
Transgenerational Propagation and Quantitative
Maintenance of Paternal Centromeres Depends on Cid/
Cenp-A Presence in Drosophila Sperm
Nitika Raychaudhuri1, Raphaelle Dubruille2, Guillermo A. Orsi2¤, Homayoun C. Bagheri3,

Benjamin Loppin2, Christian F. Lehner1*

1 Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland, 2 Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude
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Abstract

In Drosophila melanogaster, as in many animal and plant species, centromere identity is specified epigenetically. In
proliferating cells, a centromere-specific histone H3 variant (CenH3), named Cid in Drosophila and Cenp-A in humans, is a
crucial component of the epigenetic centromere mark. Hence, maintenance of the amount and chromosomal location of
CenH3 during mitotic proliferation is important. Interestingly, CenH3 may have different roles during meiosis and the onset
of embryogenesis. In gametes of Caenorhabditis elegans, and possibly in plants, centromere marking is independent of
CenH3. Moreover, male gamete differentiation in animals often includes global nucleosome for protamine exchange that
potentially could remove CenH3 nucleosomes. Here we demonstrate that the control of Cid loading during male meiosis is
distinct from the regulation observed during the mitotic cycles of early embryogenesis. But Cid is present in mature sperm.
After strong Cid depletion in sperm, paternal centromeres fail to integrate into the gonomeric spindle of the first mitosis,
resulting in gynogenetic haploid embryos. Furthermore, after moderate depletion, paternal centromeres are unable to re-
acquire normal Cid levels in the next generation. We conclude that Cid in sperm is an essential component of the epigenetic
centromere mark on paternal chromosomes and it exerts quantitative control over centromeric Cid levels throughout
development. Hence, the amount of Cid that is loaded during each cell cycle appears to be determined primarily by the
preexisting centromeric Cid, with little flexibility for compensation of accidental losses.
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Introduction

Many eukaryotes, like humans and Drosophila, have chromo-

somes with a single regional centromere. Faithful propagation of

this centromere during chromosome replication and cell prolifer-

ation is crucial. Loss of centromere function or extra centromeres

cause aneuploidy. Therefore, the molecular mechanisms that

control centromere replication have attracted considerable atten-

tion recently (for reviews see [1–4]). Importantly, these analyses

have indicated that centromere identity in regional centromeres is

specified epigenetically. Centromere-specific histone H3 variants

(CenH3s) are thought to be an essential component of the

corresponding epigenetic mark. In humans and Drosophila, the

CenH3s have been named CENP-A and Centromere identifier

(Cid) (FlyBase accession number FBgn0040477), respectively [5,6].

Nucleosomes with these CenH3s instead of other histone H3

variants are stably incorporated exclusively within the centromeric

region of the chromosome during unperturbed cell cycle

progression. The precise structural details of these special

centromeric nucleosomes may vary in different cell cycle phases

and organisms (reviewed in [1]). Based on the analysis of stretched

chromatin fibres, blocks of chromatin containing CenH3 alternate

with blocks that lack it [7]. The molecular mechanisms that

control the number and size of these blocks and the centromere

region overall are not understood. While the gradual depletion of

CenH3 does not appear to have immediate effects [8], an enforced

acute increase in centromeric Cid has been shown to result in

severe chromosome missegregation during mitosis [9].

A conceptually simple mechanism that might maintain the

centromere during cell proliferation is ‘‘template-governed.’’ After

random distribution of centromeric CenH3 nucleosomes during

chromosome replication onto the two sister chromatids, these old

nucleosomes may act as a template, allowing the local stoichio-

metric loading of new CenH3 nucleosomes during each cell cycle.

Such a mechanism for maintenance of centromere position and

size would lack flexibility for correction of occasional errors. In

PLOS Biology | www.plosbiology.org 1 December 2012 | Volume 10 | Issue 12 | e1001434



contrast, ‘‘homeostatic’’ mechanisms controlling the loading of

new CenH3s to a target level that is set independently from the

actual amount that is already present at the centromere would

allow for correction of accidental fluctuations. Elegant experiments

in Drosophila have provided clear evidence for template-governed

CenH3 loading. Cid-GFP-LacI targeting to lac operator arrays

was shown to recruit endogenous Cid that appeared to be

maintained independently of Cid-GFP-LacI at least to some extent

[10]. On the other hand, recent findings from C. elegans and plants

have indicated that centromere maintenance during meiosis and

onset of embryogenesis can be mechanistically distinct. Cenp-A

nucleosomes are transiently eliminated from chromosomes in the

Caenorhabditis elegans germline and not required for subsequent

Cenp-A incorporation in nontranscribed regions throughout the

holocentric chromosomes [11,12]. Although this independence on

pre-existing Cenp-A in C. elegans might represent a derived state

resulting from the evolution of the holocentric chromosomes, a

similar transient absence of centromeric CenH3 has also been

described in egg cells of Arabidopsis thaliana [13], which has regional

centromeres. In addition, de novo formation of centromeres can

occasionally occur in humans and various experimental systems

[14–20]. These findings emphasize that in animals, the unchar-

acterized role of CenH3 in regional centromeres during meiosis

and fertilization might not necessarily be the same as during

mitotic cell proliferation, where it is both required and sufficient

according to the evidence obtained in case of Cid [7,10,21–23].

To address significance, composition, and transgenerational

maintenance of epigenetic centromere marking during sexual

reproduction in Drosophila melanogaster, we analyzed Cid behavior

during spermatogenesis and early embryogenesis. Drosophila

spermatogenesis begins at the closed apical end of the testis tube

(Figure 1a) [24,25]. Germline stem cells located there divide

asymmetrically. The resulting differentiating daughter cell, the

gonioblast, progresses through four mitotic cell cycles with

incomplete cytokinesis, and thereby generates a cyst with 16

interconnected spermatocytes. Premeiotic S phase is completed

very soon after the last of these four mitotic divisions. Thereafter

extensive spermatocyte growth occurs during an extended meiotic

G2 phase before progression through the first and second meiotic

division. The haploid cell nucleus of postmeiotic spermatids, which

remain interconnected within each cyst, is extensively remodeled.

Nucleosomes are massively replaced with sperm-specific proteins

such as protamines and the genetic material is highly compacted

(200-fold) into a needle-shaped sperm head [26]. After complete

elongation of the sperm tails, mature sperm is individualized and

released in a motile form into the seminal vesicle at the distal end

of the testis tube. After fertilization, the sperm nucleus is once

more extensively remodeled [27,28]. Protamines are rapidly

replaced with nucleosomes concomitant with transformation into

a round male pronucleus. Thereafter progression through the first

S phase occurs. In parallel, female meiosis is completed. After S

phase and pronuclear migration, the female pronucleus and the

closely apposed male pronucleus enter into the first mitosis by

forming a gonomeric spindle [29]. The reformation of daughter

nuclei in telophase combines the two parental genomes within the

first two daughter nuclei. Subsequent progression through the

rapid and synchronous cleavage cycles generates a syncytium

because cytokinesis is omitted during early Drosophila embryo-

genesis. After cellularization of the syncytial blastoderm nuclei at

the onset of gastrulation, additional cell proliferation involves

progression through cell cycles including cytokinesis.

Here we show that Cid survives the radical nucleosome

replacement process that accompanies spermatogenesis. Centro-

meric Cid in sperm also perdures during formation of the male

pronucleus after fertilization. Finally, analyses after experimental

changes of centromeric Cid levels in sperm demonstrate its crucial

role in centromere specification and quantitative maintenance.

Results

Paternal Cid But Not Cenp-C Is Inherited with Paternal
Centromeres

In case of epigenetic specification of centromere identity, all

essential components of the corresponding mark have to be

preserved when the bulk of nucleosomes are replaced with

protamines during postmeiotic spermatid differentiation. Other-

wise paternal chromosomes could not be propagated after

fertilization. Cid, the Drosophila CenH3, which is essential for

centromere maintenance during mitotic proliferation [21,22], was

therefore expected to be present in mature sperm if Cid is also

crucial for transgenerational centromere maintenance. In earlier

attempts Cid was not detected in sperm, but technical problems

with antigen accessibility during immunolabeling were suspected

[30]. To avoid such problems, we analyzed testis from transgenic

cid mutant males that expressed functional Cid-EGFP under

control of the normal cid cis-regulatory region instead of

endogenous Cid. Specific dot-like EGFP signals were clearly

observed in mature cid; cid-EGFP sperm (Figure 1b,c), indicating

that Cid is indeed present in sperm. While centromeres are

strongly clustered close to the chromocenter in most somatic

Drosophila interphase cells, Cid-EGFP dots were found to be

predominantly unclustered in mature sperm (46%, 42%, and 12%

with 4, 3, and 2 signals, respectively; n = 24).

In contrast to Cid-EGFP, we were unable to detect Cenp-C-

EGFP in mature sperm (Figure 1b,d). During earlier stages, Cenp-

C-EGFP was readily detectable (Figure 1b,d). For comparison of

Cid and Cenp-C changes during spermatogenesis, centromeric

EGFP signal intensities observed in S4–6 spermatocytes were set

to 1 arbitrary unit in Figure 1c and d. During the S4–6 stages,

Author Summary

Genetic information in eukaryotic cells is parceled into
chromosomes. These information strings are precisely
transmitted to daughter cells during mitotic and meiotic
cell divisions, but only if the centromere, a specialized
chromosomal region, is functional. The centromere region
within chromosomes of many species—including humans
and the fly Drosophila melanogaster—is thought to be
specified epigenetically by incorporation of a centromere-
specific histone H3 variant (CenH3). After chromosome
replication, the centromeres in the resulting two sister
chromatids might be expected to be composed of a
mixture of pre-existing CenH3 evenly distributed onto the
two copies during replication and new CenH3 recruited by
the partitioned pool in a stoichiometric manner. Here, we
have addressed whether centromeres are indeed replicat-
ed in this manner by experimentally altering the levels of
centromeric CenH3 in Drosophila sperm. We show that
centromeres on paternal chromosomes cannot recruit new
CenH3 in embryos fertilized with sperm lacking CenH3. By
using sperm with increased or reduced amounts of
centromeric CenH3, we demonstrate that altered CenH3
levels are at least partially propagated on paternal
centromeres throughout development of the offspring.
We conclude that pre-existing CenH3 in Drosophila sperm
is therefore not only required for transgenerational
centromere maintenance, but that it also exerts quantita-
tive control of this process.

Transgenerational Role of Cid/Cenp-A in Sperm
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Figure 1. Centromere protein levels during Drosophila spermatogenesis. (a) Schematic overview of spermatogenesis (see also [24]).
Spermatocyte stages S1 to S6 as well as the meiotic stages have been described in detail by [25]. (b) Regions from DNA-stained squash preparations
of testes expressing either only Cid-EGFP (upper row) or only Cenp-C-EGFP (lower row) instead of endogenous Cid and Cenp-C, respectively, illustrate
the stages where EGFP signal intensities were quantified (see panels c and d). White arrows indicate Cid-EGFP signals in postmeiotic stages that lack
Cenp-C-EGFP signals. Scale bar, 10 mm. (c and d) Total Cid-EGFP (c) and Cenp-EGFP (d) signal intensity per cell was determined, except for telophase I
and II, where each daughter nucleus was analyzed separately. Grey bars represent average intensity in arbitrary units (a.u.), with whiskers indicating
s.d. after normalization to the spermatocyte S4–6 value. Black bars indicate centromere protein level per genome equivalent after correction of grey
bars according to genome ploidy. Progression through male meiosis is not accompanied by net loading of Cid- and Cenp-C-EGFP onto centromeres,
in contrast to mitosis during the syncytial blastoderm [36]. n$20 cells.
doi:10.1371/journal.pbio.1001434.g001

Transgenerational Role of Cid/Cenp-A in Sperm
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however, centromeric Cenp-C-EGFP signals were at least as

strong as those observed for Cid-EGFP (unpublished data). Our

failure to detect Cenp-C-EGFP in mature sperm is therefore not

simply a result of limited detection sensitivity. We conclude that

centromeric Cenp-C (FlyBase accession number FBgn0086697) is

eliminated during sperm head formation. It is either absent or very

low in mature sperm. Another centromere protein described in

Drosophila apart from Cid and Cenp-C is Cal1 (FlyBase accession

number FBgn0038478) [31]. Cal1-EGFP could also not be

detected in sperm (see below). Therefore, Cenp-C and Cal1 do

not appear to be essential components of the suspected epigenetic

centromere mark.

To analyse the fate of paternal Cid protein after fertilization, cid;

cid-EGFP males were crossed with wild-type females, followed by

analyses during the initial cleavage cycles in the resulting embryos.

Cid-EGFP signals in up to four discrete spots were readily detected

during male pronucleus formation (Figure 2a–c). At metaphase of

the first mitosis, Cid-EGFP was present on four pairs of sister

centromeres in one of the two chromosome sets within the

gonomeric metaphase plate (Figure 2d). Cid-EGFP signals in

essentially all of the analyzed paternal pronuclei (11 out of 12)

were also observed when males hemizygous for the cid-EGFP

transgene were crossed to wild-type females. If Cid-EGFP signals

in paternal pronuclei, however, were to reflect zygotic expression

of the paternally inherited transgene after fertilization, at most

50% of the progeny of hemizygous fathers would be expected to

display Cid-EGFP at paternal centromeres. We conclude that the

Cid protein of mature sperm remains associated with paternal

centromeres during chromatin remodeling and male pronucleus

formation, followed by equal distribution onto sister centromeres

during the first S phase. During metaphase of mitosis 2,

centromeric Cid-EGFP was still detectable but again on only

one half of the chromosomes and with reduced intensity

(unpublished data). During mitosis 3, paternal Cid-EGFP was no

longer detectable (Figure 2e). Progression through the cleavage

stages therefore appears to be accompanied by dilution of the

inherited paternal Cid-EGFP during each cell cycle by newly

recruited unlabeled Cid from maternally provided stores. In

contrast to Cid, but as expected from the absence of Cenp-C in

mature sperm described above, we did not detect EGFP signals in

early embryos after crossing Cenp-C-EGFP, Cenp-C males with wild-

type females (Figure 2f).

Sperm Centromere Cid Is Required for Maintenance of
Paternal Chromosomes after Fertilization

To evaluate the functional significance of paternal Cid inherited

with sperm, we applied deGradFP [32] for Cid protein depletion

during spermatogenesis. In deGradFP, depletion of GFP fusion

proteins is achieved by expression of a GFP-specific recombinant

ubiquitin ligase (NSlmb-vhhGFP4) with the UAS/GAL4 system.

For expression of this ubiquitin ligase specifically in late

spermatocytes, we generated a topi-GAL4-VP16 driver. Using this

driver for deGradFP in cid; cid-EGFP males, we were able to obtain

sperm in which EGFP signals were no longer above background

(Figure 3a). We assume that some centromeric Cid was still present

at least during the preceding meiotic divisions, as these were

clearly successful. The resulting Cid-depleted sperm allowed

successful fertilization, as evidenced by analyses of embryos

collected from crosses of deGradFP cid; cid-EGFP males with

control females. Around 90% of progeny developed to the

syncytial blastoderm stage, when thousands of nuclei are regularly

arranged just below the egg cell membrane. As fertilization is

required for the initiation of embryonic development in D.

melanogaster, we conclude that fertilization with sperm is still

possible after Cid elimination.

However, careful cytological analyses of embryos derived from

deGradFP cid; cid-EGFP fathers indicated that development after

fertilization is not normal. When in control experiments cid; cid-

EGFP males without deGradFP were crossed to cid; cid-EGFP

females, we observed normal progeny development with centro-

meric Cid-EGFP signals in both chromosome sets within all of the

analyzed gonomeric metaphase plates of mitosis 1 (Figure 3a;

Figure 2. Transmission of paternal Cid to progeny. (a–e) Eggs were collected from females without Cid-EGFP after mating with males with Cid-
EGFP. Top panels (a–c) display DNA staining (DNA) at low magnification, and white frames indicate the regions shown at high magnification in the
bottom panels. Paternal Cid-EGFP is detected in maximally four spots (white arrows) in the decondensing male pronucleus during (a) and after (b)
completion of female meiosis, as well as after pronuclear migration (c). Of 69 male pronuclei analyzed in three independent experiments, 67 were
positive for Cid-EGFP. In the gonomeric metaphase plate of the first embryonic mitosis (d), Cid-EGFP is detected on sister centromeres of paternal but
not maternal chromosomes. Cid-EGFP is no longer detectable during mitosis 3 (e). (f) In contrast to Cid-EGFP, paternal Cenp-C-EGFP is not
transmitted to progeny. It cannot be detected in the decondensing male pronucleus in eggs collected from females without Cenp-C-EGFP after
mating with males with Cenp-C-EGFP. None of the analyzed male pronuclei (n = 10) and metaphase 1 figures (n = 3) displayed detectable GFP dots.
PB, polar bodies. Scale bar, 10 mm.
doi:10.1371/journal.pbio.1001434.g002
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Figure 3. Cid in sperm is required for propagation of paternal chromosomes in progeny. During spermatogenesis, a GFP-specific
ubiquitin ligase [32] was either expressed (+ deGrad cid-EGFP) or not expressed (2 deGrad cid-EGFP) in males producing only Cid-EGFP instead of
normal Cid. (a) Analysis of their sperm and of early embryos obtained after mating the males with Cid-EGFP females revealed that GFP ubiquitin ligase
expression resulted in effective Cid-EGFP depletion in sperm, inhibited maternal Cid-EGFP recruitment onto paternal centromeres, and abolished
paternal centromere function during embryonic cycle 1. Centromeric Cid-EGFP signals detectable in 2 but not + deGrad cid-EGFP samples are

Transgenerational Role of Cid/Cenp-A in Sperm
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n = 10), as expected. However, when deGradFP was active in the

cid; cid-EGFP males that were crossed to cid; cid-EGFP females, one

of the two chromosome sets within all of the analyzed gonomeric

metaphase plates of mitosis 1 did not display centromeric Cid-

EGFP signals (Figure 3a; n = 9). This indicates that paternal

centromeres cannot acquire maternally derived Cid-EGFP after

degradation of Cid-EGFP during spermatogenesis. Mitotic figures

in anaphase and telophase of mitosis 1 indicated that Cid-EGFP-

free paternal chromosomes did not attach normally to the mitotic

spindle. Only the Cid-EGFP containing chromatids were oriented

towards the spindle poles in all of the analyzed late mitosis 1

figures (Figure 3a; n = 11). We conclude that Cid elimination from

sperm results in the loss of paternal chromosomes during the initial

syncytial cycles of early embryogenesis.

Gynogenetic haploid embryos obtained from various mutant

genotypes (mh, ms(3)K81, Hira) all progress through 14 instead of

the normal 13 syncytial blastoderm cycles before cellularization,

and they eventually arrest late in embryogenesis [33,34]. The

progeny from cid; cid-EGFP fathers with deGradFP expressed these

traits as well. First, none of the progeny obtained from these

fathers reached the larval stages. We point out that expression of

the GFP-specific recombinant ubiquitin ligase (NSlmb-vhhGFP4)

with the topi-GAL4-VP16 driver did not affect male fertility when

cid function was provided by the endogenous wild-type cid gene

instead of the cid-EGFP transgene. The sterility of cid; cid-EGFP

fathers with deGradFP therefore does not reflect a Cid-EGFP

independent deGradFP effect. Second, compared to progeny

derived from wild-type or cid; cid-EGFP fathers without deGradFP,

the nuclear density during cellularization was 2-fold higher in

embryos obtained from cid; cid-EGFP fathers with deGradFP

(Figure S1).

Counting the number of Cid-EGFP dots during mitosis revealed

only four pairs of sister centromeres in the large majority (.90%)

of the syncytial blastoderm embryos obtained from a cross of cid;

cid-EGFP males with deGradFP during spermatogenesis and cid;

cid-EGFP females (Figure 3b). In contrast, the expected eight pairs

of sister centromeres characteristic for the normal diploid

karyotype were detected with control fathers lacking deGradFP

(Figure 3b).

Centromere counting revealed that a minority (,10%) of

progeny from cid; cid-EGFP fathers with deGradFP contained

nuclei with five pairs of sister centromeres with comparable

amounts of Cid-EGFP. Such nuclei were often in patches next to

regions with nuclei containing four pairs of sister centromeres.

Similarly, a minority of embryos fertilized with Cid-depleted

sperm displayed a mosaic of nuclear densities during cellulariza-

tion with patches of wild-type next to patches with 2-fold higher

density (Figure S1), as characteristically observed in near-haploid

embryos [35]. While it is not excluded that these near-haploid

embryos reflect occasional neocentromere formation or postzy-

gotic centromere restoration by maternal Cid, we favor alternative

explanations as discussed below.

Developmental Regulation of Cid Centromere Loading
During Spermatogenesis and Early Embryogenesis

Our analysis of the consequences of Cid-EGFP degradation

during spermatogenesis demonstrates that the paternally contrib-

uted Cid protein on centromeres of paternal chromosomes is

required for normal function of these centromeres. Evidently, the

maternally derived Cid supplies present in early embryos cannot

be used for restoration of centromere function on paternal

chromosomes contributed by Cid-depleted sperm, at least in the

great majority of cases. This finding argues against efficient

homeostatic compensation of centromeric Cid losses and supports

template-governed regulation where Cid recruitment is strictly

dependent on already present centromeric Cid. Therefore, the

amount of old Cid nucleosomes partitioned onto the two sister

chromatids during chromosome replication might determine the

loading of a precisely equivalent amount of new Cid into the

centromere during cell cycle progression.

Cid recruitment into the centromere occurs during exit from M

phase according to our earlier analyses of the syncytial blastoderm

cycles [36]. As meiosis includes progression through two consec-

utive M phases without an intervening S phase, meiotic Cid

loading attracted our attention. If new Cid was loaded during both

meiotic M phases in amounts precisely equal to the already present

centromeric Cid protein, an increase of centromeric Cid levels

with each generation had to occur unless compensated by periodic

reduction.

To analyse meiotic Cid loading, we quantified centromeric

EGFP signals during spermatogenesis in cid; cid-EGFP males.

Interestingly, this did not reveal any net Cid loading during exit

from MI and MII (Figure 1c), suggesting the possibility of

compensatory loading during other developmental stages. Indeed,

analysis of early spermatocytes revealed net centromeric Cid

loading between stage S1 and S4 (Figure 4a)—that is, during G2

well after the premeiotic S phase [25]. The expression pattern of

Cal1, a protein required for Cid loading [9,37], appeared to be

entirely consistent with the observed meiotic Cid loading pattern.

Cal1-EGFP expressed from a transgene under control of the

normal cal1 cis-regulatory region in a cal1 null mutant background

was detected at centromeres of spermatocytes between S1 and S3

but not during progression through the meiotic divisions

(Figures 4b and S2 and unpublished data). Moreover, Cal1

depletion in early spermatocytes by RNAi abolished the increase

in Cid-EGFP levels that normally occurred between S1 and S4

(Figure 4c), supporting our conclusion that this Cid-EGFP increase

in centromeres of early spermatocytes represents compensatory

Cid loading during G2.

Apart from Cid loading during spermatogenesis, we also

analyzed the initial phase of embryogenesis when sperm nucleus

remodeling occurs concomitant with completion of female meiosis.

Given that Cenp-C was found to be no longer present on

centromeres of mature sperm (see above) and given that this

centromere protein provides an essential link between Cid and

outer kinetochore components [38,39], loading of maternally

derived Cenp-C onto paternal centromeres during the first cell

cycle following fertilization was expected. Therefore, we crossed

wild-type males to Cenp-C-EGFP; Cenp-C females and analyzed

progeny during early embryogenesis in order to evaluate whether

centromere loading of maternally derived GFP fusion proteins

onto paternal centromeres is detectable. Indeed, maternally

derived Cenp-C-EGFP was observed to associate very soon after

fertilization with the sperm nucleus (Figure 5a,b). Cenp-C-EGFP

spots were already observed in sperm nuclei that had not yet

attained a regular round shape. Cenp-C-EGFP spots were also

indicated by green arrows. Chromosomes without Cid-EGFP signals that were not segregated to the poles of mitosis 1 spindles are indicated by white
block arrows. (b) Analysis of 2 and + deGrad cid-EGFP progeny during early anaphase of syncytial blastoderm mitoses revealed in each half spindle
eight sister centromeres in the former, as expected for diploid embryos, but only four (or rarely five) in the latter. White frames in top panels indicate
regions shown at high magnification in bottom panels.
doi:10.1371/journal.pbio.1001434.g003

Transgenerational Role of Cid/Cenp-A in Sperm
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present in the paternal pronucleus during S phase and pronuclear

apposition (Figure 5c). Moreover, in the first metaphase, Cenp-C-

EGFP was present in paternal centromeres just like in the

maternal centromeres (Figure 5d,e).

In contrast to Cenp-C, paternal Cid is still present in mature

sperm and remains stably associated with paternal centromeres

after fertilization, as shown above. Therefore, rapid association of

maternally derived Cid before mitosis 1 as in the case of Cenp-C

was not necessarily expected. However, in analogous analyses with

progeny obtained from cid; cid-EGFP mothers and wild-type

fathers, such early association of Cid-EGFP was clearly observed

(Figure 5f–j). In contrast to the Cenp-C-EGFP experiments, where

signal intensities during metaphase 1 were comparable on

maternal and paternal centromeres, this was not the case in the

Cid-EGFP experiments. Cid-EGFP signal intensities were clearly

weaker in paternal compared to maternal centromeres. While

both maternal and paternal centromeres contain exclusively the

EGFP-tagged version in the Cenp-C experiments, this is only true

for the maternal centromeres in case of the Cid experiments,

where the paternal centromeres also contain unlabeled wild-type

Cid inherited from the father apart from newly loaded maternally

derived Cid-EGFP. We conclude that in addition to the net

loading of Cid in G2 spermatocytes described above, the rapid

association of maternally derived Cid onto paternal centromeres

soon after fertilization might provide additional compensation for

the absence of Cid loading during the male meiotic divisions.

However, we point out that precise quantification of total

centromeric Cid-EGFP levels in early embryos is precluded by

Figure 4. cal1-dependent loading of Cid-EGFP during early G2 in spermatocytes. (a) Quantification of EGFP signal intensity per cell
revealed an increase in Cid-EGFP levels in spermatocytes between stages S1 and S4. Bars indicate average and whiskers indicate s.d.; n.20 cells. (b)
Analysis of cal1-EGFP expression in testis whole mount preparations indicated that Cal1, which is required for Cid loading during mitotic proliferation
[9,37], is present during the four gonial cycles and during Cid-EGFP loading in early spermatocytes (inset 2, S1; inset 3, S3) but no longer in late
spermatocytes (inset 4, S5) and subsequent stages (unpublished data). Cal1-EGFP was also not detectable in postmitotic hub cells (inset 1, hub) and
Eya-positive cyst cells. Scale bar, 10 mm. (c) bamP-GAL4-VP16-driven expression of a UAS-cal1RNAi transgene during late gonial cycles and in early
spermatocytes abolished Cid-EGFP loading in early spermatocytes. Dots indicate total Cid-EGFP intensity measured in individual cells. Average
intensity (long horizontal line) with s.d. (short horizontal lines) is indicated as well. n.24 cells.
doi:10.1371/journal.pbio.1001434.g004
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various factors (like sample thickness, high and variable autofluo-

rescence levels). Thus, we cannot exclude the possibility that the

rapid association of maternal Cid-EGFP with paternal centro-

meres might be balanced by loss of paternal Cid in early embryos.

Similarly, we cannot exclude the occurrence of dynamic Cid-

EGFP turnover at centromeres during the stages of spermatogen-

esis where we have not detected any net loading.

Chromosome-Specific Levels of Centromeric Cid and
Kinetochore Proteins

By a more detailed quantification of Cid levels during

spermatogenesis we addressed yet another aspect of the control

of centromeric Cid levels—that is, chromosome-specific variation.

Drosophila testis provides a unique advantage for the analysis of

chromosome-specific variation of centromeric Cid because of the

characteristic segregation of chromosome bivalents into discrete

subnuclear territories in late spermatocytes [25]. In principle, an

observation of reproducible chromosome-specific differences in

centromeric Cid amounts would argue in favor of template-

governed control of centromeric Cid levels. Such control would

readily propagate distinct chromosome-specific amounts of cen-

tromeric Cid. In contrast, homeostatic mechanisms might be

expected to equalize occasional fluctuations and keep a uniform

level of Cid in all of the centromeres. Therefore, to evaluate

whether centromeric Cid amounts vary on different chromosomes,

we quantified EGFP signals in individual centromeres of S5/6

spermatocytes in cid; cid-EGFP testis preparations. At the S5/6

stage, DNA staining revealed the three characteristic chromosome

territories within the large spermatocyte nucleus. Two of these

territories represent the bivalents of chromosome 2 and 3,

respectively. Their DNA labeling is more homogenous than that

of the third territory, which is formed by an association of the

bivalent of chromosome 4 with the X chromosome and those parts

of the Y that are not involved in Y loop formation [25]. The

territories with the bivalents of chromosome 2 and 3 both

contained two Cid-EGFP spots (Figure 6a). Each spot is known to

represent the tightly associated sister centromeres of one homolog

[40]. Double labeling with anti-ModC [41,42] allowed the

identification of the X-Y bivalent (Figure 6a). The X-Y region

was observed to be associated with two spots of obviously unequal

Figure 5. Incorporation of maternal Cid and Cenp-C into paternal centromeres after fertilization. Eggs were collected from transgenic
females producing only Cenp-C-EGFP (a–e) or Cid-EGFP (f–j) instead of endogenous Cenp-C and Cid, respectively, after mating with nontransgenic
males. The regions indicated by white frames in top panels are shown at high magnification in the bottom panels. (a–e) Maternally derived Cenp-C-
EGFP was associated with paternal centromeres (arrows) before full decondensation of the male pronucleus and was present during mitosis 1. (f–j)
Maternally derived Cid-EGFP displayed a comparable association dynamic with paternal centromeres (arrows), although signals were generally
weaker on paternal centromeres (see h and i). PB, polar bodies. Scale bar, 10 mm.
doi:10.1371/journal.pbio.1001434.g005
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Cid-EGFP intensity. An additional bright spot was usually

observed in close association with a dot of very bright DNA

staining near the X-Y region (Figure 6a). This bright Cid-EGFP

spot represents the paired centromeres of the small dot-like

chromosome 4 bivalent.

The characteristic unequal intensity of the two Cid-EGFP spots

within the X-Y chromosome territory suggested that either the X

or the Y centromere is associated with higher levels of centromeric

Cid. To clarify this issue we crossed cid-EGFP into X/0 males.

Apart from the paired centromeres of chromosome 4, the X/0

spermatocytes no longer contained a second bright Cid-EGFP spot

(Figure 6b), as characteristically present in normal X/Y sper-

matocytes (Figure 6a). Therefore, we conclude that the Y

centromere contains more Cid than all the other centromeres. A

quantification of the Cid-EGFP signals on the different chromo-

somes revealed that the Y centromere contains ,2-fold more Cid

than the other centromeres. Analyses with Y chromosomes

introgressed from different Drosophila strains into the cid; cid-

EGFP background indicated that the increased Cid levels on the Y

centromere are not strain-specific (Figure S3).

Analogous quantification of Cenp-C revealed that the level of

this centromere protein was also ,2-fold higher on the Y

centromere (Figure 6c). To evaluate whether the ,2-fold higher

levels of the centromere proteins Cid and Cenp-C on the Y

centromere were accompanied by a corresponding increase in

kinetochore components, we analyzed Spc25-EGFP signals. Spc25

is a component of the Ndc80 complex, which represents the major

microtubule binding site of the kinetochore. Before the onset of the

meiotic divisions, we did not detect dot-like Spc25-EGFP signals.

However, during prometaphase of meiosis I, spermatocytes often

displayed eight distinct Spc25-EGFP signals, as expected. In such

prometaphase I figures, one of the eight signals was always

considerably stronger than all the others (Figure 6d). In contrast, in

X/0 testis, prometaphase I figures with seven distinct Spc25-

EGFP signals did not include such a conspicuously stronger signal

(Figure 6d), suggesting that the especially strong Spc25-EGFP

signals in X/Y testis represent the Y kinetochore. As predicted by

this interpretation, prometaphase II figures in X/Y testis with 4

Spc25-EGFP signals could readily be grouped into two classes: a

first class with a conspicuously strong signal, and a second class

without such an intensity outlier. In all likelihood, these two classes

represent early spermatids that had inherited the Y and the X

chromosome, respectively, in the preceding meiosis I. Finally, a

quantification of kinetochore signal intensities in mitotic chromo-

somes released from early syncytial embryos provided a further

confirmation that the Y centromere has higher levels of Cid,

Cenp-C, and Spc25 (Figure 6e). Thus, the increased levels of

centromere and kinetochore proteins on the Y centromere are not

a peculiarity of the spermatocyte stages. Moreover, these

observations argue against the existence of efficient homeostatic

mechanisms that enforce identical Cid amounts on all the different

centromeres.

Transgenerational Propagation of Altered Centromeric
Cid Levels in Sperm

For a direct evaluation of the role of centromeric Cid for

quantitative maintenance, we generated sperm with either

moderately increased or decreased levels of Cid on centromeres

and analyzed whether the altered centromeric levels were

maintained during development of the next generation.

To raise centromeric Cid levels in sperm, we used the UAS/

GAL4 system for targeted cid-EGFP overexpression during

spermatogenesis. Overexpression was driven in a cid; cid-EGFP

background that did not produce any untagged wild-type Cid.

Therefore, the accurately quantifiable Cid-EGFP was the only Cid

species produced. Concomitantly with UAS-cid-EGFP, we also

expressed UAS-cal1 because increased Cid deposition in centro-

meres was previously found to depend on simultaneous overex-

pression of cid and cal1 [9]. bam-GAL4-VP16-driven co-expression

of UAS-cid-EGFP and UAS-cal1 in cid; cid-EGFP testis resulted in a

strong increase in centromeric Cid-EGFP signals in sperm

compared to controls lacking the UAS transgenes (Figure 7a).

Quantification revealed almost 7-fold higher Cid-EGFP levels

after overexpression. Judging from the number and size of the

observed Cid-EGFP spots, Cid-EGFP was still primarily confined

to the centromeric region.

Males with ‘‘high Cid-EGFP’’ sperm as well as control males

lacking the UAS transgenes were crossed with cid; cid-EGFP; Cenp-

C-Tomato females and progeny was aged to the syncytial

blastoderm stage before fixation and quantification of centromeric

Cid-EGFP signals in prometa- and metaphase embryos. The total

centromeric Cid-EGFP intensity per nucleus was found to be

,1.7-fold higher in embryos generated with high Cid-EGFP

sperm compared to embryos generated with control sperm

(Figure 7b). Centromeric Cenp-C-Tomato was increased to a

comparable extent (unpublished data). Considering that only one

half of the centromeres in the embryo are of paternal origin, we

conclude that the increased Cid-EGFP levels on paternal

centromeres appear to be maintained during progression through

the early embryonic cell cycles, although not quantitatively. The

level of Cid-EGFP during embryogenesis might not be sufficiently

high to support a complete maintenance of the paternally

increased centromeric Cid-EGFP levels during postzygotic devel-

opment. Results from an analysis of the effects of the zygotic cid-

Figure 6. Chromosome-specific differences in centromere and kinetochore protein levels. (a, b) Double labeling of X/Y; cid-EGFP
spermatocytes with anti-ModC (a), which marks the X-Y chromosome territory, and analysis of X/0; cid-EGFP spermatocytes (b) indicated that the Y
centromere contains ,2-fold higher levels of Cid-EGFP compared to the other centromeres. Dots in the diagrams below the images indicate relative
intensity of individual Cid-EGFP dots in S5 stage spermatocytes representing either a chromosome 2 or 3 centromere (2/3), the paired chromosome 4
centromeres (4p), the X centromere (X), or the Y centromere (Y). The sum of all the individually measured centromeric signals within each analyzed
spermatocyte was set to 100%. Averages (long horizontal line) are given with s.d. (short horizontal lines). n.22. (c) Analogous analysis of Cenp-C-EGFP
spermatocytes during stage S5 indicated that the Y centromere contains ,2-fold higher levels of Cenp-C-EGFP compared to the other centromeres.
(d) In case of Spc25-EGFP, meiotic cells were analyzed because this kinetochore protein is only present at centromeres during the meiotic M phases.
The diagrams display data from cells during prometaphase of meiosis I from either X/Y (XY prometa I) or X/0 (X/0 prometa I) males but only if eight or
seven distinct EGFP signals, respectively, could be resolved. In the case of the diagram of prometaphase II in X/Y males (XY prometa II) exclusively,
cells with four distinct signals are displayed. Dots in the diagrams below the images indicate relative intensity of individual Spc25-EGFP spots after
setting the sum of all the individually measured kinetochore signals within each analyzed cell to 100%. Each column of dots represents one of the
analyzed cells. Red dots indicate the values proposed to correspond to the Y centromere. (e) Spreads of mitotic chromosomes were prepared from
syncytial blastoderm embryos expressing Cid-EGFP, Cenp-C-EGFP, or Spc25-EGFP and stained for DNA. As illustrated by the image panels, individual
chromosomes could be identified based on chromosome size, pattern of intensely staining heterochromatin blocks, and centromere position. Dots in
the diagram indicate total centromeric EGFP intensity per chromosome in arbitrary units (a.u.) chosen to result in an average intensity on the Y
chromosome of 100 a.u. Averages (long horizontal line) are given with s.d. (short horizontal lines). n.15 chromosomes.
doi:10.1371/journal.pbio.1001434.g006
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EGFP gene dose on centromeric Cid-EGFP levels in wing imaginal

disc cells of third instar wandering stage larvae and in

spermatocytes of adult males supported the notion that the

expression level governed by the normal cid regulatory region is

not much higher than what is required for maintenance of

physiological centromeric Cid levels. In the absence of endogenous

Cid, cells with only one cid-EGFP copy were observed to display

centromeric signals that were 40% weaker than those in cells with

two cid-EGFP copies (Figure S4).

As limiting cid expression might have prevented complete

maintenance of increased Cid levels on paternal centromeres, we

also analyzed whether decreased Cid levels on paternal centro-

meres in sperm are maintained during development of the next

generation. Transgenic RNAi allowed a partial Cid depletion

during spermatogenesis. Targeted depletion using bam-GAL4-VP16

in combination with a UAS-cidRNAi transgene was achieved in a cid;

cid-EGFP background lacking untagged wild-type Cid. Quantifi-

cation of centromeric signals in sperm indicated that RNAi

resulted in a reduction of Cid-EGFP to about 33% of its level in

controls lacking the UAS-cidRNAi transgene (Figure 7c). In a second

independent experiment, a somewhat lower reduction to about

50% was obtained, and the centromeres of X, Y, and autosomes

were found to be affected to a comparable degree (Figure S5a,b).

Males producing low Cid-EGFP sperm and control males were

crossed with cid; cid-EGFP; Cenp-C-Tomato females, and centro-

meric Cid-EGFP levels in progeny were determined at the

syncytial blastoderm stage. The total centromeric Cid-EGFP

intensity per nucleus in the embryos derived from low Cid-EGFP

sperm was found to be ,72% of the intensity observed in the

controls (Figure 7d). Considering that only one half of the

centromeres are of paternal origin, the reduced Cid-EGFP levels

on paternal centromeres appeared to have been quantitatively

maintained during progression through the early embryonic cell

cycles.

To evaluate whether the reduced Cid-EGFP levels were also

maintained during subsequent development, we analyzed wing

imaginal discs from third instar wandering stage larvae. These

measurements revealed that the reduced Cid-EGFP levels were

indeed maintained beyond embryogenesis (Figures 7e and S5c,d).

Finally, we measured centromeric Cid-EGFP levels in sperm of

adult male progeny. As in embryos and imaginal discs, only ,71%

of the control levels were observed in sperm of males fathered by

Cid-depleted sperm (Figure 7f).

Since chromosome territory formation in spermatocytes is

accompanied by conversion of chromocenter-associated centro-

mere clusters into well-separated centromeres, we were able to

quantify Cid-EGFP levels in individual centromeres in this special

cell type. Because the X and Y chromosomes are of maternal and

paternal origin, respectively, only the Y but not the X centromere

is expected to have reduced centromeric Cid-EGFP, if the

reduction reflects propagation on paternal centromeres after Cid

depletion during spermatogenesis in the father. Indeed reduction

of Cid-EGFP in paternal sperm was found to result in a significant

decrease of Cid-EGFP in the Y but not in the X centromere in two

independent experiments (Figure 7g, and unpublished data).

In case of chromosome 2 and 3 territories, parental origin could

not be assigned to the two signals within a territory. Under the

assumption that in control spermatocytes Cid amounts in

maternally and paternally derived centromeres of chromosome 2

and 3 are usually equal on average, the results obtained after

quantification of centromeric Cid-EGFP signal intensities in major

autosome territories were not in accord with the findings

concerning the X and Y centromeres. Under this assumption it

is expected that the intensity difference between the stronger and

weaker centromere signal within a major autosome territory

should be greater after reduction in sperm and subsequent

propagation of reduced Cid on paternal centromeres in compar-

ison to control spermatocytes. However, the average intensity

difference between the two signals of a major autosome territory

was not increased after reduction of Cid-EGFP in paternal sperm

(Figure 7g). In principle, this result might argue for chromosome-

specific differences in the control of centromeric Cid levels on sex

chromosomes and autosomes. However, this apparent support for

chromosome-specific discrepancies is completely abolished under

the following alternative assumption. If centromeric Cid levels in

control spermatocytes on average are usually higher on paternal

compared to maternal centromeres, our results are clearly

consistent with quantitative propagation of centromeric Cid not

only on the Y but on all paternal centromeres. According to this

alternative assumption, the stronger of the two signals in each

major autosome territory within control spermatocytes in general

corresponds to the paternal and the weaker to the maternal

centromere. After reduction in sperm and subsequent propagation

of reduced centromeric Cid, only the paternal (i.e., the stronger)

but not the maternal (i.e., the weaker) centromere signals should

be decreased. This expectation is borne out by our data (Figure 7g).

While statistical analyses did not favor one over the other

assumption, we propose that our other findings (Figures 5 and 6)

provide support for the second assumption, as discussed below.

Our comparison of spermatocytes in males with either two or

only one Cid-EGFP gene copies also corroborated the second

interpretation. After reduction of the zygotic Cid-EGFP gene dose,

Figure 7. Transgenerational maintenance of Cid levels. Experimentally, centromeric Cid-EGFP levels were either increased (a, b) or decreased
(c–g) in sperm in a background producing only Cid-EGFP instead of endogenous Cid. Sperm with altered centromeric Cid-EGFP levels was used for
progeny generation. Propagation of altered Cid-EGFP levels during progeny development was analyzed. (a) Comparison of the total amount of Cid-
EGFP per sperm in males without (2) or with (+) bamP-GAL4-VP16-driven expression of UAS-cid-EGFP and UAS-cal1. (b) Comparison of the total
amount of Cid-EGFP per nucleus in syncytial blastoderm embryos derived from males without (2) or with (+) increased Cid-EGFP in sperm as
determined in (a). (c) Comparison of the total amount of Cid-EGFP per sperm in males without (2) or with (+) bamP-GAL4-VP16-driven expression of
UAS-CidRNAi. (d–f) Comparison of the total amount of Cid-EGFP per nucleus in progeny derived from males without (2) or with (+) decreased Cid-EGFP
in sperm as determined in (c) at different developmental stages: syncytial blastoderm (d), wing imaginal discs of third instar larvae (e), and sperm of
adult males (f). Dots in (a–f) indicate total centromeric EGFP intensity per nucleus in arbitrary units (a.u.) chosen to result in an average intensity of
100 a.u. in the controls where Cid-EGFP was neither increased nor decreased in sperm. Averages (long horizontal line) are given with s.d. (short
horizontal lines). n.22. The fold change of average Cid-EGFP levels between controls and experimental samples is indicated next to the dashed
arrows. All the indicated differences were found to be highly significant (p,0.001, t test). (g) Comparison of Cid-EGFP levels in individual centromeres
of Y (Y), X (X), major autosomes (2/3), and the paired chromosome 4 centromeres (4p) in S5 spermatocytes of adult progeny derived from P{w+,
pUASt-mCherry-nls}III females mated to males without (2) or with (+) decreased Cid-EGFP in sperm as determined in (c). Each major autosome
territory contains two Cid-EGFP spots. The stronger (s) and weaker (w) spots, respectively, were grouped and analyzed separately. Dots indicate
centromeric EGFP intensity in arbitrary units (a.u.). Averages (long horizontal line) are given with s.d. (short horizontal lines). n.50. The fold change of
average Cid-EGFP levels between controls and experimental samples is indicated below brackets. The corresponding differences of the averages are
highly significant (p,0.001, t test) except for two nonsignificant cases (ns).
doi:10.1371/journal.pbio.1001434.g007
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centromeric Cid-EGFP was no longer decreased exclusively on the

Y centromere (as after centromeric Cid-EGFP reduction in

paternal sperm), but equally on both sex chromosomes, and also

on all autosomal centromeres (Figure S4C).

Based on our analysis of the consequences after reduction of

centromeric Cid in sperm, we conclude that centromeric Cid-

EGFP is not replenished to normal levels during development of

progeny, at least in case of the Y centromere and presumably also

on all other centromeres.

Discussion

Among the known Drosophila centromere proteins (Cid, Cenp-

C, Cal1), only Cid survives the excessive chromatin remodeling

that accompanies the compaction of the haploid genome into

sperm heads. We demonstrate that this centromeric Cid in sperm

is essential for the propagation of the paternal genome in the next

generation. When normal oocytes are fertilized with sperm lacking

centromeric Cid, paternal chromosomes fail to recruit the

maternally provided Cid and cannot generate functional kineto-

chores during mitosis 1. As a result, gynogenetic haploid embryos

develop. These findings demonstrate that a minimal amount of

pre-existing centromeric Cid is required for centromere propaga-

tion during cell cycle progression. Moreover, by partial depletion

of centromeric Cid in sperm, in combination with precise

quantification, we establish that pre-existing centromeric Cid not

only functions as a permissive factor but actually exerts

quantitative control over centromeric Cid maintenance during

cell proliferation. Reduced centromeric Cid levels in sperm are

maintained throughout development of the next generation. They

are not restored to the normal amount.

The presence of CenH3 in sperm has previously been

demonstrated in mammals and Xenopus [43–45]. Similarly, the

absence of Cenp-C in sperm has been observed in Xenopus [45].

A future analysis of the mechanism that selectively maintains all or

at least a substantial amount of centromeric CenH3 during the

radical chromatin re-organization that accompanies genome

compaction into sperm heads will be of interest. The fact that

CenH3 nucleosomes are not exchanged for protamines, in

contrast to bulk nucleosomes, is crucial, at least in case of

Drosophila sperm where centromeric Cid is an essential compo-

nent of an epigenetic centromere mark for paternal chromosome

maintenance in progeny. The demonstration that Cid is indis-

pensible for epigenetic centromere marking in sperm may appear

trivial in the light of the clear evidence that Cid is required and

sufficient for centromere maintenance during mitotic proliferation

[10,21,22]. However, recent findings in C. elegans [11,12] and A.

thaliana [13] have indicated that functional gametes do not

necessarily require centromeric CenH3.

While the large majority of progeny generated after Cid

elimination in sperm are gynogenetic haploid embryos, a fraction

appears to have an extra chromosome with normal centromeric

Cid levels. We cannot rule out that these near-haploid embryos

represent cases where normal Cid amounts have been restored

postzygotically on a particular paternal chromosome at the

original centromere or at an ectopic location. The successful

production of human artificial chromosomes (HACs), for example,

is a clear case for de novo CenH3 acquisition and subsequent

maintenance [20]. While the alpha-satellite arrays used in HAC

production are completely CenH3-free before transfection, the

centromeres in Cid-depleted sperm might have residual Cid below

the level of detection in our experiments. A partial Cid depletion

might also explain the apparently normal chromosome segregation

during the two meiotic divisions. These meiotic divisions reduce

Cid intensity per spot by a factor of at least four (Figure 1c) and

thereby in our deGradFP experiments perhaps below our

detection limit. Alternatively, it is not excluded that Cid depletion

continues after the meiotic divisions in these deGradFP experi-

ments. However, even if the near-haploid embryos were to result

from postzygotic restoration after partial or complete Cid

elimination in sperm, such centromere restorations would be rare

exceptions and not the rule. Since postzygotic replenishment is not

even effective after far more moderate Cid reduction in sperm by

RNAi, we consider centromere restoration to be an unlikely

explanation for the observed near-haploid embryos. Perhaps these

embryos arise after missegregation of maternal chromosomes

during the first embryonic mitoses because occasionally the

lagging paternal chromosomes might affect the function of the

gonomeric spindle. Consistent with this interpretation, embryos

fathered by Cid-EGFP-depleted sperm often displayed a reduced

and irregular nuclear density during the syncytial stages within the

anterior region where fertilization occurs (33% versus 5% in

controls). Similarly, polar body morphology in this anterior region

was also often abnormal (64% versus 20% in controls). It appears

therefore that the lagging paternal chromosomes somehow cause

local cell cycle defects in a considerable fraction of the progeny.

The fact that centromeric Cid, after moderate reduction in

sperm to 33%–50% of its normal level, is not restored back to

normal during development of progeny with normal levels of

maternal and zygotic cid expression demonstrates that the pre-

existing level of centromeric Cid is a major determinant for

quantitative control over centromeric Cid levels during cell cycle

progression. Some restoration occurs within one generation

according to our data, and Cid on the Y centromere no longer

seems to be significantly reduced in spermatocytes of grandsons

and great-grandsons of fathers with Cid-depleted sperm (N.R. and

C.F.L., preliminary observations). However, it is clear that the

efficiency of this restoration is poor. Starting from sperm,

generation of F1 spermatocytes requires more than 2 wk of

development, including progression through about 20 or more cell

cycles. This is insufficient to replenish centromeric Cid to the

normal level. Thus our data clearly support the idea that the Cid

nucleosomes, which remain after random partitioning of pre-

existing centromeric Cid nucleosomes onto the two sister

chromatids during chromosome replication, instruct the local

loading of an equivalent amount of new CenH3 nucleosomes

during each cell cycle. Accordingly, centromeric Cid nucleosomes

might be licensed for loading in a first cell cycle period, followed

by actual loading and concomitant license consumption during a

later cell cycle period. Overproduction of Cid and its loading

factor Cal1 might by-pass the license requirement. Thus, the

proposed quantitative dependence of Cid loading on pre-existing

amounts is not necessarily incompatible with our finding that a

centromeric Cid increase can be induced.

Apart from the fact that pre-existing centromeric Cid is critical

for quantitative regulation, our overexpression experiments and

the effects of cid-GFP transgene dose indicate that the level of cid

expression is also a critical factor. We demonstrate that a single

copy of this transgene under control of the cid cis-regulatory region

(in a cid mutant background with Cid-EGFP as the only Cid

source) is not sufficient for maintenance of centromeric Cid-EGFP

at the level established in the presence of two copies. Therefore,

the normal level of cid expression does not seem to be in great

excess over what is required for centromere maintenance.

Our previous analyses have clearly revealed cell-cycle-depen-

dent control of centromeric Cid deposition [9,36]. In syncytial

Drosophila embryos, Cid loading occurs during and depends on

exit from mitosis. Studies in vertebrates [46–49] have similarly
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suggested that Cid loading in animal cells might generally depend

on exit from M phase and that it occurs early in the cell cycle.

However, here we demonstrate that cell-cycle coupling of Cid

loading is subject to developmental control. Exit from M phase

during the meiotic divisions in testis is not accompanied by Cid

loading and expression of the loading factor Cal1. Instead, we

observe Cal1-dependent loading during G2 before the onset of the

meiotic divisions. Similarly, recent data have suggested that Cid

loading in cultured Drosophila cells occurs already during

metaphase (i.e., before exit from M phase) [50]. Moreover,

observations from plant and fungal cells [51–53] have also

indicated that the control of CenH3 loading during eukaryotic

cell cycle progression is not governed by an invariant universal

mechanism. Although presently precluded by background prob-

lems, a precise quantitative understanding of Cid loading

throughout female gametogenesis would be of great interest.

The quantitative control of centromeric Cid during male and

female gametogenesis might not be precisely identical and subtly

subvert the quantitative control exerted by pre-existing Cid. Our

quantification of centromeric Cid on Y, X, and autosomes is

clearly consistent with the notion that centromeres are somewhat

overloaded during passage through the male germline. This might

explain the fact that the Y centromere, which is transmitted

exclusively through the male germline, has about 2-fold higher

levels of centromeric Cid. Moreover, the X centromere, which is

transmitted more frequently through the female germline than any

other centromere, seems to have the lowest amount of centromeric

Cid. A possible reason for the postulated sex-specific difference in

Cid loading might be linked to the fact that paternal centromeres

experience exit from meiotic M phase not only in the testis but also

again in the egg after fertilization during completion of female

meiosis. Indeed we find that maternal Cid associates with paternal

centromeres very early after fertilization during completion of the

meiotic divisions of the oocyte. Importantly, mathematical analysis

(Text S1) demonstrates that if the extent of over- and underloading

are equal in the male and female germline, respectively, then a

stable difference between Cid levels on paternal and maternal

autosomal centromeres is reached within only two generations.

Such a difference is also required for compatibility of our

quantitative measurements (Figure 7g) with the parsimonious

interpretation that centromeric Cid levels on autosomes (where we

cannot assign parental origin) behave in the same way as revealed

by our results concerning X and Y (where parental origin is

known). Our mathematical analysis also implies that overloading

in the male germline will result in a continuous increase of Y-

centromeric Cid in the absence of counterbalancing mechanisms.

In the case of the Y chromosome, Cid underloading in the female

germline will of course not act as a counterbalancing process, but

we speculate that the observed limited level of Cid expression

might be involved. In addition, the Drosophila Y centromere

contains unique telomere-related satellite repeats [54] that may

have chromosome-specific effects. Even though centromeres in

animals are specified primarily in an epigenetic manner,

centromeric and pericentromeric DNA sequences are unlikely to

be irrelevant and they have been implicated in meiotic drive and

speciation [55].

Some aspects of centromere control that we have defined in

Drosophila are presumably not valid or of minor importance in

case of humans. In contrast to Drosophila, the Y centromere in

human cell lines appears to have the lowest level of centromeric

Cenp-A, while the X has average amounts [56]. Cenp-A levels on

a given chromosome might vary considerably within the human

population and appear to correlate with the size of the alpha-

satellite region [57].

While our experiments concur with the notion that limited

variation in the level of centromeric Cid is not necessarily

detrimental, we also demonstrate that the variation of centromeric

Cid on different chromosomes correlates with the amount of

recruited kinetochore proteins, as previously found in some

[58,59] but not all experiments [60] with fungi. Moreover,

evidence from human cancer cells has implicated Cenp-A

overexpression in chromosome mis-segregation [61,62]. Further

clarification of the mechanisms that control centromeric CenH3

levels can therefore be expected to provide important insights into

evolution of rogue cells, as well as of new species.

Materials and Methods

Drosophila Genetics
Most of the mutant alleles and transgenes used here have been

characterized previously. cidT12-1 and cidT22-4 [22] carry premature

stop codons. cidG5950 (Bloomington Drosophila Stock Center

#29695) has a P element insertion within the coding sequence.

Moreover also Cenp-Cprl41 [63], cal1MB04866 [9], and Spc25c00064

[38] are known or predicted to abolish the production of gene

products that can localize to centromeres. The transgenes P{w+,

gcid-EGFP-cid}III.2 [36], P{w+, giEGFP-Cenp-C}II.1 [64], P{w+,

gi2xtdTomato-Cenp-C}II.3 and III.1 [65], P{w+, gcal1-EGFP}II.2 [9],

and P{w+, gSpc25-EGFP} II.1 [38] have been shown to comple-

ment recessive lethal mutations in the corresponding endogenous

loci, demonstrating the functionality of the encoded fluorescently

tagged centromere and kinetochore proteins. P{w+, His2Av-

mRFP}II.2 [36] and P{w+, pUASt-mCherry-nls}III were used for

genotype marking in some experiments. P{w+, pUASt-cal1}III.1 [9]

was used for ectopic cal1 expression.

The C(1;Y), y1 v1 f1 B1: y+/C(1)RM, y2 su(wa)1 wa stock for

generation of X/0 males was kindly provided by Terry Orr-

Weaver (Whitehead Institute for Biomedical Research, Cam-

bridge, MA, USA). P{w+,bamP-GAL4-VP16}III [66], P{w+,UASt-

NSlmb-vhh-GFP4} III [32], and P{w+, Cid-RNAiGD4436}v43857 were

kindly provided by D. McKearin, E. Caussinus, and the Vienna

Drosophila RNAi Center (VDRC), respectively.

The P{w+, gtopi-GAL4-VP16 }III line was obtained by PhiC31-

mediated germline transformation with pattB-topi-GAL4-VP16-

topi. In this construct, the cis-regulatory sequences of the

spermatocyte-specific gene matotopetli (topi) [67] control the

production of a Gal4-VP16-Topi fusion protein. The topi cis-

regulatory sequences were isolated by enzymatic DNA amplifica-

tion with the primers NT15 (59-CTTG GGATCC CTCGCA-

GATCGAATGTCTTG-39) and NT16 (59-CTTC AGATCT

TTTCATGGCGCTAGTCCGAT-39), the GAL4-VP16 sequences

with the primers NT17 (59-CGACC AGATCT ATGAAGC-

TACTGTCTTCTATCG-39), and NT19 (59-GTTTA

GCGGCCGC CCCACCGTACTCGTCAATTC-39) from a

bamP-GAL4-VP16 plasmid (kindly provided by D. McKearin),

and the topi coding and 39UTR sequences with NT20 (59-AAGAG

GCGGCCGCG ATGAAAGTCAAAGTTTCGGG-39) and

NT21 (59-AATTC GCGGCCGC CGCTATCTTGCCGCTT-

TATTT-39).

The UAS-Cid-EGFP lines were obtained after germline transfor-

mation with a pUAST construct where the sequences coding for

Cid with an internal EGFP insertion were inserted after enzymatic

amplification using pCaSpeR4-gcid-EGFP-cid [36] as a template in

combination with the primers NT41 (59-CTTTAA GCGGCCGC

TTAAGCAAATACCGAAAATTTG-39) and NT42 (59-GCAAA

TCTAGA AACTAAGCCTAAACTTCTCTTTTGG-39).

The UAS-cal1RNAi lines were obtained after PhiC31-mediated

germline transformation with a Valium20 [68] construct with an
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insert generated by annealing the oligonucleotides 5’-ctagcagt

ACGAGTGTAGTTGCTGCAATA tagttatattcaagcata TATTG-

CAGCAACTACACTCGT gcg-39 and 59-attcgc ACGAGTG-

TAGTTGCTGCAATA tatgcttgaatataacta TATTGCAGCAAC-

TACACTCGT actg-39.

The testis squash preparations for the quantification of EGFP

signals at centromeres and kinetochores were made with males of

the following genotypes: w*; cidT12-1/cidT22-4; P{w+, gcid-EGFP-

cid}III.2 (Figure 1b,c, Figure 4a, Figure 6a); w*; P{w+, giEGFP-

Cenp-C}II.1; FRT82B Cenp-Cprl41 (Figure 1b,d, Figure 6c); w*;

P{w+, gSpc25-EGFP}II.1; Spc25c00064 (Figure 6d); and w*; P{w+,

gcal1-EGFP}II.2; cal1MB04866 (Figure 4b, Figure S2).

Males with the first two genotypes were also crossed to w1118

females for the analysis of the transmission of paternal centromere

proteins in progeny embryos (Figure 2). Moreover, females with

these genotypes were crossed to w1118 males for the analysis of the

association of maternally derived centromere proteins with sperm

DNA (Figure 5). The squash preparations for the quantification of

EGFP signals at centromeres and kinetochores of mitotic

chromosomes (Figure 6e) were made with 1–2-h embryos collected

from parents with the first three genotypes.

For deGrad Cid-EGFP during spermatogenesis (Figure 3), we

generated w*; cidT12-1/cidG5950, P{w+, gcid-EGFP-cid}II.1; P{w+,

UASt-NSlmb-vhhGFP4}III/P{w+, gtopi-GAL4-VP16-topi}III, P{w+,

gcid-EGFP-cid}III.2 males by standard crossing schemes. In

parallel, we generated w*; cidT12-1/cidG5950, P{w+, gcid-EGFP-

cid}II.1; +/P{w+, gtopi-GAL4-VP16-topi}III, P{w+, gcid-EGFP-ci-

d}III.2 males for control experiments. The males were crossed

with w*; cidT12-1/cidT22-4; P{w+, gcid-EGFP-cid}III.2 females for

analysis of the subsequent generation.

For the analysis of X/0 spermatocytes, we used testis isolated

from v+, f+, B+ males obtained after crossing C(1;Y), y1 v1 f1 B1: y+

males with either w*; cidT12-1/cidT22-4; P{w+, gcid-EGFP-cid}III.2

(Figure 6b) or w*; P{w+, gSpc25-EGFP}II.1; Spc25c00064 females

(Figure 6d).

To increase Cid-EGFP levels on sperm centromeres

(Figure 7a,b), we generated w*; cidT12-1/cidG5950, P{w+, gcid-

EGFP-cid}II.1; P{w+, pUASt-cal1}III.1, P{w+, pUASt-cid-EGFP-

Cid} III.1/P{w+, bamP-GAL4-VP16}III, P{w+, gcid-EGFP-cid}III.2

males by standard crossing schemes. In parallel, w*; cidT12-1/

cidG5950, P{w+, gcid-EGFP-cid}II.1; +/P{w+, bamP-GAL4-VP16}III,

P{w+, gcid-EGFP-cid}III.2 males were generated for control

experiments. For analysis in the next generation (Figure 7b), the

males were crossed to w*; cidG5950, P{w+, gcid-EGFP-cid}II.1/

cidG5950, P{w+, gi2xtdTomato-Cenp-C}II.3; P{w+, gcid-EGFP-cid}

III.2/Cenp-Cprl41, P{w+, gi2xtdTomato-Cenp-C}III.1 females.

To decrease Cid-EGFP levels on sperm centromeres (Figure 7c–

g), we generated w*; cidT12-1/cidG5950, P{w+, gcid-EGFP-cid}II.1;

P{w+, cid-RNAiGD4436}v43857/P{w+, bamP-GAL4-VP16}III, P{w+,

gcid-EGFP-cid}III.2 males. In parallel, w*; cidT12-1/cidG5950, P{w+,

gcid-EGFP-cid}II.1; +/P{w+, bamP-GAL4-VP16}III, P{w+, gcid-

EGFP-cid}III.2 males were generated for control experiments.

For analyses during embryogenesis of the next generation

(Figure 7d), the males were crossed to w*; cidG5950, P{w+, gcid-

EGFP-cid}II.1/cidG5950, P{w+, gi2xtdTomato-Cenp-C}II.3; P{w+, gcid-

EGFP-cid} III.2/Cenp-Cprl41, P{w+, gi2xtdTomato-Cenp-C}III.1 fe-

males. For analyses with wing imaginal discs of the next generation

(Figure 7e), the males were crossed to w*; cidT12-1, P{w+, His2Av-

mRFP}II.2/CyO, Dfd-EYFP females. Wing discs of larvae with

His2Av-mRFP expression were mounted and imaged [9]. The rest

of the larvae was used for further genotype analysis by PCR using

primers specific for the bam-GAL4-VP16 transgene and the P

insertion in cidG5950, respectively. The data shown in Figure 7e are

from the genotype w*; cidG5950, P{w+, gcid-EGFP-cid}II.1/cidT12-1,

P{w+, His2Av-mRFP}II.2; {w+, bamP-GAL4-VP16}III, P{w+, gcid-

EGFP-cid}III.2/+. We point out that this genotype, which does not

include the cid-RNAiGD4436 transgene, results from crosses with

both the experimental and the control males. The data obtained

with this genotype therefore cannot be affected by cid-RNAiGD4436

expression during zygotic development. As shown in Figure S5c,d,

data from additional progeny genotypes were fully consistent with

the findings made with the genotype displayed in Figure 7e. For

analyses with testis of the next generation (Figure 7f,g), the males

were crossed to P{w+, pUASt-mCherry-nls}III females followed by

isolation of testis from male progeny with the genotype w*;

cidG5950, P{w+, gcid-EGFP-cid}II.1/+; P{Cid-RNAiGD4436}v43857/

P{w+, pUASt-mCherry-nls}III or w*; cidG5950, P{w+, gcid-EGFP-

cid}II.1/+; +/P{w+, pUASt-mCherry-nls}III in case of the control

experiments. These testes were characterized by the presence of

green centromeric signals and absence of red nuclear signals.

Testis Preparations
Testis squash preparations were made, fixed, and stained

essentially as described [69] with the following modifications. After

dissection in testis buffer (183 mM KCl, 47 mM NaCl, 10 mM

Tris-HCl, pH 6.8), testes were transferred to a 5 ml drop of

phosphate buffered saline (PBS) on a poly-L-lysine-treated slide

and cut open to spill the contents. The sample was squashed very

gently after addition of 15 ml of 4% formaldehyde in PBS under a

22622 mm siliconized cover slip. Fixation was continued for

6 min.

Testes whole mount immunolabeling was done as described

[70] with the following modifications. After testis dissection (see

above), fixation was done in 4% formaldehyde in PBS for 10 min.

Antibody incubations were performed in a humid chamber.

For immunolabeling, rabbit antiserum against ModC [41] was

diluted 1:4,000 in PBS. Affinity-purified rabbit antibodies against

Cenp-C [63] were diluted 1:5,000. Hybridoma supernatant

containing mouse monoclonal antibody eya10H6 (generated by

S. Benzer and N.M. Bonini and kindly provided by the

Developmental Studies Hybridoma Bank developed under the

auspices of the NICHD and maintained by The University of

Iowa, Department of Biology, Iowa City, IA 52242) or 38F3

against NopI/Fibrillarin (Abcam, ab4566) was diluted 1:100 and

1:300, respectively, Secondary antibodies were Cy5 or Alexa568-

conjugated goat antibodies against rabbit or mouse IgG.

The images shown in Figure 1b, Figure 3a, Figure 4a,b, Figure

S2, and Figure 6a,b represent projections of image stacks

assembled using Adobe Photoshop. Deconvolution was performed

before maximum projection in case of Figure 3a. To reveal the

weaker signals in advanced stages of spermatogenesis, increasing

adjustment of brightness and contrast was applied to the

progressive stages shown in Figure 1b. Therefore, the EGFP

signals displayed in Figure 1b do not reflect their quantified

intensities (Figure 1c,d). However, to document differences

between Cid-EGFP and Cenp-C-EGFP intensities, images were

treated equally at a given stage. Concerning X/0 spermatocytes,

we point out that the Cid-EGFP signals of the X and the fourth

chromosomes were often tightly associated in a single cluster

during S5 (in 65% of the spermatocytes, n = 25). The data

displayed in Figure 6b were obtained from spermatocytes with

separate X and chromosome 4 signals.

Embryo Preparations
For analyses during the very early embryonic stages, eggs were

collected for 30 min at 25uC. For analyses during the syncytial

blastoderm cycles, eggs were collected for 1 h and aged for an

additional hour. For analyses of nuclear densities during cellular-
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ization, the embryos were aged for an additional 1.5 h. After

dechorionation, embryos were fixed and released from the vitelline

membrane by shaking in methanol. After DNA staining with

Hoechst 33258 (1 mg/ml in PBS), we mounted the embryos under

a coverslip in 70% glycerol, 1% n-propyl gallate, and 0.05% p-

phenylenediamine.

For the preparation of mitotic chromosome spreads, eggs were

collected for 1 h and aged for an additional hour. Embryos were

dechorionated in 1.4% sodium hypochlorite and extensively rinsed

with deionized water. After transfer into an Eppendorf tube

containing a 1:1 mixture of heptane and Schneider’s tissue culture

medium with 10 mM demecolcine (Sigma D7385), embryos were

incubated on a rotating wheel. In case of the analysis of Cenp-

EGFP and Spc25-EGFP, the incubation in demeocolcine was

omitted. After 30 min, embryos were transferred to 75 mM KCl

in a depression slide and incubated for 10 min. Embryos were

then transferred into a 5 ml drop of polyamine buffer [71] on a

glass slide and torn apart using fine tungsten needles. A drop of

5 ml of 4% formaldehyde in PBS was added. After addition of a

coverslip, the sample was inverted onto a filter paper and squashed

for a few seconds to spread the embryos. After a 5-min incubation,

the sample was frozen in liquid nitrogen. After flipping away the

coverslip, the slide was immediately placed into chilled 100%

ethanol and incubated for 10 min at 220uC. Excess ethanol was

removed by tapping the slide onto a paper towel. After washing

the sample area with PBS for 5 min, DNA staining was performed

with 0.5 mg/ml Hoechst 33258 in PBS for 10 min. After a 5-min

wash in PBS, the sample was mounted under a coverslip in 70%

glycerol, 1% n-propyl gallate, and 0.05% p-phenylenediamine.

Immunostainings of eggs and embryos shown in Figures 2 and 5

was performed as described [72]. Briefly, embryos were dechor-

ionated in bleach, fixed in methanol, and rehydrated in 16 PBS,

0.15% Triton X-100. Embryos were then incubated overnight in

the same buffer with rabbit anti-GFP antibody (Invitrogen) at a

1:200 dilution. They were then washed three times in 16 PBS,

0.15% Triton X-100, and incubated overnight in secondary

antibody (AlexaFluor 488 goat anti-rabbit (Molecular Probes) at

1:1,000). After an incubation step in a RNAse A solution (2 mg/ml

in PBS) for 1 h at 37uC, embryos were mounted in a mounting

medium (DAKO) containing propidium iodide (5 mg/ml) to stain

DNA. Male and female pronuclei at the pronuclear apposition

stage and during the first prometaphase were identified based on

their position. As previously revealed by immunolabeling using an

antibody against actetylated histone H4, a histone mark that is

enriched in paternal chromatin, the female pronucleus (or the

maternal set of chromosomes) is known to be systematically

oriented toward the polar bodies [27]. Accordingly, the first

pronucleus encountered along the virtual line from polar bodies to

the apposed pronuclei was considered to be the female pronucleus.

Microscopy and Image Analysis
Quantification of EGFP signals on centromeres and kineto-

chores was performed after acquiring stacks (20–28 sections,

250 nm spacing) from squashed testis preparations using a 636/

1.4 oil immersion objective on a Zeiss Cell Observer HS

microscope. Stacks were converted into maximum projections

using ImageJ. Signal quantification was performed essentially as

described previously [9] with the following modifications. For

quantification of centromeric signal intensities during spermato-

genesis, all centromeric signals within a cell were surrounded with

the free hand tool followed by measurement of area (As) and

integrated pixel intensity (Is) of the selected regions. For

subtraction of diffuse signals (background and GFP signals from

any noncentromeric pools), the selected region was slightly

enlarged yielding Al and Il. Total centromeric signal intensity

per cell was then calculated as Is2[As6(Il2Is)/(Al2As)]. An

analogous subtraction of diffuse signals was performed for

quantification of intensities of individual centromeres in sper-

matocytes where each centromeric spot was surrounded individ-

ually. The characteristics of the DNA staining pattern during the

S5 spermatocytes stage provided the basis for an assignment of

Cid-EGFP signals to different chromosomes. While the centro-

meres of the two chromosome 4 homologs in the large majority of

all S5 spermatocytes analyzed are paired into a single Cid-EGFP

spot next to a strongly staining DNA dot, each homolog of all the

other chromosomes usually displays a single Cid-EGFP dot. The

X centromere Cid-EGFP signal is usually also close to a region of

intense DNA labeling, which however is more irregular in shape

and not as intense as in case of chromosome 4. In contrast, the Y

centromere is very rarely associated with a region of intense DNA

staining presumably as a result of the Y loops present during the

S5 stage. Finally, the territories of chromosome 2 and 3 display a

far more homogenous DNA staining than the regions with

chromosomes X, Y, and 4. We would like to point out that

quantification of centromeric signals obtained after immunofluo-

rescent labeling with anti-Cid, anti-Cenp-C, or anti-GFP resulted

in far more noisy data. Moreover, comparison of GFP fluores-

cence signals and immunofluorescent signals after double labeling

of cells expressing only Cid-EGFP or Cenp-C-EGFP with

antibodies recognizing these GFP fusions indicated that immuno-

fluorescent signal variability is likely to be caused by problems with

antibody accessibility that at least in part also reflect the

kinetochore attachment status. Accurate centromere signal quan-

tification in combination with DNA fluorescent in situ hybridiza-

tion (FISH) for chromosome identification was therefore not an

option, also because GFP fluorescence does not survive the FISH

procedure.

In case of the analyses in syncytial blastoderm embryos, stack

size was 16 focal planes with 250 nm spacing, in case of wing discs,

20 focal planes with 250 nm spacing. For all quantitative analyses

of EGFP signal intensities, data were acquired from at least three

different slides. The data displayed in Figure 7b,d are from

embryos in prometaphase or metaphase of mitosis 11 and 12. As

we did not observe significant intensity differences between mitosis

11 and 12, values were pooled for preparation of the s.

Supporting Information

Figure S1 Gynogenetic embryos resulting from Cid depletion in

sperm progress through an additional syncytial cycle before

cellularization. During spermatogenesis, a GFP-specific ubiquitin

ligase [32] was either expressed (+ deGrad cid-EGFP) or not

expressed (2 deGrad cid-EGFP) in males producing only Cid-EGFP

instead of normal Cid. Males were crossed with wild-type females,

and progeny was fixed at the stage of cellularization. Comparison

of the nuclear density in 2 and + deGrad cid-EGFP progeny during

cellularization revealed a 2-fold higher value (or rarely a mosaic of

regions with normal and 2-fold higher values) in the latter. Scale

bar, 5 mm.

(TIF)

Figure S2 cal1-EGFP expression during spermatogenesis.

Squash preparation of testis producing only Cal1-EGFP instead

of endogenous Cal1 was stained for DNA and double labeled with

antibodies against Cenp-C (CenpC) and Fibrillarin (Fibrillarin) to

mark centromeres and nucleolus, respectively. Stacks of represen-

tative cells during the gonial division cycles (gonial) and during the

spermatocyte stages S1 (S1), S3 (S3), and S5 (S5) were deconvolved

and maximum projected. Cal1-EGFP dots co-localizing with
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Cenp-C were detected up to the S3 stage but not later. Cal1-

EGFP signals could not be detected in the nucleolus, in contrast to

the findings in embryonic and cultured Drosophila cells [9,37].

Scale bar, 10 mm.

(TIF)

Figure S3 Comparison of Cid levels in different Y centromeres.

(a) Crossing scheme for the introgression of different Y

chromosomes into the cid; cid-EGFP background. The mini-w+

gene of P{w+, gcid-EGFP-cid}III.2 and the recessive mutation curled

(cu) were used as marker mutations. (b) Squash preparation of testis

with introgressed Y chromosome from strains w1 (w1), Oregon R (o),

Thurgau 1 (t), Winterthur 1 (w), Congo (c), India (i), or Zimbabwe (z). Cid-

EGFP levels on individual centromeres were measured, indicating

that all the different Y centromeres have similarly increased Cid

levels in comparison to the other centromeres. The intensity of

individual Cid-EGFP dots in S5 stage spermatocytes representing

either a chromosome 2 or 3 centromere (2/3), the paired

chromosome 4 centromeres (4p), the X centromere (X), or the Y

centromere (Y) was measured, and the sum of all the individually

measured centromeric signals within each analyzed spermatocyte

was set to 100%. Bars indicate average relative intensity; s.d. is

indicated by whiskers. n.25. The isofemale strains Thurgau 1 and

Winterthur 1 were established from single females isolated from the

wild at different locations in Switzerland in spring 2010 (P.

Radermacher, L. Baumann, and C.F. Lehner., unpublished). The

strains Congo (c), India (i), and Zimbabwe (z) were kindly provided by

G. Reuter (University of Halle, Halle, Germany).

(TIF)

Figure S4 Effect of gene dose on centromeric Cid-EGFP levels.

(a) Wing imaginal discs expressing cid-EGFP were isolated from

wandering third instar larvae and imaged [9]. The larvae had

either one endogenous cid+ gene copy and one cid-EGFP transgene

copy (cid2/+; cid-EGFP) or no endogenous cid+ gene copy and

either two (cid2/2; cid-EGFP/cid-EGFP) or one (cid2/2; cid-EGFP/

+) transgene copy. Scale bar, 10 mm. (b) Total Cid-EGFP signal

intensity per nucleus was measured in cells of the peripodial

membrane of wing imaginal discs from the different genotypes (as

in a). Bars represent average intensity in arbitrary units (a.u.), with

whiskers indicating s.d. A similar number of cells was analyzed in

each disc. The total number of cells and imaginal discs analyzed is

given below the bars (n). According to t test, differences between

the analyzed genotypes were highly significant (p,0.0001). (c)

Comparison of Cid-EGFP levels in individual centromeres of Y

(Y), X (X), major autosomes (2/3), and the paired chromosome 4

centromeres (4p) in spermatocytes of cid males with two or one

copy of cid-EGFP, as indicated. Major autosome territories contain

two spots. The stronger (s) and weaker (w) spots, respectively, were

grouped and analyzed separately. Dots indicate centromeric

EGFP intensity in arbitrary units (a.u.). Averages (long horizontal

line) are given with s.d. (short horizontal lines). n.45. The fold

change of average Cid-EGFP levels between samples with two or

one cid-EGFP copy is indicated. All the indicated differences were

highly significant according to t test (p,0.0001).

(TIF)

Figure S5 Transgenerational maintenance after Cid-EGFP

reduction in sperm. (a, b) Analysis of the extent of Cid-EGFP

knock-down during spermatogenesis. Centromeric Cid-EGFP

signals were quantified in males without (2) or with (+) bamP-

GAL4-VP16-driven expression of UAS-CidRNAi in a background

producing only Cid-EGFP instead of endogenous Cid. (a)

Centromeric Cid-EGFP levels per nucleus were quantified in S5

spermatocytes, spermatids, and sperm. The extent of average

reduction of centromeric Cid-EGFP resulting from RNAi is

indicated above the brackets and was found to be highly significant

in all cases (p,0.0001, t test). At least 25 cells from at least five

different testes were analyzed for each stage and genotype. (b)

Centromeric Cid-EGFP levels in individual centromeres of Y (Y),

X (X), major autosomes (2/3), and the paired chromosome 4

centromeres (4p) were quantified in S5 spermatocytes. Each major

autosome territory contains two Cid-EGFP spots. The stronger (s)

and weaker (w) spots, respectively, were grouped and analyzed

separately. The extent of average reduction of centromeric Cid-

EGFP resulting from RNAi is indicated above the brackets and

was found to be highly significant in all cases (p,0.0001, t test). At

least 35 centromeres from at least five different testes were

analyzed for each case. (c, d) Analysis of propagation of reduced

centromeric Cid-EGFP levels in the next generation. Centromeric

Cid-EGFP per nucleus in progeny derived from males without (2)

or with (+) RNAi-mediated Cid-EGFP reduction in sperm (as

determined in Figure 7c and Figure S5, a and b) was compared. In

peripodial cells of wing imaginal discs of third instar larvae,

centromeric Cid-EGFP levels were measured before genotype

assignment by PCR. While data from the genotype w*; cidG5950,

P{w+, gcid-EGFP-cid}II.1/cidT12-1, P{w+, His2Av-mRFP}II.2; {w+,

bamP-GAL4-VP16}III, P{w+, gcid-EGFP-cid}III.2/+ are displayed

in Figure 7e, further corroborating data from the genotypes w*;

cidT12-1/cidT12-1, P{w+, His2Av-mRFP}II.2; {w+, bamP-GAL4-

VP16}III, P{w+, gcid-EGFP-cid}III.2/+ (c) and w*; cidG5950, P{w+,

gcid-EGFP-cid}II.1/cidT12-1, P{w+, His2Av-mRFP}II.2; P{w+, cid-

RNAiGD4436}v4385 or +/+ (d) are shown here. The fold change of

average Cid-EGFP levels between controls and experimental

samples is indicated next to the dashed arrows. Statistical

significance of the changes according to t test: p,0.001 (d) and

*** p,0.0001 (c). The total number (n) of analyzed cells and

imaginal discs analyzed is given below the bars. Dots indicate

centromeric EGFP intensity per nucleus (a, c, d) or in individual

centromeres (b) in arbitrary units (a.u.) chosen to result in an

average intensity of 100 a.u. in control spermatocytes in (a), (c),

and (d). Averages (long horizontal line) are given with s.d. (short

horizontal lines).

(TIF)

Text S1 A deterministic model for sex-specific differences of Cid

loading on autosomes.

(PDF)
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