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Abstract: Corneal grafts interact with their hosts via complex immunobiological processes that
sometimes lead to graft failure. Prediction of graft failure is often a tedious task due to the genetic
and nongenetic heterogeneity of patients. As in other areas of medicine, a reliable prediction
method would impact therapeutic decision-making in corneal transplantation. Valuable insights
into the clinically observed heterogeneity of host responses to corneal grafts have emerged from
multidisciplinary approaches, including genomics analyses, mechanical studies, immunobiology,
and theoretical modeling. Here, we review the emerging concepts, tools, and new biomarkers that
may allow for the prediction of graft survival.
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1. Introduction

The cornea is the most frequently transplanted human tissue [1]; however, 10% of recipients with
uninflamed graft beds will experience graft failure. Despite maximal immune suppression, the failure
rate dramatically increases to 50% in recipients with inflamed graft beds. The likelihood of acute
rejection and/or graft failure in patients in this “high risk” category is comparable to or larger than that
of the commonly transplanted solid organs [2]. Despite intensive study, the heterogeneity of responses
to corneal grafts is a poorly understood subject. Interdisciplinary approaches have been increasingly
applied to resolve this heterogeneity and to find new biomarkers for disease prediction. Novel genetic,
immunological, and physical biomarkers have recently been introduced. Here, we review the recent
developments in the field with a special focus on new innovations and emerging frontiers.

2. Emerging Immunological Markers

With the high frequency of corneal transplants, numerous studies have attempted to decode the
overarching etiologies of corneal allograft rejection. As with other solid organ transplants, the immune
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system has been shown to be one of the most important contributors to corneal allograft rejection, along
with immune-enabling factors such as blood and lymph flow, in the relatively immune-tolerant cornea.
Major and minor histocompatibility complexes, immune cell milieu, native corneal cell dynamics, and
proteins such as cytokines and cell surface proteins have been investigated for their contributions to
allograft rejection. Although efforts to understand the pathophysiology of corneal allograft rejection
continue, here we discuss contributory factors already identified by this field of study (Table 1).

Table 1. Candidate biomarkers for detection and prediction of corneal allograft rejection.

Biomarkers Clinical Significance References

ABO Blood Group Minor histocompatibility complex antigen mismatch implicated
in allograft rejection. [3,4]

HLA-DR Major histocompatibility complex antigen mismatch implicated
in allograft rejection for high-risk bed. [5–8]

Activated Keratocytes

Reflect level of intrastromal inflammation. Respond to key
inflammatory mediators including IL-1 and TNF-α. Observed as
early as 2 months before rejection. Levels decrease as
immunosuppressant treatment progresses.

[9–15]

Immune Cell Density
Sub-basal and endothelial immune cell density increase
associated with graft rejection. Reflects levels of stromal
inflammation by responding to inflammatory mediators.

[10,16]

Angio-/Lymphangiogenic Markers
VEGFR-1, 2, 3

Binds to VEGF-A; VEGF-C; VEGF-D, respectively. Can act as
anti-angiogenic factors in the corneal epithelial cells. [17–22]

VEGF-A, C, D Directly promotes corneal angio/lymphangiogenesis in the
absence of above anti-angiogenic receptor.

Inflammatory Markers
IL-1, IL-6, IL-8, IL-17A, TNF-α Proinflammatory cytokines upregulated post-transplantation. [13,23–27]

MIP-1α, MIP-1β, MIP-2, RANTES,
CCL2, CCL20, CCL21

Proinflammatory chemokines upregulated post-transplantation.
Promote corneal acquisition of MHC class II cells and APC. [21,24,28–31]

IL-2, IL-4, IL-5, IFN-γ
Protective factors (IL-2 and IL-5) and hazardous factors (IL-4
and IFN-γ) within the AqH. Candidate markers for
prognosticating post-operative immune responses.

[27]

C3a Complement pathway product. High levels in the AqH
associated with graft rejection. [32]

MHC class I-related chain A
(MICA)

Expression induced by IFN-γ in corneal epithelial and
endothelial cells. Connection to stimulation of CD8+ cells and
subsequent promotion of immune response.

[33]

ICAM-1, VLA-1
Adhesion molecules targeted by immune cells. Expression
upregulated in inflammatory states and promote acquisition of
MHC class II cells and APC in the cornea.

[34–37]

Antigen Presenting Cells and
Surface Proteins

CD11c+(Dendritic cells)

Upregulation within 24 h of inflammation. Showed increased
expression of MHC class II molecules in inflammatory states. [38]

CD11c−/CD11b+

(Monocyte/Macrophage)
Migrates throughout the stroma (normally confined to posterior
stroma) during inflammatory states. [38]

CD80, CD86, CD40
Co-stimulatory molecules expressed on APCs, of which their
expression is increased due to increased proinflammatory
cytokines post-transplantation.

[7,38,39]

CCR7 Promotes CCL21-dependent APC migration to the cornea
through afferent lymphatics. [30]

T Cells and Surface Proteins
Foxp3 (Treg)

Releases IL-10 and TGF. Correlated with reduced
allograft rejection. [16,40,41]

CD8+/IFN-γ+ High levels in the AqH associated with prognostication of
allograft rejection. [32]

Abbreviation listed as followed. HLA: human leukocyte antigen; VEGFR: vascular endothelial growth factor
receptor; VEGF: vascular endothelial growth factor; IL: interleukin; TNF: tumor necrosis factor; MIP: macrophage
inflammatory protein; RANTES: regulated on activation, normal T cell expressed and secreted; CCL: CC chemokine
ligand; IFN: interferon; MHC: major histocompatibility complex; ICAM: intercellular adhesion molecule; VLA: very
late antigen; CD: cluster of differentiation; Foxp3: forkhead boxprotein P3; APC: antigen-presenting cell; AqH:
aqueous humor; TGF: tumor growth factor.
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2.1. Importance of Immune Processes in Cornea Transplantation

Although corneal graft rejection involves a complex pathophysiology, the host immune response
seems to be the most important modulator. Specifically, the transfer of donor immune cells and the
strong cluster of differentiation (CD)4+ T helper (Th)1 cell-mediated delayed-type hypersensitivity
reactions brought on by allogeneic components of the donor cornea are thought to be the main
culprits [3,42]. The anterior chamber of the eye is one of the few organs that carries “immune privilege”
This privilege is partially due to the lack of draining lymphatic vessels and to a unique interplay between
immunomodulatory molecules that suppress angiogenesis [17–20]. However, the neovascularization
and lymphangiogenesis initiated by ocular inflammation post-operation allows for the transfer of
donor antigens to draining cervical lymph nodes (Figure 1). The subsequent recognition of donor
antigens as foreign molecules leads to the activation and proliferation of naïve T cells to effector T cells
(Teff) that trigger the destruction of graft cells [42].
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Figure 1. Vascular dynamics in the grafted cornea and in the host bed as predictive and prognostic
biomarkers for graft survival in murine models. (a) The density of pre-existing vessels correlates with
the risk of allograft rejection. “Low risk” and “high risk” murine models are commonly used to study
the host response to grafted corneas. (b) Wound healing and adaptive immune processes contribute to
the angiogenic response to cornea grafts. Figure taken from Azimzade, Y. et al. with permission [43].

Although immunosuppressive therapies, including steroids, cyclosporin, and tacrolimus, have
demonstrated benefits in preventing acute graft rejection, the risk of corneal graft rejection remains as
high as 40–90% in high-risk host beds. Infections at the surgical site, complications due to existing
autoimmune diseases, and angio/lymphangiogenesis from previous grafts are detrimental to graft
outcomes and increase the risk of long-term side effects of immunosuppressive medications, including
drug toxicity, glaucoma, and cataracts [44–47]. Additionally, the severity of side effects associated
with immunosuppressants has led to disagreements regarding the timing of when therapy should
be discontinued. Therefore, the identification of graft rejection biomarkers is imperative for the
development of preventative and precision pharmacotherapies to avoid rejection and to help determine
effective immunosuppressant dosing in cases where corneal graft rejection does occur (Table 1).
In the following sections, we explore the current understanding of anatomical changes in the cornea
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post-transplant and the cellular and molecular interactions between the aforementioned immune cells,
antigen-presenting cells (APCs), cytokines, and major histocompatibility complexes (MHC).

2.2. In Vivo Confocal Microscopy Evaluation of Immune Cells in the Corneal Graft

Slit lamp biomicroscopy has been the gold standard for examining clinical signs of corneal
allograft rejection. However, research has indicated that the early detection of immune responses is
crucial for the prompt diagnosis of graft rejection, and this limits the use of slit lamp biomicroscopy.
Specifically, conventional light microscopy produces light that is reflected from structures surrounding
the focal area. The resultant fringing effect leads to images that are low-contrast and ultimately
of lower resolution [48]. The resolution power of slit lamp biomicroscopy is often constrained at
20 µm. Therefore, the visualization of immune-mediated signs of graft rejection, such as delayed-type
hypersensitivity reactions against allogeneic cells and leukocytic infiltrations at the graft site, are
limited [9]. These limitations may lead to a failure to recognize early signs of graft rejection, a delay in
the diagnosis of graft rejection, and irreversible chronic damage.

In vivo confocal microscopy (IVCM) is now utilized to overcome these limitations. IVCM also
overcomes some additional limitations of conventional light and electron microscopy, including
eliminating the requirements for an in vitro study environment and for the fixation processes that
chemically and physically disrupt the cells taken in vivo. By isolating a single focal plane and obscuring
the planes that are not in focus, IVCM improves both the lateral and axial resolution to 1–2 µm and
5–10 µm, respectively, and allows for the visualization of leukocytic infiltrates that can be as small
as 7 µm [48]. This level of resolution—in the context of corneal layer examinations—allows for the
visualization of additional minute microstructural changes to keratocytes and cuboidal cells in the
basal epithelium, corneal stroma, and endothelium.

Previously, Chirapapaisan C et al. reported that there was a significant increase in immune cell
density following corneal graft rejection, along with a correlation between sub-basal layer immune cell
density and clinical signs of graft rejection [10]. Of note, the density of immune cells was significantly
increased in the sub-basal and endothelial layers in rejected grafts compared with that in nonrejected
grafts. A measurement of seven nonrejected grafts at one year post-operation showed that there was
a significant decrease in immune cells in all layers. This finding suggests that there are long-term
differences in immune cell dynamics between rejected and nonrejected grafts. A history of dry eye
disease in the donor has also been shown to contribute to the rejection of corneal allografts in a mouse
model. It is possible that increased leukocyte maturation and T-cell dysregulation triggered by dry
eye disease may participate in the pathogenesis of allograft rejection [16]. Recently, studies have
reported that atypical hyper-reflective cells and activated keratocytes in the corneal stroma are crucial
biomarkers of corneal allograft rejection [10,11,16].

As quiescent keratocytes remain dormant in their native state, activated keratocytes appear
to reflect the level of intrastromal inflammation in response to cytokines and other inflammatory
mediators, including interleukin (IL)-1 and tumor necrosis factor (TNF)-α [13,14,23,25]. Moreover,
Beauregard et al. [17] reported that an inflammation-independent alloimmune response caused by
delayed-type hypersensitivity reactions leads to apoptosis of keratocytes in the stroma and contributes
to graft failure [12]. The increased level of activated keratocytes can be observed as early as two months
before clinical diagnosis of corneal allograft rejection, and reaches its peak at the time of diagnosis.
The subsequent administration of topical steroids and/or cyclosporin at diagnosis has been shown to
successfully decrease activated keratocyte levels within one month of therapy [9]. Therefore, the current
understanding of corneal allograft rejection pathogenesis dictates that corneal immune cell infiltration
may be a decisive early biomarker. Thus, new or increased immune suppressant therapy should be
considered following IVCM examinations that demonstrate increases in this immune cell population.
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2.3. Cytokines and Regulatory T cells

Other components of the immune milieu, including various cytokines and mediator cells,
contribute to the decompensation of the corneal endothelium when their balance shifts [42,49]. Corneal
edema and bullous keratopathy often signal graft failure, and these conditions are often characterized
by dystrophic changes in the Descemet’s membrane and stroma that are partially, if not largely, caused
by immune responses [50]. Keratocytes within the epithelium and stroma, endothelial cells, and
immune cells brought to the cornea through homing mechanisms all contribute to the corneal immune
response through cytokine and chemokine secretion, assisted by the expression of various adhesion
proteins in the corneal cells [21,24,26,28–30,34–37]. Very similar immune components have been
identified in the anterior chamber after penetrating keratoplasty, suggesting that graft rejections are
likely initiated within the corneal microcosm and that identifying minor dysregulations holds the key
to timely detection of allograft rejection.

Yoon et al. proposed that CD8+/interferon (IFN)-γ+ cell and C3a levels within the aqueous humor
(AqH) at weeks 2–4 post-keratoplasty may be predictors of graft rejection. This proposition was
supported by the results of a receiver operator characteristic (ROC) curve analysis with an area under
the curve (AUC) of 0.715 and 0.847, respectively [32]. Although this analysis was from a retrospective
study that used a xenotransplantation model, the high reported specificity of 0.94 and 1.0, respectively,
at the optimal cutoff warrants further investigation. Yamauchi et al. identified numerous candidate
biomarkers that were correlated with the development of bullous keratopathy and low endothelial
cell density, including IL-1a, IL-8, IL-17A, TNF-a, granulocyte-macrophage colony-stimulating factor
(GM-CSF), macrophage inflammatory protein (MIP)-1a, IFN-c, and E-selectin levels in the AqH [31].
Intriguingly, Maier et al. investigated the risk of rejection before corneal transplantation and reported
that the levels of protective factors (IL-2 and IL-5) and hazardous factors (IL-4 and IFN-γ) within the
AqH before operation aided in prognosticating postoperative immune responses [27].

Regulatory T cells (Treg) were first identified in 1995 and are a major subgroup of T cells
of paramount importance in the development of self-tolerance and downregulation of immune
responses [51]. With respect to corneal allografts, IL-10 and TGF-β secreted by Foxp3high-expressing
Tregs found in the draining lymph nodes of allograft recipients have been associated with reduced graft
rejection [52]. Similarly, Foxp3 expression in T cells is reduced in recipients who experience corneal
allograft rejection. These findings highlight the role of Tregs in the prevention of corneal graft rejection.
Unfortunately, the differentiation and proliferation pathways of Tregs are very susceptible to changes
in the environment, with fluctuations altering the immunosuppressive capabilities of these cells.
Previous studies have demonstrated that high-risk host beds, often characterized by inflammation,
neovascularization, and lymphangiogenesis, are correlated with a stark decrease in the functionality
and expression of Foxp3 in Tregs in draining lymph nodes after corneal allograft placement [16,40].
Similarly, studies evaluated the use of Foxp3 expression level as a biomarker for kidney allograft
prognosis and reported that there is a positive correlation between increased Foxp3 expression at
6 months post-transplantation and increased kidney function at 2 years post-transplantation [41]. It is
possible that localization and expression of Foxp3+ Tregs—in concert with the various aforementioned
cytokines and chemokines—could be potent predictive biomarkers for corneal graft rejection.

2.4. Major Histocompatibility Complex and Antigen-Presenting Cells

A healthy cornea exhibits a unique distribution of dendritic cells. MHC class I-positive dendritic
cells are present throughout its entirety, while MHC class II-positive cells only reside in the limbus
and peripheral cornea [53,54]. Despite the distinct separation in occupying regions, both classes of
MHC are thought to contribute to the development of graft rejection [42]. This hypothesis is further
underscored by the increased expression of Class II MHCs in the resident corneal dendritic cells and
epithelial Langerhans cells within the central cornea during states of inflammation, including those
caused by corneal transplantation [7,38,39,55].
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Yet, unlike in kidney and heart transplants, human leukocyte antigen (HLA) matching is not
routinely performed in corneal transplantation because the largest randomized studies that compared
the outcomes of HLA matching (i.e., the Collaborative Corneal Transplantation Studies (CCTS))
reported that there were no significant differences in graft rejection rates [3]. Although the absence
of meaningful extenders of corneal graft survival time and the predetermined notion that the cornea
is immune-privileged have pushed clinical practice away from the utilization of HLA matching,
continued conflicting reports have flooded the field and fueled further research [5,6]. New observations
of increased Class II MHCs and co-stimulatory molecules, such as CD40, CD80, and CD86, in grafts
from high-risk beds highlight the importance of MHC discrepancies in recipients who are at a high risk
for graft rejection [4,8].

MHC class I-related chain A (MICA) has also been identified as a potential biomarker of graft
rejection [33]. MICA is a protein that is expressed in the cytoplasms of corneal epithelial and endothelial
cells; however, there is not much known regarding its regulatory mechanisms or impact on allograft
rejection. Nevertheless, IFN-γ, a key cytokine released by CD4+ Th1 cells, has been shown to cause an
upregulation of MICA in the epithelium, and this upregulation subsequently stimulates CD8+ T cells
and natural killer cells [33]. This link between increased IFN-γ levels observed in rejected grafts and
the enhanced immune response against the corneal epithelium suggests that changes in MICA levels
may be used to preemptively recognize epithelial damage caused by graft rejection.

Dendritic cells (DCs) are bone marrow-derived APCs that are capable of expressing both MHC class
I and II molecules; thus, they are thought to play an important role in the pathogenesis of graft rejection.
Recent studies have alluded to the role of DCs as biomarkers for corneal epithelial inflammation in
patients with type 2 diabetes mellitus, suggesting they may also be used as biomarkers for graft-related
inflammation [56]. Nuanced variations in the presence, phenotype, and maturity of APC and DC
populations have been shown to have varying associations on corneal allograft transplantation
outcomes, implying they may reveal underlying immune dynamics [16,57,58]. Hamrah et al. reported
that the number and distribution of mature CD11c+ DC populations is increased in the anterior stroma
and that there is an upregulation of MHC class II molecules within 24 h after inflammation is induced.
Additionally, CD11c-CD11b+ monocytes/macrophages, which are normally confined to the posterior
stroma, have been found throughout the stroma during inflammation [38]. APCs, including corneal
DCs, monocytes, and macrophages, are the cornerstone of immune responses and reflect the immune
state; therefore, future studies should investigate the role of these cells in corneal graft rejection.

3. Endothelial Cell Density and Morphological Indicators as Graft Response Predictors

Human corneal endothelial cells (HCECs) cover the posterior surface of the cornea on Descemet’s
membrane in a single layer with a well-arranged mosaic pattern. They play an important role in
keeping the cornea clear by pumping out water into the anterior chamber using Na+-and K+-dependent
ATPase in the basolateral membrane [15]. Unlike the vascular endothelium that originates from the
mesoderm, HCECs originate from the cranial neural crest (neuroectoderm) [59,60]. HCECs have a
limited proliferative capacity in vivo, and damage to HCECs by trauma; surgery; or primary corneal
endotheliopathies, such as Fuchs’ corneal endothelial dystrophy, can lead to bullous keratopathy
or corneal endothelial blindness. Corneal endothelial dysfunction is the main cause for corneal
transplantation, responsible for 40% to 50% of transplants [61,62]. Endothelial cell density (ECD, cell
counts/mm2) and endothelial cell morphology (hexagonality and coefficient of variation of mean
cell area) are markers for corneal endothelial dysfunction [15,63]. The first direct visualization of
the endothelium by Vogt was performed using the specular reflection method with the slit lamp
in 1918, and the specular microscope was developed by David Maurice in the 1960s to evaluate
ECD and morphology for ophthalmic research [64]. The specular microscope is now widely used
clinically to evaluate corneal endothelial function in diverse corneal disease conditions and in the
preoperative evaluation for intraocular surgery. For corneal transplantation, minimum donor ECD
has been generally established to be 2000 cells/mm2 for penetrating keratoplasty. In a longitudinal
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cohort study of 500 consecutive penetrating keratoplasties, a low endothelial cell density before surgery
(p = 0.007) and 2 months postoperatively (p = 0.002) were identified as significant risk factors for
developing late endothelial failure [65]. However, a recent study conducted by the Corneal Donor
Study Investigator Group revealed that graft failure from endothelial decompensation was not related
to donor ECD; nevertheless, they reported that graft failure was strongly correlated with ECD at
6 months after penetrating keratoplasty [66,67]. Among endothelial cell morphology indices, only
lower hexagonality at 6 months after penetrating keratoplasty showed a suggestive trend of higher
graft failure (p = 0.02) [67]. Recently, newer surgical techniques for endothelial dysfunction, including
Descemet’s stripping automated endothelial keratoplasty (DSAEK), Descemet’s membrane endothelial
keratoplasty (DMEK), and Pre-Descemet’s endothelial keratoplasty (PDEK) have been used to replace
the standard technique of penetrating keratoplasty [68]. Studies have reported that cell loss is greater
in the first six months after endothelial keratoplasty than in the first six months after penetrating
keratoplasty; therefore, the minimum donor ECD requirement is 2300–2500 cells/mm2) [69]. In a recent
study evaluating the factors associated with graft survival and ECD after DSAEK, lower graft ECD was
identified as a significant predisposing factor for lower postoperative ECD, but was not a predisposing
factor for graft failure [70]. For DMEK, lower graft ECD was also found as a significant risk factor for
higher postoperative ECD loss by multinominal regression analysis comparing groups of eyes with
low and high endothelial cell loss [71]. In a genome-wide association study of specular microscopic
findings in 6125 Icelanders, an intergenic variant (rs78658973(A), frequency = 28.3%) close to ANAPC1
(anaphase-promoting complex subunit 1) was strongly associated with decreased ECD [72]. ANAPC1
encodes a cell cycle-regulated E3 ubiquitin ligase that controls the progression through mitosis and
the G1 phase of the cell cycle. Sequence variation at ANAPC1 accounts for 24% of the variability in
corneal ECD [72].

Transplantation of cultured HCECs or possible precursor cells has been performed to overcome
the shortage of donor tissue [59,73–76]. Diverse research groups have identified markers for
HCECs, including CD166, glypican 4 (GPC4), CD200, CD56, Integrin Subunit Alpha 3 (ITGA3),
and CD49c [77–81]. To discriminate HCECs from other cell types, molecular markers have been
evaluated by integrating the published ribonucleic acid (RNA)-seq data of corneal endothelial cells
(CECs) with the FANTOM5 atlas, which contains a diverse range of cell types. CLRN1, MRGPRX3,
HTR1D, GRIP1, and ZP4 were identified as markers of CECs [82]. Recently, Kinoshita et al. reported
promising clinical results by injecting cultured HCECs supplemented with a rho-associated protein
kinase inhibitor into the anterior chamber [76]. To assess the quality of in vitro cultured HCECs, surface
markers were analyzed using flow cytometry, and CD166+/CD24–/CD105–/CD44– cells were defined
as effector cells in this group [61]. However, to measure the quality of cultured HCECs noninvasively,
they developed the “spring constant K” as a physical biomarker, which represents the collective order
of HCECs and is calculated by the second derivative of the function summated for the number of
neighbor cells according to the distance from each reference cell [61]. The quantitative analysis of
spring constant K from the effective interaction potential can be used preoperatively in vitro using
phase contrast microscopy images and postoperatively in vivo using specular microscopy images.
While preoperative spring constant K showed a clear positive correlation with effector cell fraction
(r2 = 0.86) in vitro, its best classification accuracy (AUC = 0.96) was found with postoperative ECD
in vivo at 6 months in comparison with other parameters, including effector cell fraction, preoperative
ECD, and preoperative hexagonality [61]. This biomarker may enable preemptive interventions from
passive monitoring in patients with severe corneal disorders [61]. The biomarkers for graft response
covered in this section are summarized in Table 2.
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Table 2. Biomarkers for graft response related with corneal endothelial cells.

Biomarkers Clinical Significance References

Endothelial cell density
(ECD, cell counts/mm2)

Lower ECD preoperatively and 2 months postoperatively was significantly
correlated with the development of late endothelial failure after PKP.

The lower ECD at 6 months postoperatively showed strong correlation with
graft failure from endothelial decompensation.

[63,65]
[66,67]

Lower graft ECD was identified as a significant predisposing factor for
lower postoperative ECD, but not for graft failure after DSAEK.

Lower graft ECD was found as a significant risk factor for higher
postoperative ECD loss by multinominal regression analysis after DMEK.

[70]
[71]

Endothelial cell morphology
Polymegethism (coefficient of

variation of cell area, %)
Clinically valuable marker of the state of the endothelium [15]

Pleomorphism (hexagonality, %)
Spring constant K *

Valuable morphometric parameter of the state of the endothelium
Lower hexagonality at 6 months after PKP showed a suggestive trend of

higher graft failure.
Positive correlation with CD166+/CD24–/CD105–/CD44– effector cell

fraction for injection of cultured HCECs with a ROCK inhibitor.
Preoperative K showed best classification accuracy with ECD at

postoperative 6 months compared with other parameters, including effector
cell fraction, preoperative ECD, and preoperative hexagonality.

[15]
[67]
[61]

Genes
ANAPC1

A cell cycle-regulated E3 ubiquitin ligase which controls progression
through mitosis and the G1 phase of the cell cycle. An intergenic variant
(rs78658973[A]) close to ANAPC1 was found to have a strong association

with decreased ECD.

[72]

* the collective order of HCECs, calculated by the second derivative of the function summated for the number of
neighbor cells according to distance from each reference cell. Abbreviation listed as followed. ECD: endothelial cell
density, PKP: penetrating keratoplasty, DSAEK: Descemet’s stripping automated endothelial keratoplasty, DMEK:
Descemet’s membrane endothelial keratoplasty, HCES: human corneal endothelial cell, ROCK: rho-associated
protein kinase, ANAPC1: anaphase-promoting complex subunit 1.

4. Vascular Dynamics and Graft Survival

4.1. Prior to Transplantation

The normal cornea is devoid of blood and lymphatic vessels and actively maintains a state of
“angiogenic privilege” [83]. Corneal grafting onto vascularized and inflamed host beds (i.e., high-risk
beds) leads to increased angiogenesis that further increases the chance of graft rejection [57]. Thereafter,
the usually high success rate of corneal transplantation is completely overshadowed by rejection of larger
grafts. Host bed vascularity is the principal risk factor for allograft rejection because corneal neo-vessels
are critical in delivering the immune effector cells to the graft site and in driving the immune rejection [84].

The likelihood of the birth of a new vessel branch at any location is suggested to be proportional
to the concentration of angiogenic factors and inversely proportional to the distance to the source.
When angiogenesis develops with limited reversibility within a short time scale, prompt assessments
of corneal neovascularization biomarkers in the early stage are critical for adequate and successful
management. Corneal angiogenesis can occur from excessive levels of pro-angiogenic factors,
including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), matrix
metalloproteinases (MMPs), and others [22,85–89]. The main markers implicated in angiogenesis and
lymphangiogenesis are listed in Table 3. Members of the VEGF family (VEGF A, C, and D) are directly
involved in both corneal angiogenesis and lymphangiogenesis [22,85,89–91]. Corneal angiogenesis
can also occur secondary to a relative paucity of anti-angiogenic factors [92,93], such as soluble
VEGF receptors (sVEGFR)-1, -2, -3; pigment epithelium-derived factor; angiostatin (created by the
proteolytic cleavage of plasminogen); and endostatin (a type XVIII collagen proteolytic product) [94–97].
In response to hypoxia, the expression of VEGF increases 30-fold within minutes. Additionally, studies
have reported that VEGF-A is directly involved in the pro-angiogenic circle of “bad” neovascularization,
which allows a direct immune response to the graft site. This neovascularization ultimately induces
allograft reactions and rejections [83]. Conversely, studies have revealed that IFN-γ has high
antiangiogenic activity, though it is a powerful promoter of T cell-mediated immune rejection [83].
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Several reports underline the critical proangiogenic actions of IL-17 and IL-1a, local biomarkers of
corneal angiogenic response to insults such as grafting. Importantly, the survival of corneal transplants
can be significantly affected by the degree of the hemangiogenic, as well as lymphangiogenic,
response [83]. This finding is related to lymphatic and blood vessels acting as mediators of the
afferent and efferent arms of the immune system, respectively. Lymphatics mediate the trafficking
of alloantigen and immune cells from the graft to lymphoid tissues, and blood vessels facilitate the
homing of immune cells to the graft [83]. Both angiogenesis and lymphangiogenesis are mainly driven
by the VEGF family of receptors and ligands. The binding of VEGF-A and VEGF-B to VEGFR-1 and
VEGFR-2 drives angiogenesis, whereas the binding of VEGF-C and VEGF-D to VEGFR-2 and VEGFR-3
drives lymphangiogenesis [91,98–100]. The complex interactions between VEGFs and VEGFRs exhibit
sophisticated control over angiogenesis and lymphangiogenesis [101].

In addition, macrophages (MPs), a subtype of innate immune cells, contribute to proliferation of
lymphatic vessels in inflammation-associated lymphangiogenesis [102,103]. Corneal lymphangiogenesis
has been shown to be associated with CD11b+ MPs [103], and under inflammatory conditions, CD11b+

MPs secrete VEGF-A and VEGF-C in the peripheral cornea (limbus) [104]. The presence of lymphatic
vessels in the cornea is usually detected by positive localization of podoplanin, lymphatic vessel
endothelial hyaluronan receptor 1 (LYVE-1), VEGF-C, or VEGFR-3 and is associated with blood vessels,
inflammatory cells, and disorganized stromal architecture in the immediate vicinity. Hence, VEGFR-3
is a specific biomarker for lymphangiogenesis. Additionally, the central corneal presence of CD11b+

macrophages may also play a direct role in corneal lymphangiogenesis.
Finally, studies have also suggested that very late antigen 1 (VLA-1) correlates with allogeneic

corneal transplant survival. VLA-1 is an integrin that mediates intercellular and matrix interactions,
and VLA-1 blockade markedly promotes survival of corneal allografts [102]. Chen L, et al. has been
implicated in inflammatory reactions involving hemangiogenesis, macrophages, and T cells. Recently,
VLA-1 has been identified in the corneal stroma.

Table 3. Markers of angiogenesis and lymphangiogenesis.

Antiangiogenic Proangiogenic

IFN-γ [83] VEGF-A, C, D [22,85,89–91,98–100]
sVEGFR-1,2,3 [92–100] bFGF [22,85–89]

PEDF [94–97] VLA-1 [102]
Endostatin [94–97] PDGF [105,106]

ANG2 [107,108]

Abbreviation listed as followed. IFN-γ: interferon gamma; sVEGFR: soluble VEGF receptors; PEDF: pigment
epithelium-derived factor; VEGF: vascular endothelial growth factor; bFGF: basic fibroblast growth factor; VLA-1:
very late antigen 1; PDGF: platelet-derived growth factor; ANG2: angiopoietin 2.

4.2. After Transplantation

Previous studies that focused on post-transplantation angiogenic responses revealed that low-risk
(LR) and high-risk (HR) hosts have comparable lymphatic ingrowth early on; however, the amount
of blood vessel ingrowth is significantly different [83]. These data demonstrate that angiogenic
homeostatic mechanisms are restored much earlier in LR as opposed to HR graft recipients. Specifically,
lymphatic responses regress early in noninflamed LR hosts, and this regression critically reduces the
risk of allograft rejection. Corneal neovascularization is established in vitro by CD31 immunoreactive
profiles. Simultaneous immunofluorescence using CD31 and podoplanin distinguishes lymphatic
vessels from blood vessels. Moreover, confirming the presence of lymphatic mRNA by identifying at
least two of the following mRNAs: podoplanin, VEGFR-3, and LYVE-1, may improve the accuracy of
detection post-transplantation [109].

Different markers, including podoplanin, LYVE-1, and VEGFR-3, are commonly used to identify
lymphatic channels. CD31 is a traditional marker of blood vessels that is weakly expressed on
lymphatics [110]. However, podoplanin is a more specific marker of lymphatic endothelium since it is
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absent from blood vessel endothelium [111]. Conversely, LYVE-1 has been found to be expressed in
some macrophages and blood vessels, including liver sinusoids [110]. Similarly, VEGFR-3 is found in
some blood vessels, including in cases of inflammation-induced angiogenesis [110]. However, a recent
“Consensus Statement on the Immunohistochemical Detection of Ocular Lymphatic Vessels” suggests
that the use of a single lymphatic marker is sufficient for areas in which the presence of lymphatics has
been well established, including the inflamed cornea [112].

In human beings and mice, angiopoietin 2 (ANG2) is mainly expressed in the epithelium and
mildly expressed in the endothelium of the avascular cornea. It is, however, expressed in the epithelium,
endothelium, and stroma of vascularized corneas. Disruption of the Bowman membrane is associated
with a significant increase of ANG2 stromal expression and proangiogenic macrophage infiltration in the
corneal stroma [107]. Selective epithelial staining patterns for ANG2 are similar to those for sVEGFR-1,
which is a potent soluble inhibitor of VEGF and angiogenesis [108]. Proangiogenic ANG2 is sequestered
just above the basal epithelial membrane, and membrane disruption may be associated with ANG2
diffusion into the stroma. Interestingly, ANG2 stromal expression is associated with the massive infiltration
of proangiogenic macrophages, whose numbers nearly tripled after Bowman removal [107].

Finally, platelet-derived growth factor (PDGF) is another late-phase vascular biomarker. PDGF has
an angiogenic effect on sprouting endothelial cells, promotes capillary maturation by recruiting pericytes
to growing vessels, and is necessary for pericyte viability [105,106].

5. Physical Properties of the Cornea as Biomarkers of Graft Survival

Central corneal thickness (CCT) is a widely utilized physical measurement of the cornea used
for the accurate measurement of intraocular pressure (IOP) in glaucoma patients and for calculating
the appropriate laser ablation that is needed for refractive surgeries to prevent resultant side effects,
including corneal ectasia. These applications, however, are mainly concerned with the one-dimensional
effects of thickness, such as variations in CCT causing artifacts in Goldmann applanation tonometer
IOP measurements or the iatrogenic decrease in CCT seen in laser-assisted in situ keratomileusis
(LASIK) procedures [113–115]. To explore the implications of CCT on corneal allograft placements,
there have been numerous attempts to understand the physiology affecting CCT and the changes in
CCT that can reveal underlying pathologies (Table 4).

Table 4. Clinical factors and gene loci associated with CCT.

Associated Factors Clinical Significance References

Graft Failure
CCT was associated with graft failure independent of the prediction made
through ECD. The possibility of an unknown mechanism connecting CCT to
graft failure has been posited.

[116,117]

Diabetes and Hyperglycemia Associated with corneal endothelial dysfunction and resultant stromal hydration
of the cornea. Osmotic fluid shifts and collagen cross-linkage are likely etiologies. [118,119]

Endothelial Decompensation,
Corneal Edema

Diseases involving endothelial dysfunction, such as Fuchs’ endothelial corneal
dystrophy, progress into corneal edema. Resultant increase in CCT is a reliable
method to measure disease progression.

[120–122]

∆IOP > 25 mmHg
(post-operation)

CCT was predictive of IOP increase 1 month postoperatively. Preoperative
glaucoma was associated with early graft failure. CCT may represent the
underlying physiologic link that connects glaucoma and graft failure.

[116,117]

GenesZNF469 Possible regulator of collagen synthesis and/or organization. Implicated in the
development of Brittle Cornea syndrome, which exhibits markedly reduced CCT. [123]

COL5A1 Encodes for the alpha-1 chain of type V collagen. Associated with a variation of
Ehlers–Danlos syndrome, which also exhibits reduced CCT. [124,125]

COL8A2
Encodes for the alpha-2 chain of type VIII collagen. Associated with posterior
polymorphous corneal dystrophy and Fuchs’ endothelial corneal dystrophy,
characterized by changes in the endothelial layer and Descemet’s membrane.

[124,125]

ZFP106 Contains an mHag loci which encodes for H-3a epitopes. These loci were
previously shown to mediate corneal graft allograft rejection. [126]

Abbreviation listed as followed. CCT: central corneal thickness; ECD: endothelial cell density; IOP: intraocular
pressure; ZNF: zinc finger; ZFP: zinc finger protein; COL: collagen; mHag: minor histocompatibility antigen.
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Studies have revealed associations between CCT in patients with diabetes mellitus and
hyperglycemia [118], speculating that the hyperglycemia-induced collagen disulfide crosslinks
and osmotic fluid in the intracorneal spaces contribute to the shift in endothelial dynamics [119].
Further exploiting the corneal stromal permeability to fluids, CCT can also signify the level of
hydration and activity of endothelial pumps that push fluids out of the stroma to prevent edematous
buildup [120–122]. These pumps are altered in decompensated states, including Fuchs’ endothelial
corneal dystrophy. Together with additional corneal physical properties, including hysteresis, resistance
factor, and air pressure curves, the screening of subclinical presentations, such as forme fruste
keratoconus, have become more reliable [127]. These findings suggest that corneal thickness reflects a
wide range of underlying physiological mechanisms and this property can be applied to a multitude of
other disease states, including corneal allograft rejection.

A report from the Corneal Donor Study, which searched for causes and associations of corneal
allograft failure, posited that CCT has the potential to predict diagnoses of corneal edema, increases
in IOP > 25 mmHg during the first postoperative month, and graft failure [116,117]. Interestingly,
endothelial cell density (ECD), another measurement used for graft failure assessment, has shown
little correlation with CCT. ECD only accounted for <10% of the variance in CCT, yet both parameters
were independently predictive of graft failure. Although the authors caution against the use of
CCT as a proxy for ECD, these results suggest that CCT may represent a novel and distinct niche
in predicting graft failure and may justify further investigation on the mechanisms of its predictive
strength. Currently, concomitant examination of corneal thickness kinetics and the use of specular
endothelial micrography could expand the range of endothelial damage observed by clinicians, from
the structural changes in the endothelium to the more extensive effects of inflammation and immune
responses. Hence, the importance of deciphering the implications of a given CCT is increasing and is
fueled by the rising concrete evidence that supports the highly genetic and inheritable component
of CCT. The heritability of CCT seems to lie between 60% and 90%, suggesting that CCT is one of
most highly heritable traits [128]. The connection between CCT and glaucoma has led to multiple
genome-wide studies (GWS) conducted to determine loci that affect CCT. Lu et al. reported that there
was a significant association between CCT variance and single-nucleotide polymorphisms (SNPs)
near the ZNF469 gene (16q24), which is implicated in the development of Brittle Cornea Syndrome
(BCS) [123]. BCS is a heritable disease characterized by extreme thinning of the cornea and skin and joint
changes due to collagen dysfunction, thus providing a potential connection between the heritability of
CCT and factors that affect corneal collagen formation. This finding aligns with the corneal thinning
observed in certain connective tissue disorders that cause primary or secondary collagen malformation,
including Ehlers–Danlos syndrome and osteogenesis imperfecta, further underscoring the importance
of collagen in determining corneal architecture [129–131]. Not surprisingly, studies have reported that
the COL5A1 gene, which also causes a variant of Ehlers–Danlos syndrome, and the COL8A2 gene are
loci that both contribute to CCT variance [124,125]. COL8A2 mutations have been previously reported
in patients with posterior polymorphous corneal dystrophy and Fuchs’ endothelial corneal dystrophy,
both of which induce dystrophic changes to the cornea. Although these mutation hotspots are not
directly linked to graft rejection, the connection between these loci and CCT may become valuable as
the links between increased CCT and graft rejection are revealed.

Genome-wide association studies (GWAS) have also identified loci that are directly connected to
corneal rejection, including certain minor histocompatibility antigens (mHag) loci, suggesting benefit
to mHag matching in corneal allograft placements. Nicholls et al. conducted a GWAS on a swine model
that underwent mismatched corneal transplantation and revealed four mHag loci that were associated
with allograft rejection [126]. While three were novel findings, one block of SNPs spanned a region
on chromosome 1 that contained the Zfp106 gene that encodes H-3a epitopes, and has previously
been shown to mediate corneal graft rejection. Notably, a β-2M homologue was also located within
the block of SNPs that has been shown to contribute to skin graft rejections [132]. Together with
findings from the CCTS regarding the role of minor histocompatibility complex antigens in corneal
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graft rejection [133], genomic SNP analyses of corneal rejection-associated hotspots hold promise in
prognosticating corneal allograft rejection. Furthermore, full genomic analysis of donors and recipients
that examines individual corneal functional capabilities and immunologic characteristics could open
up the possibility of precision gene therapy, such as individualized anti-angiogenic and anti-apoptotic
gene therapy, to target rejection-promotive genes that vary in every patient [134].

6. Markers of Wound Healing

Neovessel formation is often a physiological process that is involved in tissue repair. Tissue damage
is typically followed by an inflammatory response that protects the tissue from infection and promotes
wound healing [135]. The innate arm of the immune system, particularly macrophages [136,137],
facilitates wound healing by generating proangiogenic factors. Several studies have shown that
corneal injury leads to the recruitment of VEGF-A-secreting macrophages and the induction of
hemangiogenesis [138]. Blood vessels sprout at the edge of the injury and enable the formation
of granulation tissue, which consists of fibroblasts and collagen [139]. Growth and maturation
of blood vessels at the site of injury is usually a tightly controlled process and, once the tissue is
repaired, the blood vessels regress [140]. Numerous physiological antiangiogenic factors, such as
angiostatin, endostatin, tumstatin, vasohibin, fragments of prolactin, and growth hormones, facilitate
this regression [141]. The regression of the vessels is then associated with the resolution of the
inflammation [142]. Postgrafting wound healing involves the integrated actions of multiple growth
factors, cytokines, and proteases that are produced by epithelial cells, stromal keratocytes, inflammatory
cells, and lacrimal gland cells [143]. Table 5 lists the main markers of wound healing.

Multiple cytokines are released from the injured epithelium and epithelial basement membrane,
including IL-1, TNF-alpha [144], bone morphogenic proteins (BMP) 2 and 4, epidermal growth factor
(EGF), and PDGF [145]. These factors, along with others derived from the tears, trigger a variety
of responses in underlying stromal keratocytes, including IL-1-mediated synthesis of Fas ligand.
Keratocyte Fas ligand binds to the Fas receptor on nearby keratocytes and induces apoptosis [144]
with minimal collateral damage from local cell lysis and liposomal enzyme release. In addition, it can
induce autocrine suicide in keratocytes that already express Fas. A compromised epithelial barrier
potentiates the effects of epithelial and lacrimal cytokines by providing direct access to the stroma.

Soon after wounding, extracellular matrix (ECM) proteins, such as fibronectin, fibrinogen/fibrin,
laminin, and tenascin, are produced by both the basal cells and stromal keratocytes and appear on
the denuded surface. Tumor growth factor (TGF)-β is known to enhance fibrosis and is thought to
stimulate CTGF gene expression [146]. Studies have shown that corneal fibroblasts, keratocytes, and
inflammatory cells may produce IL-1α and/or IL-1β that may act in a paracrine fashion to regulate
myofibroblast apoptosis. Cao et al. assessed 1176 genes and found the expression of 37 of these
genes are upregulated and the expression of 27 genes are downregulated more than 5-fold in the
healing corneas when compared with those in the normal, uninjured corneas. IL-1, laminin-5, and
thrombospondin-1 have all been found to be induced in the corneas in response to excimer laser
treatment. The upregulated genes include intercellular adhesion molecule (ICAM)-1, macrophage
inflammatory proteins, suppressors of cytokine signaling proteins (SOCS), IL-10 receptor, and galectin-7.
The downregulated genes include connexin-31, a gap junction protein; ZO1 and occludin, tight junction
proteins; and Smad2, a key component in the TGF signaling pathway [147].

MMPs also regulate corneal avascularity. MMP-7 (matrilysin) appears to protect against
neovascularization, whereas MMP-14 is upregulated in the cornea in response to injury [143]. Studies
have reported that prostaglandin E2 (PGE2) synthesis is increased in injured rabbit corneal endothelial
cells [143,148]. Studies have also revealed that the concentration of EGF in tears changes rapidly
following a corneal injury. The concentration of EGF is lower in unstimulated tears and higher
in stimulated tears [149]. However, after chronic tearing, which occurs in patients with persistent
epithelial defects or corneal ulcers, the concentration of EGF in tears decreases. This decrease is likely
caused by the exhaustion of the lacrimal gland reserves of secreted proteins [150].
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Other growth factors, including TGF-β, IL-1, acidic fibroblast growth factor (aFGF), bFGF, and
PDGF, have been detected in tears, and PDGF concentrations were reported to increase in the tears of
patients following surgery, suggesting their role in corneal wound healing [151]. Moreover, studies
have reported that epiregulin is upregulated in limbal epithelial basal cells when compared with central
cornea cells in mice. This upregulation of epiregulin increases corneal epithelial cell proliferation
in vitro by activating EGFR and increasing the expressions of HB-EGF and Amphiregulin [152,153].
These findings suggest that epiregulin plays a role in the maintenance and proliferative capacity of
limbal basal cells [154].

After corneal epithelial wounding, human growth factor (HGF) expression is upregulated in
keratocytes [155] and epithelial cells [156,157], which may contribute to the epithelial wound healing
process. While the rapid overexpression of insulin-like growth factor (IGF)-I in wounded mice
cornea stimulates limbal cell differentiation with no effects on limbal cell proliferation [154,158],
urokinase-type plasminogen activator (uPA/PLAU) is upregulated in wounded corneal epithelial cells
and may stimulate cell migration [159].

Finally, damage triggers a release of inflammatory cytokines, mainly IL-1 (α and β), from epithelial
cells and/or tears [143] that cause rapid apoptosis through Fas/Fas ligand system and necrosis of
anterior keratocytes that induce corneal cell turnover.

Table 5. Markers of wound healing.

Markers of Wound Healing Clinical Significance References

IL-1α, IL-1β Paracrine regulation of myofibroblasts apoptosis [143,145,147]

TNF-α Triggers stromal keratocytes responses, including IL-1-mediated
synthesis of Fas ligand [144,145]

EGF

Reflects level of intrastromal inflammation. Responds to key
inflammatory mediators including IL-1 and TNF. Observed as
early as 2 months before rejection. Levels decreased as
immunosuppressant treatment progresses.

[145]

PDGF
Sub-basal and endothelial immune cell density increases
associated with graft rejection. Reflects levels of stromal
inflammation by responding to inflammatory mediators.

[145,151]

aFGF, bFGF Binds to VEGF-A; VEGF-C; VEGF-C and D, respectively. Can act
as anti-angiogenic factors in the corneal epithelial cells. [151]

uPA Corneal epithelial cells migration and proliferation [159]

Abbreviation listed as followed. IL: Interleukin; TNF: Tumor necrosis factor; PDGF: platelet derived growth;
EGF: epidermal growth factor; aFGF: acidic fibroblast growth factor; bFGF: basic fibroblast growth factor; uPA:
urokinase-type plasminogen activator.

7. Future Directions

Various physical, cellular, and molecular biomarkers have been shown to influence the outcome
of corneal grafts. However, it is important to identify the optimal biomarkers for prediction of graft
outcomes. Omics analysis of host and corneal grafts has not been conducted and could reveal these
key markers [160]. Extracting information from a large number of biomarkers is a challenge; however,
well-trained clinicians may be able to glean diagnostic and prognostic information from a smaller
number of markers. Mathematical technologies are being developed to estimate the patient state
from a large set of biomarkers [161] or from a very short time-series of single biomarker [162,163].
Technologies like Bayesian belief networks and random survival forests constructed from conditional
inference trees [162] have been recently developed to predict solid organ graft failure and can in
principle be applied to corneal grafts [164]. Mathematical models can also help in understanding the
mechanisms involved in corneal graft rejection and response to therapy [43]. These technologies may
be used to predict graft survival and the progression of eye diseases in general.

Engineered corneas are emerging as promising alternatives to allografts. Advances in 3D
bioprinting [165] and induced pluripotent stem cells (iPSC) technology [166] are enabling the
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construction of cornea mimics. Biomarkers that determine the survival of these engineered grafts still
need to be identified and will expectedly depend on the engineering approach used. However, studies
on allograft survival may guide the development of engineered grafts with improved survival.
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