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Abstract: Antioxidants are often associated with a variety of anti-aging compounds that can ensure
human and animal health longevity. Foods and diet supplements from animals and plants are the
common exogenous sources of antioxidants. However, microbial-based products, including probiotics
and their derivatives, have been recognized for their antioxidant properties through numerous studies
and clinical trials. While the number of publications on probiotic antioxidant capacities and action
mechanisms is expanding, that of synbiotics combining probiotics with prebiotics is still emerging.
Here, the antioxidant metabolites and properties of synbiotics, their modes of action, and their
different effects on human and animal health are reviewed and discussed. Synbiotics can generate
almost unlimited possibilities of antioxidant compounds, which may have superior performance
compared to those of their components through additive or complementary effects, and especially
by synergistic actions. Either combined with antioxidant prebiotics or not, probiotics can convert
these substrates to generate antioxidant compounds with superior activities. Such synbiotic-based
new routes for supplying natural antioxidants appear relevant and promising in human and animal
health prevention and treatment. A better understanding of various component interactions within
synbiotics is key to generating a higher quality, quantity, and bioavailability of antioxidants from
these biotic sources.
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1. Introduction

Antioxidants can be a variety of compounds, which are able to neutralize, either
directly or indirectly, oxidative agents. These are mainly represented by free radicals and re-
active oxygen/nitrogen species (ROS/RNS) [1]. ROS and RNS are responsible for oxidative
stress that leads to fast cell aging in humans [2–4] and animals [5,6]. Oxidative stress occurs
when there is an out of balance between the formation and neutralization of ROS and
RNS. To achieve equilibrium, the human (and animal) body reacts with antioxidants from
endogenous (metabolic antioxidants) and/or exogenous (nutrient antioxidants) sources.

Antioxidant properties and activities are assumed to prevent the harmful effects of
ROS/RNS, and therefore treat oxidative stress-related diseases. By increasing the body’s
antioxidant defenses through consumption of antioxidant-rich food or dietary supplements,
many chronic diseases, as well as disease progression, can be prevented and slowed, re-
spectively. Therefore, antioxidants are often associated with anti-aging compounds, which
are able to contribute to increasing the longevity of animals and humans [7]. Nevertheless,
antioxidants can also become pro-oxidants; that is, they are able to induce oxidative stress
by forming reactive species, or by inhibiting antioxidant systems [8].
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Antioxidants may be classified according to many criteria, depending on their action
mechanism, origin, chemical structure, and physicochemical properties. Two main groups
are easily distinguished according to their role and function: (1) chain-breaking or primary
antioxidants, and (2) preventing or secondary antioxidants [9]. The former group is able to
react with radicals and convert them into more stable compounds, therefore neutralizing
therefore the oxidation chain reactions initiated by free radicals. The latter is known
to decelerate the autoxidation degree by changing free radicals to more stable species.
This mechanism involves compounds that bind metal ions, scavenge oxygen, decompose
hydroperoxide to non-radical species, absorb UV radiation, or deactivate singlet oxygen.
Secondary antioxidants need a second minor component to be active. A third group
includes tertiary antioxidants that repair the oxidized molecules through sources such as
dietary or consecutive antioxidants [10]. On the other hand, antioxidants are classified
based on their chemical nature and structure in two categories: non-enzymatic or enzymatic
compounds [1], as illustrated in Table 1. Foods, phytochemicals, and dietetic supplements
are the most natural external sources of antioxidants, and their powers and activities
may vary from one substrate to another [11]. Antioxidant capacities are often determined
and compared among different sources by means of various methodologies and scientific
instruments through both qualitative and quantitative approaches [12].

Table 1. Examples of antioxidant categories, symbols, and chemical structures.

Antioxidant Categories Symbol/Structure
Enzymatic antioxidants
Superoxide dismutase

Catalase
Glutathione peroxidase
Glutathione reductase

SOD
CAT
GPx
GRx

Non-enzymatic antioxidants
Endogenous (metabolic antioxidants)

Lipoic acid
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While fruits and vegetables are the most popular sources of natural antioxidants,
processed foods including beverages and functional foods also contain antioxidant com-
pounds, which may be different from the native ones issued from raw materials [13,14].
The second popular antioxidant sources are dietetic supplements in which the antioxidant
compounds are often of a high purity degree and concentration (e.g., vitamins, omega
3 fatty acids) [15]. In addition, other antioxidant sources come from probiotics, which are
found especially in fermented foods, as well as in dietetic supplements [16]. Probiotics are
defined as live microorganisms that, when administered in an adequate amount, confer
health benefits to the host [17]. Lactic acid (e.g., Lactobacilli) and soil-based bacteria (e.g.,
Bacilli), as well as yeasts (e.g., Saccharomyces) are among the most common microbial
probiotics [18].

For a few years now, original research and review papers on the probiotic antioxi-
dant properties and action mechanisms have considerably increased [19–22]. Lactic acid
bacteria (LAB) have been shown to exhibit antioxidant capacity, mainly by scavenging
free radicals, chelating prooxidative ions, regulating relevant enzymes, or modulating gut
microbiota [23].

When probiotics are combined with prebiotics into formulations, the resulting func-
tional products constitute synbiotics. Even though the synbiotic concept was first described
25 years ago, the panel of International Scientific Association for Probiotics and Prebiotics
(ISAPP) recently updated the synbiotic definition as “a mixture comprising live microor-
ganisms and substrate(s) selectively utilized by host microorganisms that confers a health
benefit on the host” [24]. Such a preparation can be designed in complementarity to target
the host microorganisms, or in synergism for which the prebiotic is selectively utilized by
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the co-administrated probiotics to achieve one or more health benefits. The term synbiotic
is often confused with symbiotic, which refers to an ecological relationship in a natural
ecosystem with two organisms (the symbiont and the host) in symbiosis. Prebiotics are
mainly carbohydrate-based compounds such as galacto-oligosaccharides (GOS), fructo-
oligosaccharides (FOS), trans-galacto-oligosaccharides (TOS), inulin and fructans, which
can improve the viability of probiotics [18]. Non-carbohydrate-based compounds such as
polyphenols and omega-3 long fatty acids are also considered as prebiotics according to
the standard definitions [25]. In fact, any compounds selectively used by host microbiota
and conferring health benefit(s) are considered as prebiotics.

While the antioxidant properties of probiotics have widely been reported [16,23,26],
only a limited number of scientific publications is available on those of synbiotics. Con-
sidering the multi-component and mixture aspects (living and non-living materials) of
synbiotics, their action mechanisms related to antioxidant activities are much more com-
plex. In fact, it is important in the case of synbiotics with antioxidant properties to distin-
guish those from prebiotics, probiotics and their metabolites, or those from bio-converted
prebiotic compounds. Two main types and mechanisms may be involved: (i) comple-
mentary synbiotics for which prebiotics and probiotics act independently with the addi-
tive effect as antioxidants at the host [27]; (ii) synergistic synbiotics where prebiotics are
antioxidants or not, while supporting and enhancing the probiotics antioxidant perfor-
mance for generating higher properties than each component (Figure 1). For instance,
non-antioxidant oligosaccharide-based prebiotics, when associated with probiotics, may
enhance the antioxidant properties of the mixtures [28]. When prebiotics, e.g., exopolysac-
charides (EPS), possess antioxidant activities, these bio-compounds can enhance probiotics
performance [29,30]. Another case occurs when antioxidant prebiotics serve as probiotic
substrates for producing more powerful antioxidant compounds in the formulated syn-
biotics. It is, for instance, the case of polyphenols bio-converted by Lactobacilli probiotic
strains into compounds with superior antioxidant activities such as protocatechuic acid
and catechin [31].
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The goal of this review paper is double: (1) reviewing synbiotic antioxidant properties
and action mechanisms, which are less developed and more complex, and (2) illustrating
their benefits on human and animal health through their antioxidant activities.

2. Antioxidant Properties of Synbiotics

While probiotics have long been acknowledged as beneficial to human health, particu-
larly thanks to their antioxidant properties, research into the role of synbiotic antioxidants
is still in its early stages. In fact, the effects of probiotics or prebiotics alone, and especially
the interactions of both within synbiotic preparations, are involved in the antioxidant
action mechanisms. Each component plays a vital role in neutralizing free radicals. Some
probiotics such as Clostridium butyricum MIYAIRI 588, Lactiplantibacillus plantarum CAI6,
and Lacticaseibacillus rhamnosus GG have been shown to successfully coordinate redox
homeostasis in the host cell, resulting in increased overall antioxidant capacity [16,26,32].
It is also stated that probiotics can influence the redox status of the host by their capacity
to: (i) chelate metal ions; (ii) activate the host’s antioxidant system in addition to having
its antioxidant enzyme system; (iii) create metabolites with antioxidant activity, such as
GSH and butyrate; (iv) mediate antioxidant signaling pathways; (v) regulate enzymes that
produce reactive oxygen species; and (vi) regulate the intestinal microbiota [33]. Likewise,
the antioxidant properties of prebiotics have been studied and demonstrated, for instance,
on goat milk fermented by L. plantarum L60 [34]. According to these findings, a sufficient
amount of prebiotics, e.g., inulin and FOS, can stimulate goat milk fermentation while
increasing the antioxidant activity of fermented goat milk. Furthermore, dietary fiber (DF)
and polyphenols are also able to enhance gut flora by assuming prebiotic activities [35].
These compounds are chemically and biologically active plant secondary metabolites with
several health benefits. These include the fight against oxidative stress-related issues such
as cancers, as well as cardiovascular, inflammatory, and neurological diseases. In both
chemical and nutritional investigations, DF compounds and polyphenols were tradition-
ally treated as two distinct sets of food constituent. However, there is sufficient scientific
evidence that DF transports a considerable number of phytochemicals associated to the
complex dietary matrix, primarily polyphenols [36].

2.1. Probiotic Components

Probiotics are one of the natural sources of both enzymatic and non-enzymatic antioxi-
dants. These come from intact probiotics cells [37], cell-free and intracellular extracts [20,37],
intracellular and extracellular metabolites [38], or cell wall components such as exopolysac-
charides (EPS) and proteins [39]. When antioxidants come from probiotic dead cells and
fragments, the concept of postbiotics is to be considered instead of probiotics antioxidants.
This topic is not treated in this review paper. LAB can release a large panel of metabolites
with antioxidant activity through lactic acid fermentation that depends on strains, growth
medium components, and enzymatic activity [40]. In particular, LAB are frequently used
to produce antioxidant peptides from different protein sources, including plants, animals,
marine sources, and industrial by-products [14]. Table 2 lists some identified antioxidant
compounds produced by probiotics.

Table 2. Examples of identified antioxidant molecules from probiotics.

Antioxidant Molecule Probiotic Strains Conditions and Yields References

Butyrate Lactobacillus acidophilus
MG5228

MRS broth
37 ◦C–overnight

80.70 ± 3.63 µg/g
[41]

Carotenoids
C30 carotenoid

4,4′-diaponeurosporene

Lactiplantibacillus plantarum
subsp plantarum KCCP11226

MRS broth
20 ◦C–24 h

0.74 ± 0.2 A470

[42,43]
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Table 2. Cont.

Antioxidant Molecule Probiotic Strains Conditions and Yields References

EPS

Lactobacillus helveticus MB2-1

Medium (3g MgSO4 + 80 g/L lactose + 20 g/L
soya peptone)

37 ◦C
753 mg/L

[44,45]

Streptococcus thermophilus CS6 Skimmed milk medium [46]

L. plantarum CNPC003
MRS broth + FOS

37 ◦C–24 h
568.4 mg/L

[47]

Ferrulic acid LimosiLactobacillus fermentum
NCIMB 5221

MRS + ethyl ferrulate 1.33 M
37 ◦C–24 h

0.168 ± 0.001 mg/L
[48]

Folates Enterococcus lactis BT161
MRS broth

37 ◦C–overnight
384.22 ± 5.00 ng/mL

[49]

GSH

Saccharomyces cerevisiae
KU200278 and KU200281

Yeast mold media
25 ◦C–48 h

5.55 ± 0.52 µg/mg
[21]

L. plantarum

MRS broth as a basal medium + NaCl (5%) +
H2O2 (0.05%) + sodium dodecyl sulphate (0.05%)

+ amino acids (0.0281%) + urea (0.192%)
40 ◦C–24h–pH 8

152.61 µM/g

[50]

Hyaluronic acid Strep. thermophilus TISTR 458

Yeast extract 30, K2HPO4 2.5, NaCl 2.0 and
MgSO4•7H2O 1.5 g/L, using sugarcane

molasses as carbon source
37 ± 2 ◦C–pH 6.8

213.44 ± 76.79 mg/L

[51]

Levan (EPS) Bacillus subtilis

Yeast extract 2.0g/L, KH2PO4 1.0g/L (NH4)2SO4
3.0; MgSO4.7H2O 0.06, MnSO4 0.02 and distilled

water sucrose 400 g/L 37 ◦C–16 h
111.6 g/L

[52]

Peptides

L. helveticus NK1, L. rhamnosus
F, Limosilactobacillus reuteri

LR1

Reconstituted skim milk
37 ◦C–72 h

Not determined (nd)
[53]

B. subtilis MTCC5480

Solid state fermentation; moisture 46%
inoculation size, 5.8 × 109 spore/g peptone

5 mg/g and glucose 10.7 mg/g
36 ◦C–54 days–pH 6.0

369.4 mg/gdp

[54]

Polyphenolic compounds S. cerevisiae var. boulardii
NCYC 3264

Medium containing 1% (w/v) yeast extract, 2%
(w/v) peptone, and 2% (w/v) glucose

30 ◦C–overnight
nd

[20]

Riboflavins (Vitamin B2) B. subtilis subsp. subtilis
ATCC 6051

Medium (38.10g/L fructose + 0.85 g/L MgSO4 +
2.27 g/L K2 HPO4 + 0.02 g/L FeSO4 + 4.37 g/L

yeast)
30 ◦C–72 h

11.73 ± 0.68 g/L

[55]

MRS: De Man, Rogosa and Sharpe, GSH: Glutathione, EPS: exopolysaccharide

2.2. Prebiotic Components

Most prebiotics are carbohydrate compounds, mainly oligosaccharides (e.g., FOS, GOS,
POS, XOS, inulin), polysaccharides (e.g., β-glucan, guar gum, pectins), and disaccharides
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(e.g., lactulose). Other non-carbohydrate compounds such as polyphenols, polyunsat-
urated fatty acids, and minerals also confer prebiotic activities [56]. Prebiotics such as
oligosaccharides occur naturally in dietary food products, e.g., banana, asparagus, barley,
chicory, spinach, berries, onion, mushrooms, and so on. There are also new emerging
sources of polysaccharides prebiotics such as seaweeds and microalgae [57,58]. EPS from
microorganisms namely L. plantarum exhibit prebiotic properties, which could be useful for
some probiotics [59]. According to ISAAP definition, the main health benefits of prebiotics
result from their selective utilization by host microorganisms to release several metabolites
such as short chain fatty acids (SCFAs) that influenced host physiology. Table 3 lists some
examples of prebiotics developing antioxidant properties.

Table 3. Some prebiotics with antioxidant properties.

Class Prebiotics Source Reference

Carbohydrates
Oligosaccharide POS Okra [60]

XOS Agricultural wastes (sugar
cane straw, coffee husk) [61]

Inulin Jerusalem artichoke root [62]
Neoagaro oligosaccharides (NAOS) Red algae [63]

Disaccharides Lactobionic acid Whey [64]
Polysaccharides EPS Microorganism (L. plantarum) [59]

Non-starch polysaccharides
(arabinoxylan, mannan,

arabinogalactan, glucomannan)
Wheat malt beer [65]

Non-carbohydrates
Polyphenols Anthocyanins Purple sweet potato [66]

2.3. Synbiotic Components

Synbiotics, as mixtures of live microorganisms and substrates selectively utilized by
the host microorganisms, can act in synergy or complementary for multiple functions,
including antioxidant activities, to confer a health benefit on the host [23]. Some examples
of probiotics and prebiotics associated in common synbiotics are displayed in Table 4.

Table 4. Common probiotic and prebiotic components of synbiotics [18,67,68].

Probiotic Genius Bacteria Prebiotics

Lactobacillus
Lactococcus
Leuconostoc
Enterococcus
Streptococcus

Bifidobacterium
Saccharomyces

Bacillus

Inulin
β-glucans

Fructooligosaccharides (FOS), galactooligosaccharides (GOS),
transgalactooligosaccharides (TOS)

Lactulose
Polydextose

Chicory root inulin-derived (FOS)
Wheat bran-derived arabinoxylooligosaccharides (AXOS)

Xylooligosaccharides (XOS)
Polyphenols

3. Antioxidant Action Mechanisms of Synbiotics

The mechanism underlying the antioxidant capacities of synbiotics has been linked to
their ability in activating and translocating nuclear factors. These induce the expression
of the antioxidant defence enzymatic system, produce antioxidant key molecules, and
detoxify the production of singlet oxygen and free radicals [69–71]. Recent research on
synbiotic dairy products has also revealed that they contained a variety of key vitamins
and regulators. These include water-soluble vitamins, antioxidants, and GSH, an impor-
tant tripeptide involved in the direct chemical neutralization of singlet oxygen, hydroxyl
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radicals, and superoxide radicals [69,72]. Another study on diabetic patients recently
showed that synbiotics supplementation lowered malondialdehyde (MDA) levels, a lipid
peroxidation marker [73], and increased (i) GSH levels, (ii) nitric oxide (NO), as a key
intra- and intercellular regulating molecule with a wide range of physiological effects [74],
and (iii) total antioxidant capacity (TAC), as an indicator of the amount of scavenged free
radicals [71,75].

3.1. Probiotics’ Action Mechanisms

Increasing attention has been paid to probiotics’ antioxidant performance through
numerous recent in vitro and in vivo studies. The probiotics’ antioxidant properties of
intact cells, cell-free and intracellular extracts, intracellular and extracellular metabolites,
and cell wall components have all been extensively studied [19–22,76], as illustrated in
Table 5. A list of principal methods for evaluating probiotics’ antioxidant activities are
summarized in Table 6. The in vitro methods use the capacity of probiotics to scavenge free
radicals (DPPH and ABTS scavenging assay), reduce ferric ions using the ferric reducing
power assay (FRAP), inhibit lipid peroxidation (β-carotene bleaching assay), and chelate
metals; conversely, most in vivo methods involve enzymatic assays. For instance, the
lipid peroxidation inhibition assay using thiobarbituric acid reactive substances (TBARs)
and DNA damage evaluation with luminescent biosensors is one of the most commonly
used techniques for assessing oxidative cellular damages. In this case, the lipid peroxides
produced during the oxidation of phospholipids and polyunsaturated fatty acids (PUFAs)
are degraded into MDA and 4-hydroxy-2-noneal (4-HNE), which reflect the degree of lipid
peroxidation in the body.

Table 5. Recent studies on antioxidant properties of probiotics in vitro and in vivo.

Probiotic Strains In Vitro In Vivo Reference

Lactobacillus spp.

L. acidophilus Stimulation of SOD and catalase
activities in carp [77]

Lacticaseibacillus casei NA-2

EPS from probiotics showed
antioxidant activities by scavenging

hydroxyl radicals (42% at
1.2 mg/mL), superoxide radicals

(76% at 100 µg/mL), and
2,2-diphenyl-1-picrylhydrazyl

(DPPH) (80% at 10 mg/mL) of EPS

[78]

L. fermentum JX306

Improve the activity of GPx, and TAC
in the serum, kidney, and liver of

D-galactose-induced aging
mice model

Upregulate the transcriptional level
of the antioxidant-related enzyme

genes (peroxiredoxin1 (Prdx1), GRx,
GPx1, and thioredoxin reductase

(TR3) encoding genes)

[79]

L. helveticus KLDS1.8701

Strong scavenging properties on
DPPH radical, superoxide radical,

hydroxyl radical, and chelating
activity on ferrous ions

Attenuation of oxidative status
(decrease of organic index, liver
injury and liver oxidative stress),

mitigate hepatic oxidative stress by
manipulating the gut microbiota

composition in
D-galactose-induced mice

[80]
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Table 5. Cont.

Probiotic Strains In Vitro In Vivo Reference

Lacticaseibacillus paracasei
M11-4

High radical scavenging activities,
lipid peroxidation inhibition, and

reducing power, antioxidant enzyme
activities in the cell-free extract and

bacterial suspension

Alleviate D-galactose-induced
oxidative damage in the liver and
serum of D-galactose-induced rats;

prevent D-galactose-induced changes
to intestinal microbiota in rats

[22]

L. plantarum NJAU-01

High TAC;
increase of antioxidant enzymatic

activities of SOD, GPx, and CAT in
serum, heart, and liver of mice

[81]

L. rhamnosus ARJD

Significant nitric oxide (NO)
scavenging, hydroxyl radical

scavenging activity, DPPH
scavenging activities, and reducing

power activity

Gastrointestinal stress tolerance
abilities with long resident abilities in

the host (rat)
gastrointestinal tract

[82]

L. reuteri MG505

High DPPH free radical scavenging
and 2,2′-azinobis

3-ethylbenzothiazoline-6-sulfonate
(ABTS) radical scavenging

[83]

Bifidobacterium spp.

B. adolescentis MC-42 Lower oxidative process in
hypoxified rat brain tissues [84]

B. animalis subsp. lactis MG741 High DPPH free radical scavenging
and ABTS radical scavenging [83]

B. breve MG729 High DPPH free radical scavenging
and ABTS radical scavenging [83]

B. longum LTBL16 DPPH scavenging ability and oxygen
resistance [85]

Bacillus spp.

B. coagulans MTCC5856 DPPH radical scavenging activity;
intracellular ROS scavenging activity [86]

B. subtilis AF17
DPPH radical-scavenging capacity;

reducing power;
strong total antioxidant activity

[87]

B.amyloliquefaciens ssp.
plantarum IMV B-7143

Stabilisation of the DPPH radical to
its neutral form

Protection of stress-damaged rat
hepatocytes [88]

Saccharomyces spp.

S. cerevisiae KU200278 and
KU200281 Protection against DNA damage [21]

S. cerevisiae var boulardii DPPH radical scavenging activity [20]

Streptococcus spp.

Strep. thermophilus YIT 2001
(ST-1)

Strong anti-oxidative activity against
low-density lipoprotein (LDL)

oxidation, high level of intracellular
GSH, and anti-oxidative activity

against LDL oxidation in
hyperlipidaemic hamsters

[89]
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Table 5. Cont.

Probiotic Strains In Vitro In Vivo Reference

Clostridium spp.

C. butyricum

High intestine antioxidant enzyme
(SOD, CAT, and GPx) activity and

gene (hsp70 and ferritin) expression
levels in shrimp fed with probiotics

[90]

Table 6. Principal methods used to evaluate probiotic antioxidant activities.

Methods Reference

Oxygen radical absorbance capacity (ORAC assay) [91,92]

Total antioxidant activity (TAA) [93]

Reducing antioxidant power
FRAP (ferric ion reducing antioxidant potential) [94]

Lipid peroxidation inhibition assay
TBARS assay or MDA assay
β-carotene bleaching assay

[95]

Radical scavenging assay
DPPH radical scavenging activity
ABTS radical scavenging activity

[94,96]

Non-radical reactive oxygen species scavenging assay
Hydrogen peroxide scavenging activity [97]

Metal chelating capacity
FRAP assay [93]

Several modes of action, including scavenging free radicals, increasing antioxidant
enzymes levels, chelating metal ions, enhancing host antioxidant metabolites (vitamin B12,
GSH, folates, etc.), regulating and mediating of host antioxidant signalling pathway or
modulating the microbiota, have been proposed [23]. Most antioxidant properties result
from the multiple antioxidant abilities. Nevertheless, two antioxidant action mechanisms
of microbial probiotics’ enzymatic and non-enzymatic activities can be distinguished for
directly inactivating reactive species. These are achieved through a rapid and sensitive
oxidative stress response by increasing the activity of endogenous antioxidase enzymes,
excreting metabolites (e.g., EPS, vitamins B12, GSH, folates, compounds with radical
scavenging ability, etc.), and chelating prooxidant (e.g., ferrous and copper ions). These
metal ions are involved in hydroxyl radical formation by decomposing hydrogen peroxide
through Fenton catalysts [22]. Probiotics have also been reported to indirectly control
the oxidative stress of the cell host by enhancing antioxidase activity [81], reducing ROS
producing enzymes, and regulating the antioxidant signalling pathway [22,79]. As an
illustrative example of action mechanisms, SODs are LAB’s important multimeric antiox-
idant metalloenzymes for which MnSOD is more predominant than FeSOD, CuSOD, or
ZnSOD [23]. These enzymes catalyse the transition of O2

− into H2O2. L. fermentum and L.
paracasei strains are among LAB exhibiting high SOD activities in vitro and in vivo [98,99].
Another enzyme-based probiotic antioxidant is the heme-dependent CAT that catalyses
the decomposition of H2O2 to H2O and O2. Although Lactobacilli are CAT-negative probi-
otics, due to their inability to synthesize heme, CAT activities are stimulated by the heme
autolysate of B. subtilis in co-culture with Lactobacilli [100]. GPx produced by L. plantarum
under optimal conditions [101] can also reduce oxidised glutathione, which is responsible
for DNA breakage, protein denaturation, and lipid peroxidation. Probiotics can also stim-
ulate the host’s antioxidant system of the host by increasing the efficiency of antioxidase
activities, regulating ROS-producing enzymes such as NADPH oxidase, or regulating
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antioxidant signalling pathways [26,39,91]. L. plantarum Y44 exerted antioxidative effects
by scavenging oxygen free radicals and activating the nuclear factor-erythroid 2-related
factor-2 (Nrf2) signalling pathway in Caco-2 cells, thus protecting against damage caused
by 2,2′-azobis(2-methylpropionamidine) dihydrochloride (ABAP) [91]. L. helveticus and
L. plantarum induced changes in renal protein expression level of SOD1, SOD2, and CAT
in a rat model, leading to an improvement in specific metabolic parameters and renal
antioxidative enzymes in a fructose-induced metabolic disorder [102]. L. plantarum Y44
may alleviate oxidative stress by modulating the gut microbiota composition [103]. This
strain induced change in microbiota composition, glycerophospholipid levels, and oxida-
tive stress-related indicators. Probiotics can also help the host’s antioxidant system defence
by producing and releasing antioxidant metabolites [41,47].

3.2. Prebiotics’ Action Mechanisms

Antioxidant activities of some prebiotics have been reported in the literature [59–62].
Plant-based XOS and POS have the ability to scavenge DPPH and ABTS radicals. Inulin
from Jerusalem artichoke root had low DPPH radical scavenging activity, ABTS radical
scavenging activity, and ferric reducing power, but significantly improved the antioxidant
status of laying hens with a prebiotic supplemented diet, i.e., caused an increase of the
enzyme antioxidant activities of SOD, CAT, and GSH-Px. Glucan-based EPS produced
by L. plantarum have free radical scavenging activities. These activities are attributed
to the presence of a hydroxyl group and other functional groups capable of donating
electrons to reduce the radicals to a more stable form, or to react with the free radicals to
terminate the radical chain reaction. Oligosaccharides have the ability to scavenge different
radicals, such as DPPH and ABTS radicals. The hydroxyl groups in positions C-2 and
C-6 in oligosaccharides are involved in H-atom transfer reactions with these radicals [104].
NAOS obtained by enzymatic degradation from red algae polysaccharides demonstrated
antioxidant activities depending on the degree of polymerisation [63].

3.3. Synbiotics’ Action Mechanisms

Taking into account the probiotic and prebiotic combinative effects, either in a com-
plementary or in a synergistic way, there is growing evidence to suggest the antioxidant
activities of synbiotics, with a few illustrative examples in human and animal species.

Lactobacillus and Bifidobacterium strains are thought to be the most significant probi-
otics involved in synbiotic antioxidant activities [105]. It has been found that synbiotics
combining L. casei and inulin were efficient substances that protected the human body from
the damage caused by free radicals. Synbiotics may improve blood plasma antioxidant
capacity and the activity of certain antioxidant enzymes [106].

Relevant study has been led on a synbiotic combining the multistrain probiotics VSL#3
(four strains of Lactobacillus, three strains of Bifidobacterium, and one strain of Streptococcus)
with the yacon-based product PBY, which contains high concentrated prebiotics FOS and
inulin. The probiotics VSL#3 and the synbiotic VSL#3 with PBY had a high ability to trap
DPPH radicals in vitro and in vivo, as evidenced by a considerable decrease in hepatic
oxidative stress indicators and enhanced catalase activity [33].

Two recent meta-analyses showed that synbiotic supplementation was linked to
enhanced antioxidant resistance and antioxidant enzymes. TAC, GSH levels, SOD, and NO
levels were all higher with synbiotic (and probiotic) consumption compared to the controls,
but MDA levels were lower [107,108].

Moreover, a clinical trial on patients with type 2 diabetes has been conducted to
study the effect of consumption of synbiotic bread containing L. sporogenes and inulin
by measuring antioxidant parameters before and after the intervention. Their results
indicated that the consumption of synbiotic bread decreased MDA significantly, while TAC,
chloramphenicol acetyltransferase (CAT), and GSH remained unchanged [109].

The antioxidant activity of synbiotic supplementation has also been studied in women
with migraines, revealing that synbiotic supplementation of 109 CFU of 12 kinds of probi-
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otics with FOS prebiotic for 12 weeks improved oxidative stress, including TAC and NO,
and migraine clinical symptoms [110].

Another study concluded that a diet supplemented with organic Zn and a synbiotic
combination delayed the lipid oxidation process in piglets throughout the refrigeration
phase [111]. It has also been shown that the consumption of synbiotics boosted the an-
tioxidant defense system and reduced lipid peroxidation in the liver of rats by enhancing
antioxidant enzymes’ activity and limiting the development of MDA in the liver [112].

4. Applications to Human Health

Synbiotic products can be beneficial to the intestinal or extra-intestinal microbial
ecosystems of animal and human species through feed additives, foods, non-foods, nutri-
tional supplements, or medications [24].

Beneficial effects of probiotics and synbiotics on oxidative stress-related chronic dis-
eases are generally attributed to their antioxidant properties, alleviating the oxidative stress
in organs and DNA damage, reducing inflammation, or enhancing the immune response
(Figure 2).
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4.1. Antioxidative Stress

Oxidative stress is “an imbalance between oxidants and antioxidants in favour of
the former, leading to a disruption of redox signalling and control, and/or molecular
damage” [113]. It defines an imbalance condition of the natural defence system prooxidant–
antioxidant in cells, i.e., when the total oxidant levels exceeds total antioxidant capacity,
resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apopto-
sis [26]. In biological systems, principally endogenous ROS such as superoxide radicals
(O2
−◦ ), hydroxyl radicals (◦OH), hydrogen peroxide (H2O2), and lipid peroxide produced

during the process of cellular metabolism have been identified to induce these oxidative
damages [1]. Other reactive species, namely endogenous RNS such as NO, have been
found to produce a deleterious effect on biological systems. Exogenous ROS from exposure
to external factors such as pollution, radiation, drugs, bacterial infection, or excessive iron
intake are also responsible for oxidative stress [114]. Living cells have a natural defence
mechanism to encounter oxidative stress. In order to neutralize the reactive species, biolog-
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ical systems are able to synthesize and release antioxidants such as glutathione and vitamin
C, or antioxidant enzymes such as SOD, CAT, and peroxidases [13].

ROS, including superoxide anions, hydroxyl radicals, and hydrogen peroxides, are
critical signaling molecules with important roles in many diseases. A variety of chronic
and degenerative diseases, as well as the aging process, but also acute pathologies such as
neurodegenerative diseases, cancers, cardiovascular diseases, and chronic inflammation,
may be attributed to the oxidative stress phenomenon. Both endogenous and exogenous
ROS cause oxidative modification of cellular macromolecules (carbohydrates, lipids, pro-
teins, and DNA), leading to lipid peroxidation, protein misfolding and aggregation, DNA
damage, and mutations. There are two major mechanisms through which oxidative stress
contributes to diseases. The first involves the production of reactive species during oxida-
tive stress, particularly •OH, ONOO−, and HOCl- that directly oxidize macromolecules,
including membrane lipids, structural proteins, enzymes, and nucleic acids, leading to aber-
rant cell function and death. The second mechanism of oxidative stress is aberrant redox
signalling [115]. The involvement of free radicals in neurodegenerative diseases is largely
reported in the literature. Owing to the high consumption of oxygen and enrichment in
PUFA, the brain is the most vulnerable part of the body. ROS causes a damaging effect
on neurons and accumulates in the brain, resulting in neurodegenerative diseases [116].
The central role of mitochondrial ROS and heart disease is highlighted by a number of
genetic models in which the modulation of either mitochondrial ROS production pathways
or mitochondrial ROS scavenging systems has a significant impact on cardiac physiology
and the development of cardiac diseases [117].

The anti-oxidative stress effects of consumption of a probiotic mix (B. longum CECT
7347, L. casei CECT 9104, and L. rhamnosus CECT 8361) for 6 weeks have been observed in
male cyclists under high-intensity and duration physical exercises. The reduction of lipid-
related oxidative stress biomarkers, such as serum MDA, serum oxidized low-density
lipoprotein (Ox-LDL), and DNA-related oxidative stress biomarkers, such as urinary
8-hydroxy-2′-deoxyguanosine (8-OhdG), is not attributed to the increase in antioxidant
enzymes [118].

In Alzheimer’s patients, a continuous dietary supplementation of synbiotic kefir milk
had a positive effects on systemic oxidative stress and led to a significative decrease in
protein oxidation [119].

4.2. Anti-Aging Effects

The free radical theory of ageing (FRTA) states that the organism ages because of
free radical-induced cell damage accumulation over time [120]. There is evidence that
probiotics and synbiotics are effective in counteracting oxidative stress and DNA damage
in cells. L. plantarum GKM3 delayed the process of aging, alleviated age-related cognitive
impairment, and reduced oxidative stress in mice models [121]. Recent findings suggest that
L. plantarum JBC5 activated the p38 MAPK pathway and its downstream targets in worms
(Caenorhabditis elegans) to enhance longevity by improving stress resistance, immunity, and
other age-associated pathologies [122]. Other probiotics, such as B. amyloliquefaciens B-1895
and B. subtilis KATMIRA1933 also induce DNA protective and antioxidant activity [123].

The effects of the synbiotic composed of L. fermentum probiotic bacteria and the green
tea epigallocatechin gallate (EGCG) on immune rejuvenating effects during aging in aged
Swiss albino mice showed evidence of additive effects in the amelioration of oxidative and
inflammatory stress-induced cell death. In vivo supplementation of synbiotics significantly
enhanced neutrophil oxidative index, CD3+ cell numbers and activation status, Th1/Th2
cytokines in splenic supernatants, as well as liver Nrf-2 expression compared to treatments
with L. fermentum or EGCG alone [67].

4.3. Heavy Metal Anti-Toxicity Effects

The detoxification role of probiotics caused by heavy metals has been largely related
in the literature to their heavy metal surface binding capacity [124]. Recent findings also
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highlight their role in heavy metal antitoxicity. For instance, Bifidobacterium sp. MKK4
and its synbiotic rice fermented beverage prevented arsenic toxicity by inducing higher
levels of SOD and CAT, and reduced GSH in rat models [125]. Protective actions against
mercury toxicity of two synbiotic diets (B. coagulans and L. plantarum with inulin) in rat
models have been shown effective in reducing mercury content in the animal kidney and
liver through chelation mechanisms [126].

4.4. Prevention and Treatment of Chronic Diseases

Several clinical studies suggest that probiotics and synbiotics may be helpful for
preventing and treating various diseases [68]. There is evidence that probiotics/synbiotic
supplementation is effective in reducing oxidative stress levels, and thus preventing or
ameliorating diabetes, cardiovascular disease, cancer, and other chronic diseases. A meta-
analysis on the effects of probiotics/synbiotic supplementation compared to placebo on
biomarkers of oxidative stress such as TAC, GSH, MDA, and NO in adults highlighted
a significant increase in serum GSH, NO, and TAC, and a significant reduction of MDA
levels in the body by probiotics/synbiotic supplementation [127]. Some recent studies on
the beneficial effects of antioxidant properties of synbiotics are summarized in Table 7.

Among examples of LAB probiotics’ effects on diseases, L. salivarius AP-32 supple-
mentation in rats with 6-hydroxydopamine (6-OHDA)-induced Parkinson’s disease en-
hances the host antioxidant enzymes’ activity and SCFA production, inducing protection
of dopaminergic neurons, and improvement of motor functions. The supplements also
modulate faecal microbiota composition. Some specifically enriched commensal taxa cor-
relate positively with SOD, GPx, and CAT activity, indicating that supplementation also
promotes antioxidant activity via an indirect pathway [128]. L. plantarum 200655 exhibits
radical scavenging activity and lipid peroxidation inhibition activity [96]. An enhancement
of immunity was observed on macrophage-like RAW 264.7 cells, which was correlated to a
high NO production and high cytokine production of IL-1b and IL-6. Recent similar results
have been noticed in novel probiotics such as Levilactobacillus brevis KU15147 isolated from
radish kimchi. The strains exerted immune-enhancing effects in the stimulation of RAW
264.7 cells, and showed higher cytokine production of inducible NO synthase (iNOS) and
tumour necrosis factor-α (TNF-α), in comparison with non-stimulated control cells with
LPS [129]. The protective effects of LAB on cisplatin (CP)-induced renal damage have been
also observed and attributed to the anti-inflammatory and antioxidant properties of probi-
otics by decreasing oxidative stress, inflammation, apoptosis, DNA, and histopathological
damage in rat kidney tissue [130].

Other probiotic genera such as Streptococcus and Bacillus have positive effects on
diseases due to their antioxidant properties. S. thermophilus YIT 2001 has been shown in
a clinical trial to have inhibitory effects on the oxidation of LDL and the development of
aortic fatty lesions in an animal model. Such probiotics have the ability to lower the serum
levels of MDA-modified LDL, an oxidative modification product of LDL. The intracellular
reduced GSH has been associated with the antioxidant activity against LDL oxidation in a
hyperlipidaemia hamster model [89]. B. amyloliquefaciens ssp. plantarum IMV B-7142 and
B. amyloliquefaciens ssp. plantarum IMV B-7143 have hepatoprotective effects against the
toxic effects of carbon tetrachloride (CCl4) [88].

Concerning the effects of synbiotic supplementation on health, the combination of
LAB with fiber (inulin, β-glucan) and oligosaccharides (FOS, XOS) is the most studied.
One relevant example is the probiotics mix VSL3 # and its synbiotic association with yacon-
based product rich in FOS and inulin, and their protection effects on mucosa from damage
caused by chemical carcinogen and reduced intestinal permeability in mice induced to
colorectal carcinogenesis. The CAT enzyme activity increases in synbiotic and probiotic
groups compared to the control group, while the oxidative stress biomarkers such as MDA
and carbonylated protein decreases [33]. One study evaluated the effect of the synbiotic
composed of probiotic B. infantis and the prebiotic XOS against ulcerative colitis in colitis-
induced mice compared to probiotics or prebiotics alone. All treatments significantly
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inhibited oxidative stress and downregulated the pro-inflammatory cytokines TNF-α
and interleukin-1β (IL-1β), and synbiotic treatment significantly upregulated the anti-
inflammatory cytokine interleukin-10 (IL-10) in the colon tissues. The synbiotic treatment
has been the most efficacious in decreasing the disease activity index and pathological scores
against colitis, explained by the additive combination of the direct anti-inflammatory effects
of the probiotics and prebiotic components, and their ability to fortify colonic epithelial
barrier integrity [131]. The anti-inflammatory and antioxidant effects of the probiotics
L. rhamnosus GG, the prebiotic oat β-glucan (OAT), and synbiotics (OAT + L. rhamnosus GG)
against high-fat diets have also been evaluated in mice by examining the fatty acid profiles
and oxidized PUFA in the gut–liver–brain axis. The synbiotic composed of L. rhamnosus
GG and OAT synergistically attenuated the increase in non-enzymatic oxidized products
in mice fed with high fat diet, indicating their synbiotic antioxidant property [132]. The
original synbiotic association of L. acidophilus and cinnamon powder, as well as each
component, induced a moderate increase in the level of antioxidant enzymes in patients
with type 2 diabetes, the most significant change being observed within the probiotics
group [133].

Table 7. Some beneficial effects of antioxidant properties of synbiotics on human health.

Synbiotics Effects References

Diabetes
L. acidophilus + cinnamon

powder Increase of antioxidant enzymes [133]

L. acidophilus, L. casei, and B.
bifidum (6× 109 total CFU/g
each) + 0.8 g/day of inulin

Increase of total antioxidant capacity and total
GSH levels in diabetic patients under
hemodialysis

[134]

Intestinal permeability Multi-strain VSL3 # + FOS

• Increase of catalase activity
• Protection of the mucosa from damage

caused by chemical carcinogen and
reduction of intestinal permeability

[33]

Ulcerative colitis B. infantis + XOS

• Inhibition of oxidative stress
• Downregulation of the proinflammatory

cytokines TNF-α and IL-1β
• Upregulation of the anti-inflammatory

cytokine IL-10 in the colitis-induced mice
colon tissues

[131]

Immune systems L. lactis SG-030 + GOS

• Increase of the expression of tissue necrosis
factor-α, interleukin (IL)-1β, IL-6, and
iNOS synthase genes

• Increase the expression of P38, extracellular
signal-regulated kinases, c-Jun N-terminal
kinases, phosphoinositide 3-kinase, and
Akt proteins

[135]

Hypercholesterolemia L. fermentum MTCC +
5898-fermented buffalo milk

Reduced oxidative stress and inflammation in
male rats fed with cholesterol-enriched diet [136]

5. Applications to Animal Health

Probiotics and synbiotics are potential bioagents that can be used to treat any veteri-
nary animal disease, or simply improve their health. The following section discusses the
applications of probiotics and synbiotics in instances where scientific evidence supports
their use for their antioxidant properties, or to meet other needs for each main group of
farming animals.
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5.1. Poultry

Probiotics and synbiotics are used in feed additives to enhance the effectiveness of
nutrients and improve poultry’s performance [137]. Probiotics have the ability to substitute
antibiotic growth promoters (AGP), which are commonly utilized by poultry farmers today.
They aim to keep broiler chicks healthy and enhance their development potential. AGP
in feed has been linked to intestinal bacterial resistance, as well as antibiotic residues, in
broiler chicken meat. As a result, practically every country in the world today prohibits the
use of AGP.

In poultry, a range of bacteria and yeast species have been studied and utilized as
probiotics. The majority of the research was focused on analyzing the benefits of probiotics
in lowering the number of pathogenic bacteria in the gastrointestinal tract (GIT), as well
as the effects of probiotics on boosting growth and performance in disease-free chickens.
In broiler chickens, adding a single or multistrain of Lactobacillus sp. to broiler chicken
feed increased their body weight and feed efficiency. Probiotics based on Bacillus sp. have
also been proven to be beneficial in chicken diets and were found to promote animal
growth [138]. A study was conducted to see the effect of a multispecies probiotic-based
feed containing Lactococcus lactis, Carnobacterium divergens, L. casei, L. plantarum, and S.
cerevisiae on the reduction of Campylobacter spp. infection rates in broiler chickens raised
on a commercial farm. The results of this study demonstrated that adding probiotics
(Lavipan) to a broiler chicken feed reduced the extent of Campylobacter spp. invasion
in the birds’ gastrointestinal tract and, as a result, reduced contamination levels in the
birds’ environment, contributing to improved hygienic parameters of the analyzed poultry
carcasses. Furthermore, probiotics showed promising immunomodulatory capabilities,
which might help increase the efficacy of a particular prophylactic program used in a flock of
broiler chicks [139]. Another study looked at the impact of screened LAB strains on broiler
chicken development, humoral immunity, and IGF-1 gene expression. In comparison to
the control group, probiotic diets significantly improved feed conversion ratio, increased
body weight, and raised carcass relative weight. The lymphocyte count was also much
higher, while serum triglycerides and total cholesterol levels were significantly lower.
Lactobacillus spp. populations increased substantially, while Escherichia coli populations
decreased significantly, and the expression of the IGF-1 gene in broiler liver tissue was
significantly increased compared to the control group [140]. A study was carried out to
examine the competitive exclusion of Campylobacter jejuni in poultry gut by three potential
probiotic Lactobacilli strains [141]. L. gallinarum PL 53 was found to be an effective probiotic,
exhibiting competitive exclusion of C. jejuni and significantly lowering microbial load in an
in vivo trial experiment, as well as maintaining the overall health of the gut microbiota by
preventing a variety of potential foodborne pathogens. At the primary production stage,
L. gallinarum PL 53 inhibited C. jejuni colonization. However, a recent study evaluated the
effects of two commercial probiotics (Pro-Biotyk and Em-15, EMFarma™) on body weight,
feed intake and conversion, carcass characteristics, and microbial contamination in a hen
house. The probiotic formulations resulted in an insignificant increase in body weight,
feed intake, and feed conversion ratio after 4 weeks of growing the chickens, as well as
an insignificant decrease in chicken mortality. Pre-slaughter body weight, carcass weight,
dressing percentage, and carcass component composition were not substantially different in
probiotic-fed chickens. When compared to control chicken carcasses, experimental chicken
carcasses had a smaller proportion of breast muscle, leg muscle, abdominal fat, and neck,
as well as a larger percentage of skin with subcutaneous fat, wings, and the remainder of
the carcasses [142].

Regarding the mechanisms of action, lipid peroxidation is one of the most common
causes of meat quality degradation in chicken, and it can (i) reduce nutritional value,
(ii) produce taste and texture issues, and (iii) change the look of the meat [143]. MDA is the
major end product of ROS lipid peroxidation, and its accumulation is commonly employed
to assess the lipid oxidation rate in poultry meat. Supplementing with a synbiotic reduced
MDA accumulation in the thigh muscle and fought against meat oxidation, thus improving
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meat quality and shelf life [144]. Likewise, after 30 days of storage at 4 ◦C, the value of
TBARs in thigh meat decreased linearly as the synbiotic inclusion concentrations in the
meals increased [145]. Furthermore, it was discovered that a synbiotic-supplemented diet
reduced MDA levels in broilers. The addition of bee pollen and propolis extracts in feed
mixtures, in combination with probiotics added into drinking water for broiler chickens,
also reduced oxidative processes in the breast and thigh muscles during 7-days of chilling
storage [146,147].

Due to the availability of their specific substrate for fermentation, synbiotics can
improve the survival of the health-promoting microorganisms in birds’ guts, and may
have a positive impact on feed absorption and utilization, daily body weight increase,
and meat and egg quality [148]. Synbiotics also provide clinical benefits for chickens;
these benefits include inhibiting the proliferation of pathogenic bacteria, maintaining the
intestinal barrier, modulating immune function, and fighting diarrhea [149]. A dietary
supplementation with synbiotic or synbiotic plus organic acid can be used as a potential
tool to improve growth performance and reduce carcass Salmonella in broilers [150]. As an
alternative to antibiotics, the addition of turmeric and synbiotic combination in the diets
positively influenced haemato-biochemical parameters and comparative economics with
reduced mortality of the broiler [151]. Another study sought to determine the impact of
newly developed synbiotic preparations on chicken performance, and found that synbiotics
had a positive impact on chicken performance parameters, as well as an increase in the
number of beneficial bacteria and a reduction in the growth of potential pathogens in the
gastrointestinal tract. In the excreta of broilers, synbiotics increased the concentrations of
lactic acid and short chain fatty acid (SCFA), while decreasing the concentration of branched
chain fatty acid (BCFA). These findings revealed that the studied synbiotics had a positive
impact on the intestinal microbiota, metabolism, and broiler chicken performance [152].

5.2. Pigs

Maternal probiotics or synbiotic supplementation to sows during gestation and lacta-
tion significantly enhanced their systemic and intestinal antioxidant capacity, improved
mitochondrial biogenesis, and altered the jejunal and colonic bacteria communities in
offspring piglets [153]. Furthermore, a correlation analysis indicated that the abundances
of antioxidant enzymes and mitochondrial biogenesis-related indices were strongly linked
with jejunal and colonic microbiota abundances. Another recent study investigated the
effect of a synbiotic on the oxidative stability of lipid in piglets meat, concluding that
the diet supplemented with organic Zn and a synbiotic mixture contributed to the delay
of the lipid oxidation process of the shoulder and ham samples during the refrigeration
period [111].

In addition to their antioxidant properties, probiotics and synbiotics can be of help
in other aspects of pig health. In fact, weaning, as it is now practiced, is one of the most
crucial phases for pigs, as it is marked by a decrease in food consumption, which can lead
to severe anorexia, increase susceptibility to digestive diseases, development delays, and
microbial infections. Alterations in the dietary substrate cause significant changes in the
intestine’s functioning. Positive alternatives appear to be S. cerevisiae yeasts, their cell walls,
or extracted fractions. When employed in piglets’ diet, they can promote growth, activate
the immune system, maintain the balance of digestive microflora, and limit bacterial
adhesion to intestinal epithelial cells. For swine, yeast or yeast derivatives might be a
viable alternative to antibiotic growth boosters [154]. Live yeast (LY, S. cerevisiae strain
CNCM I-4407, 1010 CFU/g) or S. cerevisiae coupled with ZnO (LY-ZnO) could replace
antibiotics by increasing pigs’ average daily gain, serum IgA, IgG, SOD, fecal butyric
acid, and total volatile fatty acid concentrations, and decreasing feed conversion ratio
and diarrhea rate compared to the control group [155]. A similar study was conducted
to see how incorporating the yeast S. cerevisiae or its cell wall fraction into weanling
piglet diets affected growth performance, food utilization, and several morphological and
immunological characteristics. Overall, yeast diets resulted in increased weight growth
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and ultimate body weight, as well as an improved feed:gain ratio. The addition of yeasts
or yeast cell walls reduced the frequency of intraepithelial lymphocytes while increasing
VFA synthesis and acetate percentage, resulting in improved piglet productivity after
weaning [156]. In a recent study, pigs’ longissimus thoracis (LT) was examined by ref. [157].
After a 175-day dietary treatment with L. reuteri 1 (LR1) and antibiotics (olaquindox and
aureomycin), results showed that LR1 (i) reduced drip loss and shear force, (ii) increased
inosinic acid and glutamic acid, which may improve flavor, and (iii) changed muscle fiber
properties, all of which improved pork quality when compared to the use of antibiotics.
Dietary supplementation with live yeast S. cerevisiae to sows and piglets throughout late
gestation, suckling, and postweaning periods can help reduce the length and severity of E.
coli-induced postweaning diarrhea. In yeast-fed weaned piglets, reduced infection-related
stress and severity of diarrhea can improve growth performance in the pre-weaning phase.
S. cerevisiae (strain CNCM I-4407) could be used to prevent and treat postweaning diarrhea.
In addition, S. cerevisiae can reduce, in porcine intestinal epithelial cells, the inflammatory
responses generated by F4+ enterotoxigenic E. coli [154]. A recent study found that a
low-nutrient-density diet supplemented with a probiotic mixture improved the growth
performance, faecal microbial content, and faecal gas emission of weaner pigs [158].

5.3. Ruminants

In contrast to chickens and pigs, studies on probiotic and synbiotic antioxidant capaci-
ties in ruminants have received less attention. However, in sheep, goats, and cattle, oral
probiotic supplementation has been demonstrated to boost feed intake, daily weight gain,
and overall weight gain [159]. In dairy cows, probiotics containing live yeast boosted food
intake, improved feed efficiency, average daily gain and total weight, and increased milk
yield and quality [159,160]. In a more recent study, the effects of probiotics and prebiotics
alone or in combination in the diet of lambs finished under subtropical climate conditions
have been tested [161]. These researchers found that supplementing finishing lambs with
probiotics and prebiotics in subtropical climates may assist in reducing the unfavorable
effects of high ambient heat load on dietary energy utilization. Lambs fed with probiotic
and/or prebiotic-based supplements showed higher gain efficiency and a lower ratio of
observed-to-expected diet net energy compared to controls, with little influence on carcass
features, whole cuts, or visceral mass. Supplemental prebiotics were found to be more
effective than probiotics ones under the conditions used in this study, but the combination
of the two resulted in a larger response in live weight growth. A similar study conducted
on goats to evaluate the effects of S. cerevisiae, C. butyricum and their combination on rumen
fermentation and growth performance of heat-stressed goats showed that supplemental
probiotics may be an efficient way to reduce the negative effects of heat stress [162].

5.4. Aquaculture

Under stressful situations, fish experience oxidative stress, resulting in the formation
of reactive oxygen metabolites and peroxides that cause lipid peroxidation and excessive
MDA production [163]. High levels of MDA threaten the functionality of body tissues
and cells and pose a risk of DNA damage [164]. A diet of Pediococcus acidilactici (PA) and
pistachio hulls-derived polysaccharide (PHDP) with PA used as a synbiotic reduced MDA
levels in Nile tilapia, thus improving the diet’s antioxidant capacity [165]. Ahmadifar and
collaborators also discovered that zebra fish (Danio rerio) fed with dietary PA have higher
antioxidative ability [166].

In addition to their evident antioxidant effects, probiotics and synbiotics can promote
animal health as antioxidants through indirect action mechanisms. Owing to their capacity
to improve two fundamental critical variables of growth performance and disease resistance,
contemporary probiotic bacteria may easily fulfill the demands of sustainable aquaculture
development [167]. Lactobacillus sp. used as probiotics simultaneously eliminate nitrogen
and pathogens from polluted shrimp farms [168]. In fact, nitrogenous compounds provoke
concerns in the aquaculture system because they are known to be extremely hazardous, and
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cause mass mortality [169]. It has been shown that some commercial probiotics (AquaStar®,
EM®, and MicroPan®) used as water additives can enhance water quality, fish performance,
blood biochemistry, immunity, and up-regulate the expression of growth-related genes
in Nile tilapia [170]. Table 8 summarizes the different applications of evident synbiotic
antioxidant activities in animal health.

Table 8. Some antioxidant effects of synbiotics on animal health.

Subject Synbiotics Main Outcome Reference

Poultry

S. cerevisiae +
Mannanoligosaccharides (MOS)

Increased weight gain, reduced E. coli numbers in
the small intestine and cecal digesta. [171]

Biomin®IMBOa
Improved body weight gain and feed conversion
ratio, and protected against coccidiosis. [172]

B. subtilis, B. licheniformis, C.
butyricum + yeast cell wall, + XOS

Increased average daily gain and breast yield,
decreased feed/gain ratio and abdominal fat, and
reduced MDA concentration in the thigh muscle,
resulting in high-quality, oxidatively stable meat.

[143]

L. acidophilus, B. thermophilus, B.
longum, Streptococcus faecium +

prebiotics

Increased serum overall total antioxidant capacity,
and decreased serum total oxidant status and
homocysteine concentrations.

[173]

B. subtilis + XOS + MOS
Increased daily weight gain; feed efficiency; villus
height; intestinal mucosa secretory IgA content;
and antioxidant capabilities.

[145]

L. acidophilus + garlic extract Improved performance, intestinal health,
antioxidants and nutrient digestion. [174]

B. subtilis + FOS Improved average daily growth, FCR, reduced
incidence of diarrhea and mortality. [175]

Pigs

L. plantarum—BiocenolTM LP96
(CCM 7512), L.

fermentum—BiocenolTM LF99
(CCM 7514) + flaxseed

Decreased lactate dehydrogenase leakage in the
tissue extracts, and improved the immune status
and the integrity of jejunum mucosa during
infection.

[176]

Enterococcus faecium, L. salivarius,
L. reuteri, Bifidobacterium

thermophilum + inulin

Decreased relative abundance of Escherichia in the
ileum, cecum, and colon, and increased
bifidobacterial numbers in the ileum.

[177]

L. plantarum + maltodextrin
and/or FOS

Reduced counts of E. coli O8:K88 in the jejunum
and colon of piglets, and increased acetate
concentrations in the ileum and colon.

[178]

BiominR IMBO Pro/prebiotic,
BIOMIN, GmbH Austria

Delayed the lipid oxidation process of the shoulder
and ham samples during the refrigeration period. [111]

Ruminants

Ent. faecium + lactulose
Decreased the ileal villus height, the depth of the
crypts in the cecum, and the surface area of lymph
follicles from Peyer’s patches.

[179]

Strep. faecium + MOS
Improved fecal consistency and reduced the fecal
score of calves without reducing in the number of
scour episodes.

[180]

Bioformula®
Improved average daily weight gain digestibility
of dry matter and neutral detergent fiber and
improved animal health.

[181]

S. cerevisiae + Inulin

Increased pH in rumen, abomasum, and intestines,
positively impacted the development of almost all
morphological structures of rumen saccus dorsalis,
rumen saccus ventralis, and intestine.

[182]
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Table 8. Cont.

Subject Synbiotics Main Outcome Reference

Aquacuture

Ent. faecalis + mannan
oligosaccharides and
polyhydroxybutyrate

Improved the growth performance and immune
response of rainbow trout. [183]

B. subtilis WB60 + MOS
Improved growth performance, nonspecific
immune responses, and disease resistance in
Japanese eel.

[184]

Pediococcus acidilactici + mannan
oligosaccharides

Reduced MOS-induced gut humoral
proinflammatory response by increasing the
expression of some cellular-immune
system-related genes, and reduced fish mortality
after V. anguillarum infection.

[185]

Ped. Acidilactici + pistachio hulls
derived polysaccharide

Enhanced skin mucus and blood immune
responses, upregulated immune-related genes
expression, increased intestinal SCFAs content, as
well as promoted antioxidative capacity.

[165]

6. Conclusions

Synbiotics combine probiotics and prebiotics in mixed preparations. They are sub-
stantial natural and exogenous sources of antioxidants through fermented foods, feeds,
and diet supplements. They are used for preventing, and even treating animal and hu-
man age-related diseases. Probiotic and prebiotic antioxidant activities arise from various
metabolites and compounds, including cell components, fragments, and extracts. On the
other hand, synbiotics’ antioxidant capacities are the consequences of microbial probi-
otics, compound prebiotics, or both activities, through complementary or/and synergistic
interactions. Their common action mechanism is to directly or indirectly neutralize oxida-
tive agents, causing oxidative stress. In its turn, oxidative stress leads to many diseases,
owing to fast aging within animal and human cells. Probiotics develop enzymatic and
non-enzymatic antioxidant mechanisms for inactivating reactive species by increasing the
activity of endogenous antioxidase enzymes, excreting metabolites such as EPS, vitamins
B12, GSH, folates, with radical scavenging ability, or chelating prooxidant metal ions.
For synbiotics where live probiotics are combined with prebiotic substrates, antioxidant
activities may result from almost unlimited possibilities, owing to the variety of existing
microorganisms and substrate sources, but also to the cell factory roles of probiotics. Either
combined with antioxidant prebiotics or not, live microorganisms are able to convert sub-
strates to generate antioxidant compounds with superior activities. Based on the literature
overview, relative synbiotic-based new routes for supplying natural antioxidants appear
relevant and promising in animal and human health prevention and treatment. A better
understanding of the interactions between pre- and probiotic components within synbiotics,
but also those of such components to the host, is a key factor to generating a higher quality,
quantity, and bioavailability of antioxidants from these biotic sources. In this context, the
best approaches for developing research in such a field are to continue the antioxidant
activity screening of a large number of substrates from plants, animals, and microorganisms
in vitro, and especially in vivo. Analytical tools must be used in a complementary way for
identifying and measuring new antioxidants, as well as their contents in various materials.
Understanding their action mechanisms in a wide range of physicochemical conditions,
for instance, through the structure–activity relationship study, appears to be the best route
for their rational use in the future. Such investigations naturally require multidisciplinary
research approaches, including biology, chemistry, and physics for fundamental aspects
and high technology for further industrial perspectives.
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