status of the 
Campylobacter contamination levels in retail chicken meats in 
Japan. Our data proposed the necessity to further reduce the 
contamination levels similar to European countries, which are 
attempting to reduce the highly contaminated chicken meats at 
retail (>3.0 logCFU/g) to zero (European Commission, 2017). 
Combining the different parameters affecting the occurrence and 
contamination levels of this pathogen (age of the slaughtered 
chicken meats and seasonal and bacterial phylogenetic variations) 
as well as the MLST-based source attribution study (Cody et al., 
2019) might help QMRA to develop adequate control measures to 
reduce bacterial contamination in chicken meats, thereby leading 
to the reduction of the incidence of human campylobacteriosis 
through a continuous baseline surveillance with quantitative 
testing and bacterial genome characterization through the 
food chain.
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