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a b s t r a c t

Significant developments in cell therapy and biomaterial science have broadened the therapeutic
landscape of tissue regeneration. Tissue damage is a complex biological process in which different types
of cells play a specific role in repairing damaged tissues and growth factors strictly regulate the activity of
these cells. Hydrogels have become promising biomaterials for tissue regeneration if appropriate ma-
terials are selected and the hydrogel properties are well-regulated. Importantly, they can be used as
carriers for living cells and growth factors due to the high water-holding capacity, high permeability, and
good biocompatibility of hydrogels. Cell-loaded hydrogels can play an essential role in treating damaged
tissues and open new avenues for cell therapy. There is ample evidence substantiating the ability of
hydrogels to facilitate the delivery of cells (stem cell, macrophage, chondrocyte, and osteoblast) and
growth factors (bone morphogenetic protein, transforming growth factor, vascular endothelial growth
factor and fibroblast growth factor). This paper reviewed the latest advances in hydrogels loaded with
cells or growth factors to promote the reconstruction of tissues. Furthermore, we discussed the short-
comings of the application of hydrogels in tissue engineering to promote their further development.
© 2023, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Tissue engineering involves harnessing cells, engineering, ma-
terials, and biochemical and physiochemical factors to replace
biological tissues [23]. The implementation of tissue engineering
requires appropriate cells, scaffolds supporting cell attachment and
growth, and bioactive molecules that regulate cell growth, prolif-
eration, and differentiation, such as growth factors. And materials
used to prepare scaffold preparation can be divided into natural
and synthetic polymers, ceramics, and glasses [1]. In particular,
natural polymers are suitable for fabrication processes such as
hydrogelation and photopolymerization [117]. Hydrogels prepared
by polymers are soft high-water-content materials with many ad-
vantages, including good biocompatibility, soft mechanical
strength, low cytotoxicity, in vivo enzyme degradability, and a
microenvironment similar to natural tissue providing an appro-
priate environment for cell adhesion and proliferation[25,37,47,69].

Despite the dominance of small-molecule drugs and protein
therapeutics in treatment, we can engineer our own body's cells to
treat disease [94]. Interestingly, hydrogels can serve as an active
matrix to maintain cell growth, proliferation, and differentiation
[124]. Cell therapy achieve more complex functions than small
molecule drugs or biologics, resulting in more effective disease
treatments and a promising approach for treating refractory dis-
eases [15]. Growth factors are widely acknowledged as essential in
repairing tissue due to their influence on cell signaling pathways
through extracellular and intracellular mechanisms [102]. Thus, it is
generally believed that hydrogels containing cells and growth fac-
tors have great potential. Based on the natural three-dimensional
(3D) environment in hydrogels, cells can proliferate and form tis-
sues with specialized configurations and morphologies [97].

Currently, various hydrogels have been considered to regenerate
tissue by delivery cells (stem cells, macrophages, chondrocytes,
osteoblasts), growth factors (bone morphogenetic protein (BMP),
insulin-like growth factors, transforming growth factor (TGF),
vascular endothelial growth factor (VEGF), fibroblast growth factor
(FGF) etc.) and hormones [48]. In this article, we discussed the
extensive applications of hydrogels in tissue repair providing a
foothold for further research on hydrogels.
2. Applications of the hydrogels

Trauma is one of themost common injuries, and it is the damage
to human tissues caused bymechanical factors [86]. Normal wound
healing is a dynamic, complex and multi-stage process involving
synergistic interactions between various cells, cytokines and
growth factors [85]. Although traditional dressings such as gauze
[80,129] and bandage [82] are widely used because of their simple
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manufacture, low cost and strong absorbency, the weakness of
their antimicrobial effects, hemostatic ability and mechanical per-
formance still exists. Besides, in the process of wound healing,
traditional dressings would cause secondary damage because of the
adhesion of new tissues [3,31]. To date, manywound dressings have
been explored, such as hydrogel, film, nanofiber, hydrocolloids,
xerogels and hydrofibers. Within them, hydrogels could clean up
the matabolites produced from the damaged tissue, effectively
reduce the probability of wound bacterial infection and provide a
moist environment with antioxidant and free radical scavenging
capability, which can be highly beneficial for wound healing [134].

As complex biopsies, cartilage and bone play several key roles in
the body. However, they are difficult to heal in view of the poor self-
healing ability. And without adequate treatment, bone and carti-
lage loss will conducive to deleterious long-term effects. Many
therapeutic strategies such as microfracture [49], autologous
chondrocyte implantation [63,70], xenografts, allografts and
autologous bone grafts are indicated for cartilage repair and bone
regeneration [107]. However, there are various defects such as poor
mechanical properties of cartilage, cell death, limited bone mass,
disease transmission, contamination, and immune response. Given
that current treatment methods have limitations, much emphasis
has been placed on finding new and effective methods to treat bone
and cartilage defects. Tissue engineering is a prospective strategy to
repair damaged cartilage and promote bone regeneration, with
hydrogel being used as a suitable scaffold material [21]. This paper
reviewed the latest advances in hydrogels embedded with cells or
growth factors to promote the reconstruction of wound, bone and
cartilage (Table 1 and Fig. 1).

2.1. Types of functional cells encapsulated in hydrogels

Cell therapy refer to that treatment of diseases by introduce new
cells into an organism or tissue and cell-based therapies have
recently been studied. Hydrogels have the capability of 3D cell
cultures, which can overcome the abnormal polarization of cells in
2D culture. And because of the in vivo tissue stroma matrix-
mimicked property, hydrogels support cell-cell and cell-
extracellular matrix interactions, enabling the growth and prolif-
eration of cells [9,127]. Various cells are encapsulated in hydrogels
to reproduce in vitro while maintaining functional characteristics
and to sustainably promote tissue reconstruction [9]. There are
many studies on the application of hydrogel delivery cells for tissue
engineering.

2.1.1. Stem cell
As is known to all, stem cells can self-renew and differentiate

into many cell types, which are essential for the renewal and



Table 1
Materials and methods of cell/growth factors delivery in tissue regeneration.

Application Materials Delivery methods Cell/growth factors types References

Bone regeneration Graphene oxide-modified silk fibroin/nanohydroxyapatite 3D-printed scaffold Urine-derived stem cells [103]
Methacryloylated gelatin/nanohydroxyapatite/nanosilicate Injectable hydrogels MSCs [99]
Gelatin Injectable hydrogels BMP-2 [17]
ECM/oleoyl chitosan Implanted constructs ALN/BMP-2 [27]

Cartilage repair Silk fibroin and tyramine-substituted gelatin 3D-printed scaffold Stem cell [66]
Methacrylated hyaluronic acid/polycaprolactone 3D-printed scaffold BMSC [71]
Chitosan/poly(ε-caprolactone) 3D-printed scaffold Synovial MSCs [65]
Catechol-modified chitosan Injectable hydrogels BMSC [137]
Silk and methacrylated silk fibroin 3D-printed scaffold and

injectable hydrogels
BMP-2 and TGF-b3 [116]

Wound healing Silk fibroin Patches MSCs [79]
Silk fibroin Injectable hydrogels BMSCs [64]
Microporous annealed particle Scaffold Epidermal growth factor [91]
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regeneration of injured physiologic tissue [85]. At present, new
methods of combining stem cells with hydrogels have been widely
studied and applied to tissue engineering (Fig. 2).

As multipotent stromal cells capable of migration, differentia-
tion, and immunomodulation, mesenchymal stem cells (MSCs)
representing an alternative treatment method in tissue regenera-
tion are involved in the continuous maintenance and repair of
many tissues (Fig. 2 B, C, D) [5,39,109].
Fig. 1. Biomedical applications of hydrogel constructs loaded with cells and gr
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In recent years, MSC therapy has shown great potential to pro-
mote bone healing [109]. It has been shown that MSCs can directly
differentiate into osteoblasts and osteocytes, secrete various
bioactive substances and acquire similar functions to bone tissue
[52]. For example, Sayanti Datta et al. obtained an io-hybrid
hydrogel by crosslinking oleoyl chitosan and acellular bone extra-
cellular matrix (ECM); the human amnion-derived mesenchymal
stem cells were embedded in the hydrogel to promote bone
owth factors for healing wounds and treating bone and cartilage defects.



Fig. 2. (A) O xidized starch crosslinked collagen hydrogel inoculated with ASCs [118]. Copyright 2020, Elsevier B.V. (B) 3D functional tissue constructs using a unique gelatin-based
microscopic hydrogel [119]. Copyright 2020, Elsevier. (C) Preparation of eLHBC injectable hydrogel encapsulating BMSCs as wound dressing [105]. Copyright 2021, Elsevier. (D)
Fabrication of two collagen hydrogels with different network microstructures and chondrogenic differentiation of BMSCs in the hydrogels [123]. Copyright 2019, Elsevier.
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regeneration [28]. Mesenchymal stem cells can also treat cartilage
defects. Jay M Patel et al. designed a hyaluronic acid hydrogel sys-
tem to interdigitate with and stimulate sealing of degenerated
cartilage to protect damaged cartilage. Moreover, hyaluronic acid
therapy was further functionalized to improve MSC attachment to
the injured regions by combining hyaluronic acid modifications
with a current palliative treatment for osteoarthritis, MSC injection,
which led to the deposition of extracellular matrix to “seal”
damaged cartilage. The novel therapeutic strategy not only restored
cartilage biomechanics but also potentially prevented subsequent
wear and degeneration [87].

MSC can secrete trophic factors playing important roles in tissue
engineering. Studies have shown that MSC spheres secrete more
trophic factors than individual MSC, which are beneficial to pro-
moting angiogenesis, reducing local inflammation and finally
accelerating wound healing. Therefore, a kind of fibrin gel delivery
system was designed for simultaneously enhancing the proangio-
genic and anti-inflammatory potential of entrapped MSC spheroids
[83]. Similarly, an electrospray encapsulation device was devel-
oped, in which single or spherical MSCs were encapsulated into
micron-sized alginate beads, and then embedded in an injectable
thermosensitive hydrogel matrix. This study achieved increased
immunomodulatory effects of MSC without expansion, and pro-
moted tissue regeneration by significantly improving the MSC
paracrine action in spheroid forms with an optimized three-
dimensional MSC culture [84]. However, scar formation during
wound healing is unavoidable. To this end, microgels composed of
aligned silk nanofibers were developed to load bone marrow
mesenchymal stem cells and disperse them into injectable silk
nanofiber hydrogels. The synergistic effect of silk-based composite
hydrogel and mesenchymal stem cells stimulated angiogenesis and
transformation of pro-inflammatory and anti-inflammatory
462
phenotypes of macrophages, and when applied to the wound,
scarless tissues with hair follicles could be formed [136].

In addition to mesenchymal stem cells, researchers have
attempted to use other stem cells in tissue engineering. For
example, Kan Yue et al. designed a visible light in-situ crosslinked
tyramine-methacrylamide gelatin encapsulating the articular
chondroprogenitor cells and corroborated that tyramine-
methacrylamide gelatin hydrogel significantly improved the
expression of type II collagen and facilitated the generation of
cartilage [113]. A novel biodegradable Schiff base crosslinker
difunctional polyurethane and glycol chitosan were used as raw
materials to prepare hydrogels, inoculating adipose-derived adult
stem cells on the gel and combining with acupuncture to promote
the re-epithelization process and achieve skin regeneration [16].
Results from these studies evidence supporting the therapeutic
benefits of stem cells, and in recent years MSCs have become a hot
topic. But it is still not clear to identify the self-renewal ability and
molecular mechanism of MSCs and how culture expansion changes
the cell composition and population function [85].

2.1.2. Macrophage
Macrophages play essential roles in tissue engineering. It has

been established that permanent tissue macrophages and other
cells trigger an inflammatory cascade, which polarizes macro-
phages to pro-inflammatory phenotypes which produce cytokines
to recruit MSCs. After the acute inflammatory response subsides,
anti-inflammatory macrophages rise, and tissue regeneration is
stimulated, facilitating MSC and vascular differentiation [108].
Accordingly, an adequate transition of macrophages from pro-
inflammatory to anti-inflammatory phenotypes is critical for tis-
sue regeneration [108,113]. There are a variety of means to promote
the polarization of macrophages to anti-inflammatory phenotypes.
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Haoyu Wang et al. engineered a biomimetic and photo-
responsive hyaluronan-alkoxylphenacyl-based polycarbonate
hydrogel nanocomposite that could control 3D cell-ECM in-
teractions to regulate macrophage polarization [110]. Based on this,
a new type of glycopeptide hydrogel was developed to simulate
glycoprotein components and nanofiber structures of the skin ECM
and polarize macrophages into anti-inflammatory phenotype by
inducing mannose receptors activation through ERK/STAT6
pathway, which can accelerate wound healing [36]. It was also
found that the stiffness of the ECM plays a vital role in regulating
the polarization of macrophages. After mouse bone marrow-
derived macrophages (BMMs) were embedded in polyacrylamide
hydrogels with different substrate stiffness, low and medium sub-
strate stiffness promoted the shift of BMMs to pro-inflammatory
and anti-inflammatory, respectively [14].

Except these methods mentioned before, novel double network
hydrogels were prepared basing on hyaluronic acid and type II
collagen in squid cartilage, which directly or indirectly regulated
the dynamic immune response of neutrophils/macrophages,
induced the activation of anti-inflammatory macrophages by
inhibiting pro-inflammatory macrophage-mediated inflammatory
response [24].

Besides. Interleukin-4 is a common immune cytokine that can
induce the anti-inflammatory macrophage phenotype to reduce
the immune-inflammatory response and accelerate tissue repair
after implantation. So, the double hydrogel layers system on
titania nanotubes is designed as a reservoir for regulating the
release of IL-4 and interferon-g. It was found that interferon-g
released from the hydrogel system stimulated the switching of
macrophages to pro-inflammatory phenotypes, whereas IL-4
polarized macrophages to anti-inflammatory phenotypes [11].
Similarly, graphene oxide-carboxymethyl chitosan/poly dia-
crylate interpenetrating network hydrogels was prepared. After
IL-4 was loaded and released in a controlled manner, macro-
phage differentiation into the anti-inflammatory type was
observed. The hydrogel scaffolds promoted new bone formation
and tissue repair through immune regulation of the local
microenvironment [139].

2.1.3. Chondrocytes
Importantly, chondrocytes have been embedded in various

hydrogels to treat cartilage defects. The glucuronide acid residues
in the repeat units of gellan gum (GG) have a similar structure to
native articular cartilage glycosaminoglycans and hyaluronic acid
has characteristics of cartilage protection and cartilage induction
and lubricate cartilage, both of which play important roles in
cartilage formation [35,106]. But GG lacks cell-binding sites for cell
growth andmigration, whichmay lead to significant cell death. The
physical blending of GG with different lengths of silk fiber (SF)
improved the mechanical properties and cell adhesion of GG and
enhanced cell viability and growth of chondrocytes in the GG
blended with SF [60].

With scientific progress achieved, injectable hydrogels have
attracted considerable attention in cartilage tissue engineering in
recent years. Accordingly, biomimetic, hyaluronic acid-based
cryogel scaffolds produced with hyaluronic acid and glycidyl
methacrylate were engineered that possessed shape-memory
characteristics which contracted and restored their form after
syringe injection to fill cartilage defects non-invasively and
provided a beneficial microenvironment for chondrocytes to
maintain live and metabolically active following injection
through syringe needles [46]. However, studies have shown that
although hyaluronic acid-based hydrogel supports cell-based
cartilage formation, changing the concentration of hyaluronic
acid usually leads to changes in biochemical signals and stiffness
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affecting cell actions. To this end, elastin-like protein-hyaluronic
acid hydrogels were developed through dynamic hydrazone
bonds by the reaction between hydrazine-modified elastin-like
protein and aldehyde-modified hyaluronic acid. Chondrocytes
were embedded in elastin-like protein-hyaluronic acid hydrogels,
and in dose-dependent increase of cartilage-marker gene
expression and improved sulfated-glycosaminoglycan deposition
while minimizing unwanted fibrocartilage phenotypes due to
increased concentration of hyaluronic acid [138].

2.1.4. Osteoblasts
Osteoblasts that differentiate from MSCs resident in the bone

marrow can secrete various bioactive substances and have been
widely studied in bone regeneration [89]. Osteoconductive hydro-
gels were developed via a facile one-stepmicellar copolymerization
of acrylamide and urethane acrylate dextran, followed by the in-
situmineralization of hydroxyapatite nanocrystals. Themineralized
hydroxyapatite improved the mechanical properties, promoted the
adhesion and proliferation of osteoblasts, and stimulated osteo-
genic differentiation [33]. There were also silver nanoparticles-
loaded hydrogels using gelatin as a stabilizing agent under sun-
light. Interestingly, the survival and spread of cells were improved
after the osteoblasts were fixed with hydrogels [43]. Researchers
also modified the chitosan hydrogel with catechol and added
zeolitic imidazolate framework-8 (ZIF-8) for further modification to
obtain a catechol-functionalized chitosan nano-ZIF-8 composite
hydrogel system (CA-CS/Z) with good adhesion and mechanical
properties. After co-culturing with osteoblasts, the osteogenesis-
related genes were upregulated, and the secretion of
osteogenesis-related proteins was promoted, resulting in signifi-
cant collagen secretion and a high degree of extracellular matrix
mineralization [72].

2.1.5. Cell co-culture
Co-culture represents a superior model to mimic natural tissues

whereby two different types of cells are simultaneously seeded
onto tissue engineering scaffolds, thus avoiding the current limi-
tation of utilizing only one cell (Fig. 3) [81]. An injectable cellular
compatible double-network hydrogel was prepared to encapsulate,
co-culture, and stimulate the angiogenesis/osteogenic differentia-
tion of vascular endothelial cells and hBMSCs. The direct co-culture
system was found to be capable of simultaneously enhance osteo-
genesis and vascularization by offering 3D cell-cell communication
[122]. It was also proposed to co-transplant MSCs and fibroblasts
using a Hylan-A dermal filler hydrogel containing tenascin-C and
collagen I to provide augmented cellular reserve at the damaged
site and apply it to the wound site to promote wound closure and
reduce inflammation and cicatrix formation following wounding
[126]. Co-culture systems have been shown to solve many of the
problems encountered with single culture in tissue engineering,
such as the gradual decrease of cell number. Although cell co-
culture has the advantage of synergistic effect, the current cell
co-culture mostly simply mixes two cell populations, which is
prone to the uneven spatial distribution of cells. Therefore, many
studies have focused on controlling cell coculture at an accurate
ratio recently [18].

2.2. Types of growth factors encapsulated in hydrogels

Growth factors in the extracellular matrix regulate cellular
behavior and drive different cell fates by binding to specific trans-
membrane receptors [8]. Importantly, growth factors can induce
and enhance cell responses and promote cell differentiation into
the desired lineage; the secretion of growth factors directly affects
tissue development and recovery, accurate control of the dynamic



Fig. 3. (A) Preparation and utilization of a GC/Alg DN hydrogel as a 3D scaffold for the co-culture of BM-MSCs with VECs. (B) Demonstration of the injectability of GC/Alg DN
hydrogel. (C) SEM images of GC/Alg DN hydrogel. Bar, 50 mm. (D) Images of Live/Dead assay staining of VECs and BM-MSCs on hydrogel. Bar, 50 mm. (E) Injectability of the GC/Alg DN
hydrogel and in vivo injection [122]. Copyright 2018, Royal Society of Chemistry.
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distribution of growth factors and may lead to control of specific
regeneration processes or treatments [8,12]. Consequently, the
application of hydrogels for the transport of growth factors has
attracted the attention of researchers (Fig. 4).
2.2.1. Bone morphogenetic protein
Bone morphogenetic protein family members are involved in

various functions in bone, predominantly promoting bone forma-
tion after injury. And bone morphogenetic protein2 (BMP-2) is
reportedly the most important regulator of bone that promotes the
differentiation of osteoblast precursor cells into mature osteoblasts
and improves their early enrichment at bone injury site [19].
However, due to the lack of an effective means of delivery, BMP-2
needs to be applied at a supraphysiological dose to achieve clin-
ical effect. In addition to economic costs, supraphysiological doses
significantly raise the hazard of side effects, such as swelling,
osteolysis and heterotopic ossification [104]. Therefore, many
studies have considered embedding them in hydrogels to repair
bone, focusing on increasing the transportation of BMP-2 while
remaining bioactivity. One study developed functionalized nano-
clay which was used as a physical crosslinking agent to crosslink
hyaluronic acid. The hydrogel prolonged the in vivo local activity of
BMP-2 [61]. Moreover, highly osteoconductive hydrogel composites
which could slowly release BMP-2 for a long timewere prepared by
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mixing inorganic minerals, whitlockite, or hydroxyapatite, in
pyrogallol-conjugated hyaluronic acid [22].
2.2.2. Transforming growth factor
Among the secretory growth factors, the transforming growth

factor-b (TGF-b) family has received much attention, given its
functions at the cell level and in the development of many diseases
[32]. TGF-b is an evolutionarily conserved secreted protein, widely
expression in embryo and adult tissues, and controls many basic
aspects of cell behavior [133]. Therefore, most methods involve
incorporating TGF-b into scaffolds to achieve long-term cartilage
regeneration. For example, adipose-derived stem cells and TGF-b3
were embedded in photocrosslinkable methacrylated gelatin
hydrogels to form 3D structure [96]. Moreover, it is also a feasible
way to load TGF-b3 onto the surface of graphene oxide nanosheets,
encapsulate it in a photo-sensitive poly-D, L-lactic acid/poly-
ethylene glycol hydrogel, and mix it with hBMSCs during photo-
crosslinking [98]. Similarly, in a study, TGF-b3 with human bone
marrow-derived mesenchymal stem cells were directly loaded
into poly-D, L-lactic acid/polyethylene glycol/poly-D, L-lactic acid
hydrogels, or this hydrogels with the addition of hyaluronic acid,
and in vitro cultured. The construct exhibited controlled release of
TGF-b3 without using extra TGF-b3 in the culture medium [30].



Fig. 4. (A) Preparation of Chitin-PLGA Hydrogel incorporated CaSO4 and FGF-18 [100]. Copyright 2017, American Chemical Society. (B) CSDP hydrogel construction [73]. Copyright
2020, American Chemical Society. (C) The fabrication of hydrogel Gel/TG/TA-MPs-His6-T4L-BMP2 [17]. Copyright 2021, Elsevier. (D) Construction and application of the multi-
functional HA@MnO2/FGF-2/Exos hydrogel [120]. Copyright 2022, Wiley.
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2.2.3. Vascular endothelial growth factor
It is well known that impaired spontaneous vascularization is

the main cause of the lack of tissue healing [10,95]. Therefore,
promoting angiogenesis is a key method in tissue engineering to
promote the repair of damaged tissues, while VEGF is a best-known
regulator for angiogenesis [26,121]. VEGF can promote angiogenesis
and blood flow recovery in damaged tissue by stimulating endo-
thelial cell proliferation, migration, and sprouting [121]. However,
due to the low activity and instability of VEGF in damaged site, the
success of direct application of VEGF is limited [111]. So a growth
factor delivery system was developed which was based on porous
particles and a thermosensitive hydrogel, and continuously
released growth factor to imitate their biological production during
bone regeneration [59]. However, it is believed that monotherapy
can achieve only limited and unsatisfactory results [111]. It has been
proven that co-delivery of platelet derived growth factor-BB en-
larges the therapeutic reach of VEGF and promotes associated
arteriogenesis. Therefore, researchers prepared a highly controlled
protein transport system to deliver engineered versions of platelet
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derived growth factor-BB proteins and VEGF, which was efficient to
induce arteriogenesis and angiogenesis in diabetic mouse skin [10].

2.2.4. Fibroblast growth factor
The fibroblast growth factor and its receptor signaling system

adjusts various biological processes, and plays roles in regulating
angiogenesis, wound repair, and others by controlling survival,
migration, proliferation, differentiation and metabolism of target
cells [125]. Among them, FGF-18 is one of the molecules that assist
in inducing endogenous BMP-2 synthesis and increases expression
of BMP-2 by suppressing noggin. FGF-18 is also conducive to
endothelial cell migration, which may contribute to angiogenesis
[100]. An injectable chitin-poly(lactide-co-glycolide) hydrogel
containing whitlockite nanoparticles or bioglass nanoparticles with
FGF-18 was developed that indicated lasting discharge of FGF-18
[4]. Similarly, through the Michael addition of dithiothreitol and
4-arm acrylated polyethylene glycol a hydrogel dressing embedded
with basic fibroblast growth factor and heparin was designed.
Through the regulation of heparin, the hydrogel system sustainably
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released FGF within 10 days [88]. Ever-increasing proof certifies
that FGF participates in the modulation of the regeneration and
repair process. However, there are few reports concerning the ill
effects of it on tissues and its clinical curative effect [34].

2.2.5. Epidermal growth factor
Epidermal growth factor (EGF) is a small polypeptide with a

molecular weight of 6 kDa, which is the first and most successfully
applied growth factor for wound repair and regeneration [130]. EGF
as a stimulant for fibroblasts and keratinocytes to promote the
formation and re-epithelization of granulation tissue is particularly
important for repairing wounds [62,91]. It was found that a growth
factor solution containing EGF directly applied to wounds acceler-
atedwound healing in a short time. However, as a bioactive protein,
EGF is unstable and easily denatured, which hinders its application
in tissue engineering. A viscous carry, such as a polymeric hydrogel,
may moderately increase the bioavailability of growth factors and
overcome the unstable, short half-life of growth factors in vivo [50].
Hence, a stimuli-responsive drug-loaded hydrogel wound dressing
was prepared using carboxymethyl agarose and calcium ion
crosslinking, followed by the loading of recombinant human
epidermal growth factor to accelerate wound healing [128]. Simi-
larly, new polysaccharide nanocomposite loaded EGF was added to
chitosan-ulvan hydrogels, which continuously released epidermal
growth factor and showed significantly faster-wound healing effi-
ciency concerning considerably faster granulations tissue forma-
tion and collagen deposition [77]. However, the existing hydrogel
dressings have poor stimuli-responsive properties which cannot
satisfy the demands of therapy, including the sustained release of
the drug and maintaining a suitable humidity and permeability
environment for healing. To address the challenge, a EGF-loaded
hydrogel dressing with stimuli-responsive capability using car-
boxymethyl agarose was synthesized that could swell and release
EGF based on the change of pH and temperature [128].

2.3. Vesicles

There is great interest in the development of extracellular ves-
icles (EVs) and nanoparticles (NPs) for disease treatment and
diagnosis. EV/NP-based therapies offer a significant advantage in
the delivery of drugs to specific targets. In research, nanoparticles
are useful because of their uniform size and detectability while
extracellular vesicles have low toxicity and immunogenicity, and
efficiently avoid endosomal pathways and lysosomal degradation
[29,101]. Although recently there are so far no specific guidelines
from the US Food and Drug Administration concerning re-
quirements for approval of such products for human use and a
regulatory definition of nanotechnology was not adopted, in
nanomedicine field a large number of articles has been published
[101].

2.3.1. Extracellular vesicles
Extracellular vesicles are lipid nanoparticles secreted by all cells

and are involved in numerous trophic and immunomodulatory
processes [76]. EVs have been shown to be heavily involved in
intercellular communications and to play important roles in pro-
tecting their contents from degradation and in delivering their
contents to the recipient cells needed for cellular function [114].
Because of effectively changing the physiological functions of
recipient cells by delivering their cargoes [67]. And recent work has
identified the protein and nucleic acid effectors of EV-mediated
pro-angiogenic, anti-apoptotic and anti-inflammatory actions,
which are indispensable in facilitating the tissue regeneration [7].
In addition to directly injecting the EVs into the tissue injury site to
exert therapeutic effects, the EVs can be embedded into the
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hydraulic coagulation to functionalize the biomaterial by
improving the cell-material interaction, which avoid the defects of
low retention rate at the injury site and the need for repeated in-
jection during the administration of EVs injection, thereby main-
taining their stability, realizing the continuous release, and
enhancing the curative effect of EVs. The use of EVs for treating
bone and cartilage injuries has gained considerable attention.
Synthetic nanoclay laponite-functionalized gelatin meth-
acrylamide hydrogel for delivery of EVs was prepared. The intro-
duction of laponite affected the release of EVs improving the
potential of local retention and controlling delivery of EVs, in
addition to improving the shape fidelity of the hydrogel [75]. Re-
searchers considered that the increased retention of EVs by
laponite may be due to nanoclay-protein electrostatic interactions
that promote the immobilization of these EVs within the hydrogel
[56]. The combined effect of co-encapsulation of hMSCs and EVs in
hyaluronic-acid-based hydrogel on cartilage regeneration was
studied, and the results showed that the co-encapsulation of hMSCs
and EVs effectively enhanced the regeneration of cartilage tissue
compared with hMSCs [20]. Presently many researchers focus on
the transfer of microRNA. For example, bioglass scaffold with
GelMa/nanoclay hydrogel coatings was fabricated to load EVs, and
the continuously released therapeutic EVs were absorbed by BMSC
and endothelial cells, promoting deposition and endothelial
network formation, and inducing osteogenic differentiation and
angiogenesis by transferring miR-23a-3p [51]. However, it was
thought that the therapeutic actions and beneficial effects of EVs
were most probably mediated by the transfer of a battery of mol-
ecules (growth factors, signaling lipids, mRNAs, regulatory miRNAs,
etc.), rather than by one single molecule [41].

2.3.2. Nanoparticles
Nanoparticles are entities of any shape, ranging in size from 1 to

100 nm in any dimension, and their nanoscale size enables them to
develop critical physical and chemical properties that facilitate
their widespread application in tissue engineering [44]. The
nanoparticles are advantageous in that their surface characteristics
can be made to suit any purpose and significantly enhance the
physicochemical properties of the scaffolds to facilitate their proper
integration into the tissue-specific microenvironment [2,44].
Within them, the hard nanoparticles originating from carbon, silica,
metal and its oxides, and quantum dots have more widespread and
practical usage because of their tunable properties [92]. For
instance, due to the antibacterial properties of silver nanoparticles,
the superparamagnetic properties of iron oxide nanoparticles, and
the high conductivity of au nanoparticles, recently they have been
widely used in tissue engineering using a variety of polymer scaf-
folds. The bio-capped silver nanoparticles were synthesized by
green route using the collagen solution as a reducing cum stabi-
lizing agent and the aminated xanthan gum by treating xanthan
gum with ethylenediamine and then a stable bio-hybrid hydrogel
system was fabricated comprising aminated xanthan gum,
collagen, melatonin and bio-capped silver nanoparticles for pro-
moting effective care for various ailments by the synergistic effect
of silver nanoparticles and melatonin in the hydrogel [93]. Com-
posite injectable hydrogels were prepared by incorporating
osteoinductive and osteoconductive super paramagnetic Fe3O4
nanoparticles and hydroxyapatite nanoparticles into di-block
copolymer based thermo-responsive hydrogels. The incorporation
of nanoparticles modulated bio-markers of bone differentiation
and enhanced bone mineralization through magnetic field regula-
tion [53]. Chitosan, modified with Au nanoparticles, and k-carra-
geenan had been mixed with poly(NIPAM) to produce an injectable
conductive hydrogel, and the results of this study showed that the
addition of Au nanoparticles as a conductive component enhanced
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cell growth and attachment [90]. Besides, non-metallic nano-
particles are also favored by researchers. Poly (lactic-co-glycolic
acid) nanoparticles were modified with RADA16, a self-assembling
peptide to encapsulate Tacrolimus, a typical immunosuppressant,
and then anchored to a RADA16 hydrogel. The nanoparticle-
anchoring hydrogel scaffold was capable of locally release that
immunosuppressive agent enhancing the survival of transplanted
cells and finally led to successful tissue regeneration [68]. Although
the nanoparticles have played a good role in tissue engineering,
they also have limitations, such as the lack of standard evaluation
methods for biocompatibility and targeting, and the complex
preparation process limiting its industrial application.

2.4. 3D bioprinting

Given the complexity of tissue structures, an appropriate 3D
structure can optimally mimic the tissue repair process. The
emergence of 3D bioprinting makes it possible to manufacture
biological structures with hierarchical constructs analogous to their
native counterparts [78]. 3D bioprinting has gained overwhelming
acceptance from researchers with precisely designed cell patterns
and hydrogel materials, i.e., bioinks, enabling the development of
living functional tissues (Fig. 5 A, B) [45].

As a pioneering technology, 3D biological printing can prepare
multicellular tissue and bionic structures with complex cell con-
struction, tissue heterogeneity, structural and functional multifor-
mity, and an extremely sophisticated microenvironment, which
plays important roles in tissue regeneration [112]. For example, a
Fig. 5. Strategy of preparing composite scaffold by 3D bioprinting or electrospun. (A) Prepa
with permission. Copyright 2020, Elsevier. (B) Preparation of alginate-magnetic short nano
fabrication of 1D filaments and 3D constructs based on the unique, mechanically strong NIDN
aligned electrospun fibers and collagen matrix [132]. Copyright 2021, Advanced Science.
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3D pre-vascularized skin patch was printed in skin-derived extra-
cellular matrix bio-ink and worked with adipose-derived stem cells
and endothelial progenitor cells to promote wound closure, re-
epithelization, neovascularization, and blood flow [58]. And novel
tissue engineering biomaterials were successfully developed that
could mimic the composition of regional cartilage tissue and
extracellular matrix by using microfluidic print heads with mixing
units and incorporating them into extrusion-based bio-printers.
Co-culture of human articular chondrocytes and human mesen-
chymal stem cells in hydrogel scaffolds revealed incremental
chondrocyte proliferation and cartilage ECM deposition [55].
Nonetheless, achieving optimal cell distribution and cell deposition
levels in 3D scaffolds remains significant challenges. For this
reason, an osteoblast-laden nanocomposite hydrogel was devel-
oped on the basis of polyethylene glycol diacrylate/laponite XLG
nanoclay/hyaluronic acid sodium salt bio-inks by two-channel 3D
bioprinting methods, which delivered oxygen and nutrients and
promoted differentiation and osteogenesis of osteoblasts and
improved viability and deposition efficiency [131]. But the quality
of the 3D bioprinting scaffold is affected by its biodegradability, cell
response, biocompatibility, and exposed tissue microenvironment.
At present, cell-free 3D printing constructs have been widely used
in plastic surgery and other fields, but there has been no clinical
experiment using cell-loaded 3D biological printing constructs, so
continuous research is still needed in the field of 3D printing [78].

Currently, electrospun fibers have also gained much interest in
various biomedical applications. Electrospun nanofibers can be
simply prepared from synthetic polymers, natural molecules, and
ration of bio-inspired hydrogel composed of hyaluronic acid and alginate [6]. Adapted
fibers 3D composite hydrogel [57]. Copyright 2021, Wiley. (C) Design strategy for the
hydrogels [42]. Copyright 2020, Elsevier. (D) A 3D fiber-hydrogel scaffold composed of
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other materials [115]. Due to the high plasticity of morphology,
topographical similarity to the native ECM, and good tissue
compatibility, electrospun is always used as a replacement in tissue
engineering [13]. Hydrophilic polymers are more popular because
of their hydrophilic surfaces and good cell interaction associated
with enhanced cell seeding efficiency [38].

In recent years, electrospun fibers incorporated with hydrogel
have been widely explored in tissue regeneration (Fig. 5 C, D). For
example, a method for developing 3D bioactive nanofiber scaffolds
through coaxial cell electrospraying and concurrent emulsion
electrospinning was designed. Endothelial cells are inoculated in
hydrogel microspheres and deposited with nanofibers containing
VEGF in the scaffold preparation process, leading to nanofibrous
scaffolds with 3D encapsulated cell-embedded microspheres [135].
And the superiority provided by electrospun hydrogel fibers is the
natural fibers within ECM microenvironments and of water-
swollen nature of native ECM [40]. Consequently, they are unsta-
ble to maintain desirous forms and weak mechanically. For
improving their biological and physical traits, chemically modified
by blending or crosslinking with other biomaterials is adopted [38].
For instance, alginate/gelatin hydrogel nanofibers for 3D cell cul-
ture by exploiting wet electrospinning of in situ fast crosslinked
alginate and gelatin systems were fabricated [74]. Similarly, novel
L-arginine-loaded citric acid crosslinked polyvinyl alcohol-
hyaluronic acid nanofibers were fabricated by electrospinning,
and cellulose nanocrystals were incorporated as nanofiller signifi-
cantly improving mechanical and swelling properties of nanofibers
[54].
3. Conclusion

Hydrogels embedded with cells or cytokines are well charac-
terized in highly structured and controlled in vitro environments,
and show good therapeutic effects in animal models. However,
hydrogel applications in tissue engineering have also encountered
various challenges, such as complex tissues production, tissue
quality, sufficient angiogenesis, functional integration between the
host tissues and graft, and unexpected accidents. Understanding
the fundamental interactions between multifunctional bio-
materials and cell therapies can help us bridge the gap between the
current state and our expectations for hydrogels. Therefore, re-
searchers are warranted to further understand the influence of
hydrogels on cell behavior, the triggering factors of cell adhesion,
and the cell response to the softness of hydrogels. Biodegradability
and the mechanical and morphological properties of hydrogels are
also obstacles to be overcome for further development in this field.
It can be further considered to adjust the degradation rate and
mechanical properties of hydrogels by designing biodegradable
precursors or optimizing crosslinking agents to match cell prolif-
eration and the formation of new tissues.

Various novel hydrogels are primarily in the experimental
research stage and have not yet stepped into clinical practice. Due
to the complexity of the humanmicroenvironment, the futurework
should focus on the pharmacological and toxicological research and
clinical application of hydrogels. Indeed, although tissue engi-
neering faces many challenges, currently developed hydrogels have
shown much promise in the biomedical field. It is widely believed
that the clinical application of hydrogel drug delivery systems will
be feasible in the future.
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