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Abstract: Consumption of lactic acid fermented fruits and vegetables has been correlated with a
series of health benefits. Some of them have been attributed to the probiotic potential of lactic acid
microbiota, while others to its metabolic potential and the production of bioactive compounds. The
factors that affect the latter have been in the epicenter of intensive research over the last decade.
The production of bioactive peptides, vitamins (especially of the B-complex), gamma-aminobutyric
acid, as well as phenolic and organosulfur compounds during lactic acid fermentation of fruits and
vegetables has attracted specific attention. On the other hand, the production of biogenic amines has
also been intensively studied due to the adverse health effects caused by their consumption. The data
that are currently available indicate that the production of these compounds is a strain-dependent
characteristic that may also be affected by the raw materials used as well as the fermentation
conditions. The aim of the present review paper is to collect all data referring to the production of the
aforementioned compounds and to present and discuss them in a concise and comprehensive way.

Keywords: vitamins; GABA; phenolic compounds; organosulfur compounds; bioactive peptides;
biogenic amines

1. Introduction

Lactic acid fermentation has been applied for centuries on substrates of plant and
animal origin. The seasonal and geographical diversity of the raw materials results in a
great variability of products. The qualitative and quantitative composition of the micro
ecosystem that is developed during fermentation; the biotic and abiotic factors that direct it,
along with the physicochemical changes of the substrate itself, have been in the epicenter
of intensive research for many decades. Nowadays, the interest in lactic acid fermentation
has been re-fueled, and its value has again been praised due to the health benefits that their
consumption may confer. Indeed, a series of health benefits, including anti-allergic, anti-
hypertensive, anti-inflammatory, anti-diarrheal, anti-infection, and anti-aging, as well as
prevention and control of chronic diseases such as cardiovascular diseases, type 2 diabetes,
obesity, and cancer, has been associated with the consumption of lactic acid fermented
commodities. These health benefits have been attributed to the lactic acid bacteria that
drive the fermentation as well as to the bioactive compounds that are present in the final
product [1–8]. Their presence depends upon the occurrence of the necessary precursor
molecules in the raw materials and the capacity of the lactic acid bacteria strains to carry
out the required biotransformations.

Lactic acid fermentation of fruits and vegetables is no exception. Indeed, the suitability
of fermented fruits and vegetables as probiotic carriers has been adequately exhibited [9–13].
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In addition, specific health benefits have been associated with the consumption of spe-
cific products, such as the antioxidant, anti-obesity, anti-cancer, anti-hypertensive, and
immunomodulatory potential of kimchi [14].

The biotic and abiotic factors that affect the production of vitamins (especially of
the B-complex), gamma-aminobutyric acid, bioactive peptides, as well as phenolic and
organosulfur compounds during lactic acid fermentation of fruits and vegetables have
attracted specific attention over the last decade. In addition, the production of biogenic
amines has also been intensively studied due to the adverse health effects that are caused by
their consumption. The aim of the present review paper is to collect all relevant information
and to present and discuss them in a concise and comprehensive way.

2. Vitamins

The role of vitamins in human life and well-being is very important; they facilitate
metabolic reactions, including energy-yielding ones, as well as many physiological pro-
cesses. Depending on their chemical nature, they may be distinguished into water-soluble
(B-complex, C) and fat-soluble (A, D, E, K) vitamins. They are considered essential micronu-
trients since the human body is not able to synthesize the majority of them. Thus, adequate
dietary supply is necessary to prevent deficiency. Biofortification, i.e., the utilization of
microorganisms capable of producing them, has been proposed as a strategy to improve
the vitamin content of certain commodities. This approach is particularly valuable in the
case of fermented fruits and vegetables.

The vitamin content of fruits and vegetables has been extensively studied. Fruits
are recommended as sources of vitamin C; they also contain vitamin K and carotenoids,
and leafy vegetables contain vitamin C, folate, and carotenoids [15]. More specifically,
cucumbers and Chinese cabbage contain vitamins C, B1, B2, B11, B3, B6, A, E, and K, with
Chinese cabbage appearing to contain more per 100 g. Olives contain vitamins B1, B3, B6,
A, E, and K; black olives also contain vitamin C, while green olives also contain vitamin B11.
Green olives appear to contain quantitatively more vitamins than black olives, with the
exception of vitamin K, where they both contain 1.4 mg/100 g. Vitamins B12 and D seem
to be absent from cucumbers, Chinese cabbage, and olives (data from fdc.nal.usda.gov,
accessed on 29 July 2021).

Vitamin production by lactic acid bacteria has been in the epicenter of intensive re-
search over the last decade, particularly vitamins of the B-complex and, more specifically,
vitamins B2 (riboflavin), B9 (folate), and B12 (cobalamin). Vitamin production seems to
be a strain-dependent property. Strains of Enterococcus faecium, Lactococcus lactis subsp.
lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, Lac-
ticaseibacillus rhamnosus, Lm. mucosae, and Leuconostoc mesenteroides have been reported as
riboflavin producers [16–23]. Extracellular folate production has been reported for strains
of Streptococcus thermophilus, Lb. amylovorus, Lp. plantarum, Latilactobacillus sakei, and Lc. lac-
tis. [24–28], while cobalamin production has been verified for strains belonging to the lactic
acid bacteria species E. faecium, E. faecalis, La. casei, Furfurilactobacillus rossiae, Lm. reuteri, Lp.
plantarum, Loigolactobacillus coryniformis, Lm. Fermentum, and La. rhamnosus [29–35]. The
capacity of lactic acid bacteria strains to produce vitamin B1 (thiamine), B3 (niacin), as well
as K2 has also been reported [36–38].

Although fruits and vegetables and, especially, green vegetables have been recognized
as the main sources of folates for humans [39] and certain fruits and vegetables and,
especially, dark green vegetables are very good sources of riboflavin [40], the fate of vitamins
during lactic acid fermentation has only been marginally studied. Jagerstad et al. [41]
reported that folate production takes place during lactic acid fermentation, depending
on the starter culture. More accurately, the starter culture, consisting of a mixture of
Lp. plantarum, Lc. lactis/cremoris and Leuconostoc sp. strains, was able to produce up
to 125 µg/kg 5-CH3-H4 folate during fermentation of a mixture of beetroots, turnips,
and onions and 110 µg/kg during fermentation of a mixture of roots consisting of carrots,
turnips, parsnips, celeriacs, and onions. Thompson et al. [42] used four Lp. plantarum strains
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to ferment cauliflower, white beans, and their 50:50 mixture and reported a statistically
significant increase in riboflavin and folate content. More accurately, after fermentation
of the latter at 30 ◦C for 44 h, riboflavin increased to 75.64–91.60 µg/100 g fresh weight
from the 42.83 µg/100 g fresh weight of the unfermented control; folate increased to
48.74–58.82 µg/100 g fresh weight from the 36.84 µg/100 g fresh weight of the unfermented
control. In addition, Lp. plantarum strain 299 was able to produce vitamin B12, increasing
its concentration to 0.048 µg/100 g fresh weight from the 0.029 µg/100 g fresh weight of
the unfermented control.

3. Gamma-Aminobutyric Acid

The occurrence of gamma-aminobutyric acid (GABA) in plants, microorganisms, and
vertebrates has been adequately exhibited. In plants and humans, GABA is mostly asso-
ciated with signaling functions. Indeed, its role in plant growth and stress response has
been established [43–45]. In humans, it acts as the major inhibitory neurotransmitter in
the central nervous system. The latter has played a decisive role in the ongoing trend of
enriching food with this molecule; however, Hepsomali et al. [46] mentioned that although
GABA oral intake resulted in various responses [47–49], it is still unknown whether brain
GABA concentration is increased. On the other hand, it seems to have a different role in
microorganisms; it has been associated with resistance to acidic conditions [50] as well as
spore germination, at least in Neurospora crassa [51] and Bacillus megaterium [52]. In lactic
acid bacteria, GABA production has been reported as a strain-dependent characteristic. It
takes place mostly through L-glutamate decarboxylation since it also contributes to acid re-
sistance through proton consumption [53]. L-glutamate supply may be exogenous through
the glutamate/GABA antiporter or endogenous through the activity of glutamate synthase
on α-ketoglutaric acid. Then, GABA may be transported extracellularly through the afore-
mentioned antiporter or degraded to succinic acid through GABA aminotransferase and
succinate semialdehyde dehydrogenase (Figure 1) Among others, strains belonging to E.
durans, La. paracasei, La. rhamnosus, Lp. plantarum, Lb. delbrueckii subsp. bulgaricus, Lc. lactis
subsp. lactis, Le. buchneri, Leu. mesenteroides, Leu. pseudomesenteroides, Lv. brevis, S. salivarius
subsp. thermophilus, and Weissella cibaria have been reported as GABA-producers [54–56].
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Figure 1. Production of GABA (yellow box), bioactive peptides (green box), and biogenic amines
(blue box) by LAB. AAD: amino acid decarboxylase; ABA: amino acid/biogenic amine antiporter;
CWBP: cell-wall-bound proteinases; Dpp: peptide (2–9 amino acids) ABC transporter; DtpT: ion
linked peptide (2–3 amino acids) transporter; EP: extracellular proteinases; GABA-T: GABA amino-
transferase; GAD: glutamate decarboxylase; GltS: glutamate synthase; IP: intracellular peptidases;
Opp: oligopeptide (4–18 amino acids) permease; SSADH: succinate semialdehyde dehydrogenase.

The amount of GABA synthesized by a plant depends upon several factors, such as
variety, type, and severity of biotic and abiotic stresses; however, its occurrence has been
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characterized as ubiquitous [57]. Indeed, GABA amount may range from the 0.007 mg/g
dry weight in an epicarp/mesocarp mixture of apples and the 0.019 mg/g dry weight of
chestnuts to the 1.86 mg/g dry weight of mulberries and the 174.30 mg/g fresh weight of
Vitis vinifera L. cultivar Pinot Noir [58–61]. Regarding the raw materials mostly used as
substrates for lactic acid fermentation, the occurrence of GABA has also been reported. In
olives and in extra virgin olive oil, the amount of GABA was cultivar-dependent [62,63]. In
the latter case, its amount was less than 0.00014 mg/g. Leaves and roots of Chinese cabbage
were reported to contain 4.69 and 7.02 µmol/g dry weight, respectively, accounting for
the 8% and 26.86% of total free amino acids, respectively [64]. Finally, fresh cucumbers
were reported to contain 105 mg/kg GABA [65]. Current evidence shows that lactic acid
fermentation may increase GABA content. Indeed, spontaneously fermented cucumbers were
reported to contain 150 mg/kg GABA, with the majority of it being formed during the first day
of fermentation [65]. Notably, GABA concentration remained stable throughout the 6-month
storage period at 28 ◦C. In the case of spontaneously fermented olives, GABA was formed only
upon monosodium glutamate addition [66]. The amount of GABA formed was proportional
to the amount of monosodium glutamate added and irrespective of the osmotic dehydration
of olives, which was applied as a pre-fermentation treatment. GABA production was also
reported during spontaneous kimchi fermentation [67]. In that study, GABA production took
place within the first 25 days of storage at 4 ◦C, reaching approximately 4 mM; this amount of
GABA remained stable until the end of storage (120 days). Analysis of the microecosystem
identified strains of Leuconostoc spp. and Lt. sakei as the GABA producers. Seok et al. [68],
Cho et al. [69], and Lee et al. [70] studied GABA production during kimchi fermentation
inoculated with GABA producing strains. Seok et al. [68] used Lactobacillus sp. strain OPK
2–59 and 5 g monosodium glutamate and managed to produce 18 mg/100 g GABA, a notable
increase from the initial amount of 2.84–4.06 mg/100 g. Interestingly, rapid GABA production
was observed after the 9th day of storage. In the kimchi produced by the addition of either
the GABA-producing strain or monosodium glutamate, the GABA amount at the end of
storage (21 d) was less than 6 mg/100 g. Cho et al. [69] analyzed commercially available
kimchi and Mukeunjee kimchi products and reported that the GABA content ranged from
1.9 to 12.9 mg/100 g and from 18.2 to 99.0 mg/100 g, respectively. Then, a GABA-producing
Le. buchneri strain was employed as a starter culture, resulting in kimchi with 61.7 mg/100 g
GABA, which was significantly higher than the 8.1 mg/100 g of the spontaneously fermented
one. Notably, the sensory scores of the products were comparable. Lee et al. [70] prepared
kimchi with the addition of Lv. zymae strain GU240 as a starter culture and evaluated the effect
of L-glutamic acid, monosodium glutamate, and kelp extract as GABA precursors. Storage
took place at −1 ◦C for 20 weeks. Monosodium glutamate was the most effective GABA
precursor. The most rapid increase was observed between weeks 2 and 4, and the maximum
GABA concentration reached 120.3 mg/100 g in week 8. Then, it was reduced to the final
amount of 95.6 mg/100 g. The GABA content of the kimchi that was prepared without
the addition of starter or precursor, as well as the kimchi prepared with only the addition
of a starter, was 47 mg/100 g. The addition of kelp extract resulted in the accumulation of
55 mg/100 g GABA, and the addition of L-glutamate resulted in 62.5 mg/100 g. In all cases,
maximum GABA concentration was observed in weeks 8 and 10, which was then reduced
until the end of storage (week 20).

4. Bioactive Peptides

Bioactive peptides are short peptides that, upon release from the parent protein
molecule, exert a biological function. Decryption from the parent protein molecule may take
place during gastrointestinal digestion or due to the proteolytic activity of microorganisms,
such as the LAB that direct a fermentation process. Their occurrence depends on the
activity of extracellular and cell envelope proteinases, as well as the peptide transportation
capacity into the cell, towards their complete hydrolysis to amino acids [71] (Figure 1). A
wide range of biological activities has been described for such peptides, including anti-
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diabetic, antioxidant, anti-microbial, anti-thrombotic, hypocholesteromic, hypotensive,
mineral-binding, opioid, and anti-opioid.

The liberation of bioactive peptides through lactic acid fermentation of protein-rich
substrates, such as milk and soy, has been extensively studied. Data on the bioactivity of the
peptides released by the lactic acid fermentation of meat, fish, grains, and legumes are also
available. Thus, the decryption of such peptides through the application of LAB, such as
E. faecalis, Lp. plantarum, Lb. helveticus, La. casei, La. rhamnosus, Companilactobacillus farcimi-
nis, Fructilactobacillus sanfranciscensis, Lc. lactis, Lb. delbrueckii subsp. lactis, and Pediococcus
acidilactici single strains [35,72–81], or microbial consortia [82–90], has been reported.

In general, fruits and vegetables are not rich in protein; however, the occurrence of bioac-
tive peptides in some of them has been reported (recently reviewed by Sosalagere et al. [91]).
Cucumbers, Chinese cabbage, and green and black olives contain 0.65%, 1.5%, 1.03%, and
0.84% protein, respectively (https://fdc.nal.usda.gov/, accessed on 21 August 2021). In
olive seeds, the occurrence of the peptide LLPSY exhibited significant anti-proliferative
capacity on prostate cancer cells (PC-3) and breast cancer cells (MDA-MB-468) [92]. Oc-
currence of bioactive peptides in cucumbers that were raw, acidified, spontaneously fer-
mented, or fermented with the addition of Lp. pentosus strain LA0445 was assessed by
Fideler et al. [93]. Five peptides with potential anti-hypertensive activity were detected,
namely, IPP, LPP, VPP, KP, and RY. KP was present in all cases; the amount in the fermented
ones was significantly higher than the rest. Acidified cucumbers also contained KY, a
peptide that was not detected in spontaneously fermented ones. The cucumbers that were
fermented with the addition of the starter culture contained all five peptides [93].

5. Phenolic Compounds

The occurrence of phenolic compounds in plants has been extensively assessed. They
are the third-largest group of secondary metabolites, after terpenes and alkaloids; they hold
a very important physiological role as they participate in processes such as photosynthesis,
respiration, and cell development. Regarding the total phenolic content (TPC) of the
fruits and vegetables mostly used as a substrate of lactic acid fermentation, it seems to
be rather low; it has been reported to vary between 0.58–1.42 mg GAE/g fresh weight
for Chinese cabbage, 0.17 mg GAE/g fresh weight for cucumbers, and 82.29–287.29 mg
GAE/100 g for olives [94,95]. Their amount depends upon factors associated with the plant
type and variety, cultivation conditions, processing, and storage [96,97]. The interest in
phenolic compounds is fueled by the correlation that has been achieved between them and
antioxidant capacity as well as the prevention of chronic diseases and inflammation [98].

Based on the fact that lactic-acid-fermented fruits and vegetables consist of two phases,
namely, a solid and a liquid one, Ciniviz and Yildiz [99] studied the TPC of both juice
and pulp portions of 30 kinds of lactic acid fermented fruits and vegetables. In all cases
but two, namely, wild pears pickle and sour grapes pickle, the amount of TPC in juice
was higher than the respective in the pulp portion. In the latter, TPC ranged from below
detection limit in carrots pickle and white cabbage pickle to 135.39 µg GAE/mg in pinecone
pickle, while in the juice portion, it ranged from 16.94 µg GAE/mg in tomatoes pickle to
235.19 µg GAE/mg in pinecone pickle. The most common phenolic acid seemed to be
sinapic acid, which was detected in all juice and pulp samples at concentrations ranging
from 135.91 mg/L in sour grapes pickle to 236.32 mg/L in sweet long green pepper pickle
and from 104.25 mg/kg in white cucumber pickle to 107.43 mg/kg in unripe melon pickle,
respectively. Vanillic acid, caffeic acid, and chlorogenic acid were present in all juice
samples, ranging from 0.08 mg/L in white cabbage pickle to 31.81 mg/L in carrot pickle,
from 30.06 mg/L in unripe melon pickle and chard pickle to 74.61 mg/L in hot pepper
pickle, and from 62.21 mg/L in cauliflower pickle to 200.30 mg/L in rock samphire pickle,
respectively. 4-hydroxybenzoic acid and p-coumaric acid were not detected in any sample.

The fate of phenolic compounds during lactic acid fermentation has only been
marginally studied. The mode by which lactic acid fermentation may increase the TPC of
the raw materials is either through the lysis of the cell wall of the plant cells with concomi-

https://fdc.nal.usda.gov/
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tant facilitation of their release from the vacuole, in which they are mainly localized, or by
enzymatic conversion of their glycosides into their aglycone form [100]. The latter may
take place through β-glycosidase activity, which several lactic acid bacteria strains have
exhibited [101,102]. Indeed, several Lp. plantarum strains have been reported to hydrolyze
oleuropein, which is the main phenolic glucoside of olives [103]. More accurately, an initial
action of β-glycosidase, followed by an esterolytic activity on the aglycone moiety, has
been reported to produce olenoic acid and hydroxytyrosol [100]. Moreover, through the
production of phenolic acid decarboxylases, some Lp. plantarum strains may decarboxylate
phenolic acids [104,105].

A wide range of phenolic compounds have been reported to occur in the brine or
the flesh of fermented olives, including apigenin, apigenin-7-O-glucoside, caffeic acid, p-
coumaric acid, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, ferulic acid, p-
hydroxybenzoic acid, hydroxytyrosol, luteolin, luteolin-4-O-glucoside, luteolin-7-O-glucoside,
protocatechuic acid, pyrocathecol, rutin, tyrosol, vanillic acid, vanillin, and verbasco-
side [106–110]. Their fate during fermentation depends upon the cultivar, the addition
and type of starter culture, brine composition, as well as fermentation temperature and
time [107–109]. Indeed, proper arrangement of the aforementioned conditions may result
in the complete decomposition of oleuropein and an increase in hydroxytyrosol, tyrosol,
p-coumaric acid, vanillic acid, caffeic acid, verbascoside, and ferulic acid [107,109,110].
Initial concentration increase has also been reported for apigenin-7-O-glucoside, luteolin-4-
O-glucoside, and luteolin-7-O-glucoside, which was followed by a decrease until the end
of fermentation [110].

In the case of kimchi, Park et al. [111] reported that over-ripened kimchi contained
more TPC than short-term fermented ones. Park et al. [112] reported that the TPC of
mustard kimchi increased during the first two months to 482.4 mg GAE/g extract powder
but then decreased during the third month to 475.3 mg GAE/g extract powder, which
had no statistically significant difference from the control. Regarding the specific phenolic
compounds assessed, the amount of caffeic acid increased throughout the three months of
fermentation; the amount of naringin, catechin gallate, and epigallocatechin gallate initially
increased, but after three months of fermentation, their amount was less than that of the
control. The amount of chlorogenic acid and epicatechin gallate decreased throughout
the three-month fermentation compared to the control; p-coumaric acid and gallocatechin
gallate were only detected after one month of fermentation, and catechin was only detected
after one and two months of fermentation. Epicatechin and rutin were present in the
control, and their amount increased after two months of fermentation. However, they were
not detected after three months of fermentation. Finally, gallic acid and epigallocatechin
were not detected to the control and throughout fermentation. Oh et al. [113] studied the
TPC of Dolsan leaf mustard kimchi and reported that the TPC of leaves decreased during
the first 21 days of fermentation but then increased to the initial amount of ca. 100 mg
GAE/100 g. On the contrary, the TPC of stems gradually increased from the initial ca.
40 mg GAE/100 g to a final of ca. 110 mg GAE/100 g. A novel insight was provided by
Jung et al. [114]. In that study, the increase of TPC over the 24-day fermentation of kimchi
made of young Chinese cabbage was reported. However, the initial TPC and the TPC at
the end of fermentation were determined at 83.2 and 102.5 mg GAE/100 g, respectively,
when the young Chinese cabbage was cultivated using nature-friendly composts. These
amounts of TPC were higher than 63.2 and 98.2 mg GAE/100 g, respectively, when the
young Chinese cabbage was cultivated using general composts and higher than 57.9 and
81.0 mg GAE/100 g, respectively, when the young Chinese cabbage was cultivated using
chemical fertilizers.

Ciska et al. [115] and Kapusta-Duch et al. [116] studied the TPC of sauerkraut. The
first study reported that sauerkraut extract contained 8.25 mg/g TPC while white cabbage
contained 5.72 mg/g. In white cabbage, only esterified phenolic acids were detected, with
sinapic acid being the most prevalent (278 µg/g). On the contrary, apart from esterified phe-
nolic acids, their glycosides were also detected in the sauerkraut extract. As in the previous
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case, sinapic acid was the prevalent one, with 20 µg/g being quantified as esterified acid
and 84 µg/g as its glycoside. Kapusta-Duch et al. [116] assessed the effect of package type,
namely, low-density polyethylene and metalized polyethylene terephthalate with polyethy-
lene bags, on the TPC content during four months of chilled storage of white sauerkraut.
It was revealed that package type had no effect on the TPC levels as in both cases, the
reduction was at ca. 12% and 20% after three and four months of storage, respectively.

The fate of phenolic compounds has also been assessed in less known regional lactic
acid fermented fruit and vegetable products, such as African nightshade leaves and kiwi
fruit. In the first case, the effect of fermentation that was carried out at 37 ◦C for 3 days on
the phenolic profile of the product was strain-dependent [117]. For example, fermentation
with Lp. plantarum strain 75 resulted in an increase of the amount of gallic acid, vanillic
acid, 2,5 dihydroxybenzoic acid, p-coumaric acid, and ellagic acid, as well as the flavonoids
assessed, namely, catechin, quercetin, and luteolin. On the contrary, fermentation with
Leu. pseudomesenteroides strain 56 resulted in an increase of the amount of ellagic acid and
quercetin and a decrease in gallic acid, caffeic acid, vanillic acid, 2,5 dihydroxybenzoic acid,
p-coumaric acid, ferulic acid, and catechin. The effect of fermentation at 37 ◦C for 28 h by
Lp. plantarum on the phenolic profile of kiwifruit pulp was studied by Zhou et al. [118].
The TPC increased after the 21st hour of fermentation. The amount of protocatechuic acid,
esculetin, and p-coumaric acid was increased due to the fermentation, while the amount of
gallic acid, chlorogenic acid, catechin, and epicatechin was decreased.

6. Organosulfur Compounds

Vegetables of the family Brassicaceae are very rich in organosulfur compounds in general
and glucosinolates in particular. Among others, this family includes all types of cabbage and
mustard greens, which are very important raw materials for lactic acid fermentation.

Glucosinolates are secondary metabolites, the stability of which depend upon their
contact with myrosinase, a β-thioglucosidase that catalyzes its decomposition. In intact
plant cells, they are spatially separated; however, upon conditions that compromise plant
tissue integrity, such as infection by herbivores and phytopathogenic microorganisms,
the substrate and the enzyme are mixed, leading initially to the formation of the unsta-
ble thiohydroximate-O-sulfonate and β-D-glucose. The fate of the former depends on
the nature of the side chain present in the glucosinolates molecule as well as the envi-
ronmental conditions. Especially regarding the latter, neutral pH favors the formation
of isothiocyanates while acidic pH in the presence of ferrous ions and epithiospecifier
protein favors the formation of nitriles [119–121]. The physiological role of glucosinolates
and their breakdown products, especially isothiocyanates, against biotic stresses has been
verified [122]. Their concentration depends upon plant species, variety, and tissue, as well
as environmental conditions and agricultural practices [123]. Although this response may
indicate a possible role in abiotic stresses as well, this has not been yet clarified [122].

The interest on glucosinolates and their breakdown products results from their biolog-
ical activity; many of them have exhibited anti-bacterial, anti-fungal, and anti-proliferative
activity against human cancer cells [124]. The biotransformations of glucosinolates during
lactic acid fermentation of Brassica vegetables have been studied to some extent. In general,
fermentation seems to facilitate glucosinolates decomposition and an increase of the con-
centration of the breakdown products, the type and concentration of which are related to
the glucosinolate type and concentration in the raw material as well as the capacity of the
microbial strains that drive the fermentation.

Glucosinolate decomposition during fermentation has been exhibited in the case of
sauerkraut [125–128] and has been primarily attributed to the shredding of the cabbage
that precedes fermentation and secondarily to hydrolysis by lactic acid bacteria [129,130].
Interestingly, the capacity of LAB to produce nitriles instead of reduced glucosinolates,
which were produced by Enterobacteriaceae, was highlighted by Mullaney et al. [129].

Ciska and Pathak [131] reported that glucobrassicin and sinigrin were the most abun-
dant glucosinolates in the shredded cabbage used for fermentation. Ascorbigen, indole-3-
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carbinol, and indole-3-acetonitrile were identified as degradation products of the former,
while allyl isothiocyanate, allyl cyanide, and 1-cyano-2,3-epithiopropane were identified as
degradation products of the latter.

Penas et al. [132] highlighted the importance of the starter culture, cabbage cul-
tivar, and fermentation conditions on the volatile glucosinolate breakdown products.
Iberin, iberin nitrile, allyl isothiocyanate, sulforaphane, and allyl cyanide were detected,
with the latter being the most abundant, ranging from 65 to 75 µmol/100 g DM. Ascor-
bigen has been reported as the most abundant glucosinolate degradation product in
sauerkraut [126,128,131,133]. Ciska and Pathak [131] reported that ascorbigen concen-
tration could be as high as 14 µmol/100 g. Palani et al. [126] quantified ascorbigen at the
end of fermentation at 13 µmol/100 g FW. Indole-3-acetonitrile was also present at the end
of fermentation at 4.52 µmol/100 g FW. The concentration of both compounds decreased
during storage at 4 ◦C. These results concur with the ones presented by Penas et al. [133]
but only as far as the decrease of ascorbigen concentration is concerned; the concentra-
tion of indole-3-carbinol and indole-3-acetonitrile was stable throughout three-month
storage at 4 ◦C. Ascorbigen was also reported by Ciska et al. [128] as the main gluco-
brassicin breakdown product in sauerkraut, which, at the end of fermentation, reached
9.59 µmol/100 g. The concentration of indole-3-acetonitrile and 3,3′-diindolylmethane
also increased during fermentation to 0.036 and 0.0099 µmol/100 g, respectively. After
17 weeks of storage at 5 ◦C, the concentration of ascorbigen decreased to 8.59 µmol/100 g,
but the respective of indole-3-acetonitrile and 3,3′-diindolylmethane increased to 0.057
and 0.0187 µmol/100 g, respectively. Regarding the decomposition products of aliphatic
and aryl glucosinolates, an increase in the concentrations of allyl isothiocyanate, but-3-
enyl isothiocyanate, 3-(methylthio) propyl isothiocyanate, 1-cyano-3-(methylthio) propane,
4-(methylthio) butyl isothiocyanate, 3-(methylsulfinyl) propyl isothiocyanate, 1-cyano-3-
(methylsulfinyl) propane, 4-(methylsulfinyl) butyl isothiocyanate, and 2-phenethyl isoth-
iocyanate was reported at the end of fermentation. Isothiocyanates increased during the
first days of fermentation, reaching their peak on the 4th day and then decreasing. Al-
lyl isothiocyanate was the most abundant breakdown product, with 2.848 µmol/100 g,
followed by 3-(methylsulfinyl) propyl isothiocyanate, with 2.453 µmol/100 g. The concen-
tration of all compounds decreased after 17 weeks of storage at 5 ◦C, with the exception of
1-cyano-3-(methylthio) propane, which increased [128].

The significance of starter cultures in the fate of glucosinolates during the fermen-
tation of broccoli puree and juice was highlighted by Cai et al. [134], Ye et al. [135], and
Xu et al. [136]. Ye et al. [135] studied the effect of lactic acid fermentation of autoclaved
broccoli puree using five Lp. plantarum and 2 Leu. mesenteroides strains on the glucosi-
nolate content. In general, a total of 10 glucosinolates have been detected in broccoli
florets, namely, glucoalyssin, glucobrassicanapin, glucobrassicin, 4-hydroxy glucobrassicin,
4-methoxy glucobrassicin, glucoerucin, glucoiberin, glucoraphanin, neoglucobrassicin, and
progoitrin [137–139]. A strain-dependent increase in the concentration of glucoraphanin,
glucoiberin, and progoitrin to 29.0–236.5, 16.1–56.2, and 24.5–65.9 µg/g, respectively, from
the initial trace levels, was reported. Notably, the maximum amounts were achieved by
Lp. plantarum strain F1. Xu et al. [136] reported an increase of glucoraphanin, a decrease
of gluconapin, glucoerucin, 4-hydroxy-glucobrassicin, and neoglucobrassicin, and no sta-
tistically significant change in glucobrassicin and 4-methoxy-glucobrassicin when juice
made of broccoli florets was fermented with two P. pentosaceus strains at 37 ◦C for 36 h, in a
strain-dependent manner. Finally, Cai et al. [134] reported that the preheating of broccoli
florets at 65 ◦C for 3 min increased the concentration of sulforaphane, a glucoraphanin
decomposition product, from the initial 806 to 3536 µmol/kg DW. Fermentation by a mix-
ture of Lp. plantarum and Leu. mesenteroides strains at 30 ◦C for 15 h further enhanced
sulforaphane concentration to 13,121.3 µmol/kg DW, most likely by facilitating the release
and accessibility of glucoraphanin for decomposition.

Endogenous myrosinase inactivation and concomitant sinigrin retention after lactic acid
fermentation of Indian mustard leaves at 22 ◦C for 7 d were assessed by Nugrahedi et al. [140].
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Although oven heat treatment at 35 ◦C for 2.5 h and microwave treatment at 180 W for
4.5 min effectively reduced myrosinase activity, complete inactivation was achieved by
microwave treatment at 900 W for 2 min, leading to the production of sayur asin with the
sinigrin concentration of 11.4 µmol/10 g d.m. Mustard leaves are also the basic ingredient
for the production of mustard leaf kimchi. Oh et al. [113] studied the fate of glucosinolates
during the fermentation of mustard leaf kimchi at 0 ◦C for 35 d. Sinigrin, gluconapin,
glucobrassicin, and glucoraphanin were detected at day 0 in both mustard leaves and stems;
gluconasturtiin was only detected in leaves, while glucoiberin was only detected in stems.
Reduction of the total amount of glucosinolates was evident throughout fermentation in
both leaves and stems, which is mainly assigned to the reduction of sinigrin concentration,
which was the most abundant glucosinolate; it was quantified at 21.43 and 22.47 mg/100 g
at day 0 and 12.5 and 10.4 mg/100 g at day 35 in leaves and stems, respectively.

7. Biogenic Amines

Biogenic amines are compounds formed through the amination and transamina-
tion of aldehydes and ketones or the decarboxylation of amino acids. Their physiolog-
ical role is very important. In plants, the role of polyamines in cell division [141], root
growth [142–145], and vegetative propagation [146,147], as well as flower and fruit de-
velopment [148–154], has been exhibited. Moreover, their role in abiotic and biotic stress
responses has also been claimed [155–168]. Similarly, the contribution of cadaverine and
dopamine to signaling stress response as well as plant growth and development has been
reported [169,170]. In addition, tyramine and tryptamine are produced as defensive sub-
stances against aggressors [171] and serve as precursors for the production of alkaloids [172]
and melatonin [173], respectively.

Regarding microbial physiology, the role of biogenic amines in gene expression [174,175],
protection against oxidative stress [176–179], biofilm formation [180,181], signaling [182,183],
and virulence [184,185] has been indicated. From a fermentation perspective, the most
important role seems to be the response mechanism against acid stress. This mechanism
involves a membrane antiport, which couples amino acid uptake with biogenic amine
excretion, and intracellular amino acid decarboxylases, which decarboxylate the inserted
amino acid with simultaneous proton consumption (Figure 1). Then, the amine is excreted,
and ATP synthesis through proton motive force is directed [186,187]. Such mechanisms
have been reported for histidine/histamine, lysine/cadaverine, ornithine/putrescine, and
tyrosine/tyramine [186,188,189].

Based on the above, the occurrence of biogenic amines in plant tissues seems justified
even without microbial infection and proliferation. Indeed, several studies have reported
their presence in nonfermented fruits, vegetables, nuts, legumes, and cereals (reviewed
by Sanchez-Perez et al. [190]). Putrescine seems to be commonly occurring and may be
accompanied by tyramine, cadaverine, spermine, spermidine, and even histamine [190,191].
This is also the case for white cabbage, Chinese cabbage, and cucumbers, which are
commonly used as raw materials for lactic acid fermentation [192–198]. On the other
hand, the occurrence of biogenic amines has not been reported in the flesh of fresh olives at
any ripeness stage [199].

In Table 1, the outcome of studies on the quantitative determination of biogenic amines
in fermented fruits and vegetables is summarized. Kimchi seems to be the most studied
product, most likely due to the variety of raw materials employed, which results in a large
diversity of products [14]. Regarding the mean values that have been reported, the highest
were 16.81 mg/kg for agmatine [200], 14.3 and 49.8 mg/100 g for cadaverine and histamine,
respectively [201], 4.4 mg/kg for phenylethylamine [202], 334.64 mg/kg for putrescine [203],
31.30 mg/kg for spermine [204], and 24.6, 32.3 and 78.0 mg/kg for spermidine, tryptamine
and tyramine, respectively [205]. Regarding the highest amounts, agmatine was reported at
86.0 mg/kg [200], phenylethylamine and tyramine at 15.75 and 181 mg/kg, respectively [204],
putrescine at 982.32 mg/kg [203], while for cadaverine, histamine, spermidine, spermine, and
tryptamine were reported at 155, 535, 8.8, 12.1, and 11.4 mg/100 g, respectively [201].
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Table 1. Occurrence of biogenic amines in fermented fruits and vegetables.

Product. N AGM CAD HIS PHE PUT SPD SPM TRP TYR

Kimchi types

Kkakdugi kimchi 1 5 27.28 (54.44)
[<0.1–124.60]

55.94 (44.45)
[18.75–127.78]

3.61 (6.55)
[<0.1–15.24]

334.64 (427.97)
[10.85–982.32]

9.40 (6.68)
[<0.1–16.76]

1.03 (1.31)
[<0.1–3.10] <0.1 25.42 (29.59)

[2.97–76.95]

Chonggak kimchi 1 5 64.08 (65.51)
[2.00–148.50]

58.73 (46.02)
[8.24–131.20]

0.78 (1.23)
[<0.1–2.80]

269.07 (349.93)
[3.89–853.70]

9.06 (2.99)
[6.10–14.00]

6.23 (8.79)
[<0.1–20.74]

9.02 (9.86)
[<0.1–23.70]

8.49 (6.80)
[0.79–18.70]

Pa kimchi 2 13 44.07 (42.85)
[<0.1–123.29]

155.85 (139.26)
[8.67–386.03]

1.77 (2.04)
[<0.1–5.97]

78.79 (79.00)
[<0.1–158.33]

9.91 (4.89)
[2.32–18.74]

21.75 (8.94)
[<0.1–33.84]

6.99 (5.74)
[<0.1–14.92]

66.88 (74.91)
[<0.1–181.10]

Gat kimchi 2 13 20.5 (18.52)
[2.12–48.60]

58.44 (75.77)
[3.30–232.10]

3.44 (4.30)
[<0.1–15.75]

134.96 (220.53)
[1.89–720.82]

20.31 (6.35)
[12.26–28.49]

31.30 (22.35)
[<0.1–58.57]

11.22 (8.23)
[<0.1–26.74]

76.15 (65.91)
[1.28–149.77]

Cabbage kimchi
(Korean) 3 10 15.2

[3.6–44.9]
50.0

[3.4–142.3]
3.0

[nd–6.8]
69.7

[15.1–44.9]
12.0

[7.8–16.5]
2.4

[1.2–3.7]
12.3

[2.3–22.6]
49.4

[9.7–118.2]

Cabbage kimchi
(Chinese) 3 10 12.5

[3.7–31.0]
2.7

[0.6–8.5]
4.4

[2.1–6.7]
70.6

[16.0–240.4]
11.9

[7.7–15.2]
2.1

[nd–3.7]
12.1

[2.4–20.0]
35.1

[10.7–76.0]

Baechu kimchi 4 14 18.0 (18.6)
[nd–45.0]

64.6 (73.1)
[nd–245.9]

7.8 (5.8)
[nd–14.9]

15.0 (16.1)
[tr–43.9]

44.0 (35.8)
[tr–103.6]

Kkakduki 4 5 31.0 (26.8)
[nd–56.2]

30.3 (21.7)
[nd–51.6]

6.7 (10.3)
[nd–21.8]

14.2 (6.1)
[5.5–18.6]

4.8 (5.6)
[nd–10.8]

Chonggak kimchi 4 3 28.6 (49.5)
[nd–85.7]

10.7 (10.2)
[nd–20.3] nd 7.3 (6.9)

[2.3–15.2]
45.4 (21.9)
[20.2–58.1]

Matkimchi 4 4 30.5 (35.3)
[nd–64.2]

72.1 (27.7)
[40.2–104.6]

5.2 (4.5)
[nd–10.8]

32.3 (26.9)
[nd–60.5]

78.0 (22.0)
[54.3–105.1]

Ripened Baechu
kimchi 4 4 55.7 (18.9)

[28.0–63.3]
110.3 (44.4)
[57.2–154.6]

24.6 (34.0)
[tr–74.8]

5.5 (6.7)
[nd–13.6]

46.6 (39.6)
[nd–95.6]

Baek kimchi 4 3 18.5 (7.1)
[11.5–25.6]

20.7 (18.9)
[1.9–39.6]

0.8 (0.9)
[nd–1.7] tr 36.4 (28.6)

[7.8–64.9]

Super market kimchi 5 20 <0.1 14.3 (9.2)
[<0.1–155]

49.8 (32.5)
[<0.1–535] <0.1 2.06 (1.33)

[<0.1–7.3]
0.65 (0.51)
[<0.1–8.8]

1.96 (1.31)
[<0.1–12.1]

1.0 (1.05)
[<0.1–11.4]

0.46 (0.48)
[<0.1–4.2]

Retail market kimchi 5 17 <0.1 1.59 (1.44)
[<0.1–4.8]

5.59 (4.57)
[<0.1–18.6] <0.1 0.67 (0.79)

[<0.1–5.1]
0.48 (0.52)
[<0.1–8.2] <0.1 <0.1 0.40 (0.65)

[<0.1–3.5]
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Table 1. Cont.

Product. N AGM CAD HIS PHE PUT SPD SPM TRP TYR

Cabbage kimchi 6 20 8.3
[0.9–39.8]

6.3
[nd–21.8]

0.5
[nd–2.0]

47.6
[2.3–148.6]

2.9
[nd–6.7]

1.1
[nd–5.1]

11.6
[nd–74.8]

8.3
[1.1–27.9]

Kimchi 7 ud 16.81 (30.81)
[<0.14–86.00]

63.51 (69.81)
[1.13–193.00]

18.53 (28.07)
[<0.09–74.94]

2.59 (1.27)
[0.94–4.50]

208.70 (186.90)
[2.25–475.06]

10.35 (4.49)
[5.55–18.25]

1.38 (0.68)
[0.56–2.38]

4.75 (9.41)
[<0.29–24.88]

59.11 (44.70)
[1.25–98.31]

Sauerkaut

Czech 8 53 64.8 (56.8)
[1.9–293]

12.1 (31.6)
[nd–229]

181 (108)
[2.8–529]

8.2 (7.3)
[nd–47.0]

4.6 (9.0)
[nd–36.5]

235 (213)
[nd–951]

Austrian 8 10 43.4 (21.0)
[19.3–77.4]

2.1 (2.4)
[nd–8.0]

179 (80.2)
[51.0–295]

6.5 (5.5)
[nd–16.9]

2.4 (3.2)
[nd–7.7]

130 (71.3)
[14.0–214]

Household 8 29 29.8 (23.0)
[nd–82.7]

4.6 (6.8)
[nd–32.4]

87.3 (72.2)
[4.3–260]

10.2 (7.5)
[nd–28.3]

4.7 (7.9)
[nd–28.1]

117 (113)
[nd–384]

Sterilized 8 29 45.5 (40.1)
[6.9–167]

4.9 (6.4)
[nd–26.4]

132 (81.5)
[18.4–359]

6.8 (4.0)
[nd–15.2]

7.2 (10.2)
[nd–37.5]

134 (90.4)
[26.3–345]

Sauerkraut 9 3.9 1.5 tr 9.2 0.5 0.2 nd 4.8

Cucumbers

Fermented cucumber
brine 10 1 3.19 45.11 3.07 1.83 61.70 21.16 9.77 7.37 5.24

Pickled cucumbers 11 11 nd nd 4.5 (5.0) 2.9 (4.2) 0.7 (0.8)

Cucumber 7 ud 0.65 (1.05)
[<0.14–2.88]

82.14 (44.03)
[39.60–179.19]

31.54 (7.43)
[18.50–40.85]

3.10 (1.64)
[1.15–6.31]

171.30 (55.46)
[103.13–
286.88]

8.08 (3.77)
[2.25–14.05]

1.28 (0.71)
[0.56–2.65]

14.49 (5.82)
[6.00–22.88]

62.24 (20.12)
[28.38–86.75]

Olives

Fermented olive brine
10 1 0.81 15.62 1.14 1.78 42.94 0.51 6.93

Olives 7 ud <0.14 2.54 (3.28)
[<0.06–6.25]

1.71 (1.58)
[<0.09–3.13]

0.23 (0.40)
[<0.35–0.70]

17.13 (15.00)
[5.75–34.13]

1.21 (0.85)
[0.25–1.88]

1.58 (0.85)
[0.60–2.13]

3.33 (5.77)
[<0.29–10.00]

2.56 (1.29)
[1.75–4.05]

Olives 12 7 0.80 (0.00)
[<0.4–0.8] nd 5.00 (2.96)

[<0.5–7.8] nd
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Table 1. Cont.

Product. N AGM CAD HIS PHE PUT SPD SPM TRP TYR

Various products

Beetroot 7 ud 0.48 (0.94)
[<0.14–2.50]

5.45 (7.96)
[0.10–20.50]

6.84 (12.84)
[<0.09–31.25]

0.63 (0.96)
[<0.35–2.25]

21.25 (33.98)
[1.80–80.65]

2.31 (0.54)
[1.35–3.00]

0.80 (0.84)
[0.45–2.88]

2.46 (5.08)
[<0.29–14.20]

16.76 (20.18)
[1.20–47.80]

Broccoli 7 ud 0.93 (1.85)
[<0.14–3.70]

119.42 (127.40)
[6.80–302.50]

36.86 (42.95)
[<0.09–98.95]

2.40 (0.56)
[1.88–3.06]

173.32 (121.1)
[72.00–326.38]

15.52 (8.31)
[9.38–27.13]

5.27 (4.77)
[1.13–10.25]

0.69 (0.80)
[<0.29–1.50]

93.04 (62.71)
[47.25–181.88]

Brussel sprout 7 ud 0.45 (0.78)
[<0.14–1.35]

115.05 (174.71)
[1.60–316.25]

37.39 (43.78)
[1.31–86.10]

9.41 (4.20)
[4.60–12.38]

252.58 (150.91)
[114.31–
413.56]

17.08 (7.97)
[10.50–25.94]

2.97 (2.65)
[<0.08–5.10]

10.59 (12.63)
[<0.29–24.56]

166.58 (43.09)
[119.50–
204.06]

Carrot 7 ud 0.90 (1.60)
[<0.14–3.69]

12.13 (16.88)
[<0.06–41.25]

7.03 (9.26)
[<0.09–17.50]

1.88 (1.93)
[<0.35–4.38]

64.66 (83.96)
[4.25–186.63]

5.52 (1.60)
[3.10–7.50]

1.67 (0.86)
[0.44–2.38]

5.39 (8.90)
[<0.29–20.50]

23.35 (31.95)
[<0.07–61.19]

Cauliflower 7 ud 0.52 (0.25)
[0.38–0.80]

91.98 (110.97)
[0.06–215.25]

32.22 (50.23)
[0.94–90.15]

1.38 (2.40)
[<0.35–4.15]

80.24 (69.17)
[26.75–158.35]

21.27 (5.15)
[17.44–27.13]

5.58 (0.84)
[4.60–6.06]

21.58 (37.38)
[<0.29–64.75]

46.23 (77.28)
[0.31–135.45]

Celery 7 ud 0.33 (0.58)
[<0.14–1.00]

58.29 (20.18)
[35.50–73.88]

25.33 (21.94)
[<0.09–38.38]

2.13 (0.87)
[1.63–3.13]

93.17 (19.77)
[70.50–106.88]

6.73 (1.29)
[5.38–7.94]

1.46 (0.69)
[1.00–2.25]

1.17 (1.02)
[<0.29–1.88]

51.69 (13.23)
[36.44–60.13]

Champignon 7 ud 6.73 (1.03)
[5.60–8.15]

1.40 (3.07)
[<0.06–6.90] <0.09 0.52 (0.48)

[<0.35–0.90]
1.93 (1.59)
[0.45–4.45]

74.58 (18.71)
[58.65–106.65]

2.10 (0.55)
[1.40–2.65] <0.29 38.56 (37.11)

[0.50–85.20]

Fermented lupine
brine 10 1 0.05 0.40 0.67 nd 13.14 2.90 5.48 0.21

Garlic 7 ud 1.75 (2.06)
[<0.14–4.50]

8.46 (7.84)
[<0.06–17.69]

3.04 (4.83)
[<0.09–11.25]

0.69 (1.22)
[<0.35–2.81]

67.65 (105.29)
[4.25–249.44]

18.62 (9.21)
[8.31–33.06]

6.44 (2.06)
[3.94–9.40]

1.47 (2.51)
[<0.29–5.80]

8.44 (7.75)
[1.06–21.45]

Pepper 7 ud 2.48 (0.50)
[2.00–3.10]

0.08 (0.15)
[<0.06–0.30] <0.09 0.88 (0.09)

[0.75–0.95]
9.29 (3.17)

[6.45–13.80]
1.21 (0.14)
[1.10–1.40]

0.99 (0.11)
[0.90–1.15] <0.29 18.98 (2.92)

[15.65–22.75]

Pickled caperberries 11 9 3.2 (3.1) 14.7 (17.2) 13.1 (8.5) 4.9 (4.4) 1.6 (2.6)

Pickled capers 11 8 nd 8.2 (6.7) 2.3 (1.3) 2.3 (2.4) 0.2 (0.6)

Pumpkin 7 ud 1.08 (1.29)
[<0.14–2.75]

20.97 (0.76)
[20.00–21.69]

29.58 (31.13)
[2.88–73.94]

1.13 (1.44)
[<0.35–3.00]

136.98 (54.51)
[55.44–169.13]

8.68 (1.23)
[7.06–9.75]

49.63 (34.89)
[2.00–83.20]

4.88 (3.95)
[<0.29–9.25]

62.61 (39.09)
[20.06–111.69]

Radish 7 ud 0.32 (0.55)
[<0.14–0.95]

14.18 (20.27)
[0.88–37.50]

22.37 (22.04)
[<0.09–44.06]

1.77 (0.93)
[0.75–2.56]

32.08 (22.78)
[6.38–49.80]

6.40 (2.92)
[4.40–9.75]

0.93 (0.62)
[0.45–1.63]

10.25 (11.38)
[<0.29–22.50]

22.50 (11.33)
[15.25–35.56]
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Table 1. Cont.

Product. N AGM CAD HIS PHE PUT SPD SPM TRP TYR

Red cabbage 7 ud 3.76 (4.60)
[0.85–9.06]

90.22 (61.65)
[34.75–156.60]

32.00 (52.03)
[0.44–92.05]

1.11 (1.56)
[<0.35–2.90]

124.17 (140.70)
[4.00–278.95]

10.75 (4.77)
[6.25–15.75]

3.23 (0.64)
[2.70–3.94]

9.90 (17.15)
[<0.29–29.70]

59.65 (56.04)
[0.19–111.50]

Sunchoke 7 ud <0.14 4.50 (3.48)
[1.50–8.31]

0.46 (0.79)
[<0.09–1.38]

0.67 (1.15)
[<0.35–2.00]

28.90 (18.15)
[16.69–49.75]

7.83 (2.07)
[5.88–10.00]

3.50 (0.22)
[3.38–3.75] <0.29 0.58 (0.71)

[<0.07–1.38]

Tomato 7 ud 0.06 (0.11)
[<0.14–0.19]

1.58 (1.00)
[0.75–2.69]

1.65 (2.21)
[0.15–4.19]

2.09 (2.47)
[<0.35–4.81]

42.05 (29.97)
[10.95–70.75]

3.79 (1.18)
[2.50–4.81]

1.21 (1.02)
[0.50–2.38]

1.21 (2.09)
[<0.29–3.63]

8.34 (13.30)
[0.45–23.69]

White cabbage 7 ud 3.14 (3.05)
[<0.14–8.05]

35.76 (45.14)
[<0.06–125.44]

55.60 (21.14)
[32.55–83.81]

1.92 (0.95)
[0.90–3.69]

190.59 (163.47)
[57.50–524.63]

9.08 (2.48)
[5.81–11.85]

2.55 (1.78)
[0.69–5.38]

11.27 (5.89)
[3.10–17.19]

60.69 (29.30)
[29.05–105.13]

White turnip 7 ud <0.14 4.57 (4.31)
[1.13–10.70]

0.02 (0.03)
[<0.09–0.06]

1.31 (2.63)
[<0.35–5.25]

15.49 (12.96)
[2.25–32.63]

6.38 (2.41)
[4.31–9.69]

1.44 (1.37)
[<0.08–3.00] <0.29 16.26 (15.57)

[<0.07–35.31]

The average amounts of the biogenic amines are given. Standard deviation is given in parenthesis, and the range is given in square brackets. Amounts are given in mg/kg unless
otherwise stated. CAD: cadaverine; DOP: dopamine; HIS: histamine; NOR: noradrenaline; PHE: 2-phenylethylamine; PUT: putrescine; SER: serotonin; SPD: spermidine; SPM:
spermine; TRP: tryptamine; TYR: tyramine; N.: number of samples examined; ud: undefined; nd: not detected; tr: traces. 1 Hornero-Mendez and Garrido-Fernandez [206] (in µg/mL);
2 Garcia-Garcia et al. [207]; 3 Moret et al. [194] (in mg/100 g fresh weight); 4 Jin et al. [203]; 5 Lee et al. [204]; 6 Cho et al. [202]; 7 Kang et al. [205]; 8 Tsai et al. [201] (in mg/100 g);
9 Shin et al. [208]; 10 Swider et al. [200]; 11 Kalac et al. [209]; 12 Tofalo et al. [210].
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The level of biogenic amines in sauerkraut was lower than that of kimchi, with the
exception of tyramine (Table 1). In the latter case, Kalac et al. [209] analyzed 53 samples of
Czech sauerkraut and reported the mean amount at 235 mg/kg and the highest amount
at 951 mg/kg. Reports on the biogenic amine content of fermented cucumbers and olives
are generally lacking in the literature. Based on the available data (Table 1), fermented
cucumbers seem to contain more biogenic amines than fermented olives but less than kimchi
and sauerkraut. Regarding fermented olives, they seem to contain less biogenic amines than
kimchi, sauerkraut, and fermented cucumbers. Regarding the rest of the fermented fruits
and vegetables, the high amounts of agmatine (6.73 mg/kg) and spermidine (74.58 mg/kg)
detected in champignon, of histamine (55.60 mg/kg) in white cabbage, of phenylethylamine
(9.41 mg/kg), putrescine (252.58 mg/kg), and tyramine (166.58 mg/kg) in Brussels sprouts,
of cadaverine (119.42 mg/kg) in broccoli, of spermine (49.63 mg/kg) in pumpkin, and of
tryptamine (21.58 mg/kg) in cauliflower should be noticed (Table 1).

The increase in the amount of biogenic amines in fermented foods compared to that of
raw materials has been correlated with the microbiota that drive the fermentation. Indeed,
the capacity of lactic acid bacteria to decarboxylate amino acids has been adequately
exhibited [211]. However, it should be noted that this is a strain-dependent property. Thus,
the haphazard nature of the biogenic amine content of spontaneously fermented fruits and
vegetables is indicated. On the other hand, qualitative and quantitative control of biogenic
amine production is an option that is offered when lactic acid fermentation is performed
with the addition of starter cultures.

In the case of sauerkraut, the effect of raw materials on the production of biogenic
amines has been highlighted by Majcherczyk et al. [212] and by Satora et al. [213]. In the
latter study, eight cabbage varieties were employed to make sauerkraut through sponta-
neous fermentation; statistically significant differences in tyramine, histamine, cadaverine,
putrescine, and tryptamine content were reported. Interestingly, a positive correlation
between biogenic amine production and yeast presence was reported. The contribution of
yeasts in the accumulation of biogenic amines is already known in products of alcoholic
fermentation, such as wine [214]. The addition of ingredients that have an organoleptic
impact, such as onion and caraway, affected the accumulation of some biogenic amines;
the most pronounced effect was the reduced amounts of cadaverine and tyramine at the
end of the 14-day fermentation period [212]. On the other hand, at the end of the 12-month
storage at 4 ◦C, the sauerkraut made at 18 ◦C, with the addition of onion, accumulated
significantly less cadaverine and phenethylamine compared to the control [212]. During
spontaneous sauerkraut fermentation, the accumulation of biogenic amines seems to be
affected by the aforementioned parameters, along with fermentation temperature and time.
Indeed, Rabie et al. [215] reported an accumulation of histamine, tyramine, putrescine, and
cadaverine after 10 days of fermentation at 15 ◦C, while Majcherczyk and Surowka [212]
reported accumulation of cadaverine, tryptamine, and tyramine during fermentation at
18 ◦C for 14 d and of putrescine and tryptamine during fermentation at 31 ◦C for 14 d. Sim-
ilarly, accumulation during sauerkraut storage seems to be affected by the same parameters
as above. Regarding the effect of cultivar, the accumulation pattern seems to be affected by
the cabbage cultivar [216–218]; however, no details were provided on the capacity of the
members of the microecosystem to perform amino acid decarboxylation. The addition of
onion seemed to prohibit the accumulation of cadaverine and phenethylamine but only in
sauerkraut fermented at 18 ◦C and not 31 ◦C [212]. The paramount effect of a lactic acid
bacteria strain’s decarboxylating capacity in the accumulation of biogenic amines has also
been adequately exhibited. Indeed, statistically significant differences in the accumulation
during storage were observed and assigned to the Lp. plantarum and Leu. mesenteroides
strains that were used as inocula [219]. In addition, suppression of biogenic amine ac-
cumulation during fermentation and storage through inoculation with Lp. plantarum, Lt.
curvatus, and La. casei was reported by Rabie et al. [215]. Interestingly, the importance of the
interaction between the selected starter culture and the cabbage cultivar was highlighted
by Kalac et al. [216] and Spicka et al. [220].
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In the case of kimchi, the accumulation of biogenic amines during fermentation
of four kimchi types, namely, Pa, Gat, Kkakdugi, and Chonggak, has been assessed.
Lee et al. [204] prepared Pa and Gat kimchi and studied the effect of myeolchi-aekjeot,
a fermented anchovy sauce, the addition of which has been correlated with increased
biogenic amine content [202,221,222]; tyramine-producing Lv. brevis strains and Lp. plan-
tarum strains were unable to produce biogenic amines. During fermentation of Pa and Gat
kimchi, the amount of tryptamine and histamine was reduced. During Pa fermentation,
accumulation of tyramine, putrescine, and cadaverine in all experimental cases was noted.
Spermine was accumulated only in some cases, while β-phenylethylamine and spermidine
amounts were stable throughout fermentation. During Gat fermentation, only the cadav-
erine amount remained unchanged throughout the fermentation, and the accumulation
of tyramine, β-phenylethylamine, putrescine, and spermidine was recorded. Spermine
was also accumulated but only in some cases. In general, the addition of myeolchi-aekjeot
and the tyramine-producing Lv. brevis strain enhanced biogenic amine accumulation, with
the exception of spermine. Jin et al. [203] prepared Kkakdugi and Chonggak kimchi and
studied the effect of myeolchi-aekjeot and saeu-jeotgal, a fermented shrimp product, the
utilization of which has also been correlated with increased biogenic amine levels [221] in
tyramine-producing Lv. brevis strains and Lp. plantarum strains. During fermentation of
both products, the histamine amount decreased and the spermidine amount increased. In
the case of Kkakdugi, tyramine was accumulated only in the samples inoculated with Lv.
brevis, the putrescine amount slightly increased only in the uninoculated sample and the
one inoculated with Lv. brevis JCM 1170, and cadaverine accumulated in all samples with
the exception of the one that did not contain myeolchi-aekjeot, saeu-jeotgal, and inoculum.
The latter sample was the only one in which spermine content increased, while in the rest,
it was decreased. In the case of Chonggak, cadaverine remained stable in all samples but
seemed to increase in the sample that did not contain the fermented fish condiments and
inoculum; the tyramine amount increased in all samples with the exception of the one inoc-
ulated with Lp. plantarum, and cadaverine was accumulated only in the sample prepared
with the addition of the fish condiments but without inoculum. In the same sample, along
with the samples inoculated with Lv. brevis, the amount of spermine decreased. Combining
the studies of Lee et al. [204] and Jin et al. [203], it can be concluded that the accumulation
of biogenic amines could not always be predicted through the addition of ingredients that
have been correlated with increased biogenic amine content (fish condiments) of starter
cultures with known capacities. This indicates the existence of additional parameters that,
at least in some cases, may affect biogenic amine accumulation. Since biogenic amine accu-
mulation and decomposition are strain-dependent properties, it can be hypothesized that
the native microbiota, and especially the proportion of which that manages to participate
in the developing microecosystem, may be this additional parameter.

In the case of fermented cucumbers, biogenic amine accumulation during fermentation
was assessed by Alan [223]. In the latter study, gherkin fermentation was performed
spontaneously or with the addition of Lp. plantarum, Lp. pentosus, or Lp. paraplantarum
strains as starter cultures. Spermidine was not detected in any experimental case. On the
contrary, putrescine, cadaverine, histamine, and tyramine were detected, and their amount
was strain-dependent. More accurately, spontaneously fermented gherkins contained an
equal amount of putrescine with the one started with Lp. plantarum strain 49, less than the
one started with Lp. plantarum strain 51, and more than the ones started with Lp. plantarum
strain 13, Lp. pentosus strain 2, and Lp. paraplantarum strain 16. Cadaverine and histamine
were not accumulated in the gherkins started with all three Lp. plantarum strains, but
larger amounts were detected in the gherkins started with Lp. pentosus strain 2 and Lp.
paraplantarum strain 16 compared to the spontaneously fermented ones. Finally, an equal
amount of tyramine was accumulated in the gherkins started with Lp. plantarum strain 13
comapred with spontaneously fermented ones and larger amounts in the ones started with
Lp. plantarum strains 49 and 51, Lp. pentosus strain 2, and Lp. paraplantarum strain 16.
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The fate of biogenic amines during the fermentation of olives of the Manzanilla cultivar
was assessed by Garcia-Garcia et al. [224]. Putrescine, tryptamine, β-phenylethylamine,
spermidine, spermine, histamine, and agmatine were not detected during storage at 15, 20,
and 28 ◦C for 12 months. Only cadaverine and tyramine were accumulated. The former
was produced only at 20 and 28 ◦C, and the production rate increased after 7 and 5 months,
respectively. Washing was correlated with increased production. Tyramine production
followed a similar trend, with the exception that accumulation also occurred during storage
at 15 ◦C.

8. Conclusions

The functional potential of lactic acid fermented fruits and vegetables relies on the
interplay between the quality of the raw materials and the capacity of the microbial con-
sortium to carry out certain biotransformations. The former depends on the type and
variety of the raw materials, climatic conditions, and agricultural practices, as well as the
occurrence and conditions of processing and storage. On the other hand, the production
of bioactive compounds by microorganisms is a strain-dependent characteristic that also
depends on the fermentation temperature and time. Thus, optimization of the functional
potential requires a thorough study of all the aforementioned parameters. Although a lot of
information is available in some cases, e.g., the production of biogenic amines, the trophic
relationships within the microecosystem are very complex, and, thus, further study is still
necessary to enable practical recommendations.
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