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A number of studies across different model systems revealed that chromatin undergoes
significant changes in dynamics in response to DNA damage. These include local
motion changes at damage sites, increased nuclear exploration of both damaged and
undamaged loci, and directed motions to new nuclear locations associated with certain
repair pathways. These studies also revealed the need for new analytical methods to
identify directed motions in a context of mixed trajectories, and the importance of
investigating nuclear dynamics over different time scales to identify diffusion regimes.
Here we provide an overview of the current understanding of this field, including
imaging and analytical methods developed to investigate nuclear dynamics in different
contexts. These dynamics are essential for genome integrity. Identifying the molecular
mechanisms responsible for these movements is key to understanding how their
misregulation contributes to cancer and other genome instability disorders.

Keywords: chromatin motions, double-strand break repair, homologous recombination, mean square
displacement, directed motion, multi-scale motion

INTRODUCTION: CHROMATIN EXPLORES A LARGER
NUCLEAR VOLUME IN RESPONSE TO DNA DAMAGE

A significant number of studies in the past decade have identified essential roles for nuclear
dynamics in DNA repair, particularly during homologous recombination (HR) repair of double-
strand breaks (DSBs) (Figures 1A–D). First, a larger nuclear volume explored by repair sites is
typically detected during inter-homolog recombination (Figure 1A) (Miné-Hattab and Rothstein,
2012; Neumann et al., 2012; Cho et al., 2014; Miné-Hattab et al., 2017) (reviewed in Dion
and Gasser, 2013; Mine-Hattab and Rothstein, 2013). This change in chromatin mobility in
response to DNA damage likely reflects the exploration of the nuclear space during “homology
search” (Kalocsay et al., 2009; Dion et al., 2012; Miné-Hattab and Rothstein, 2012; Neumann
et al., 2012; Agmon et al., 2013; Cho et al., 2014; Saad et al., 2014; Herbert et al., 2017; Miné-
Hattab et al., 2017), i.e., the process where a resected DSB covered by a Rad51 nucleoprotein
filament scans the genome in search of a homologous donor. Second, undamaged chromatin
also becomes more dynamic during DSB repair, albeit to a lesser extent than repair sites (Figure
1B) (Chiolo et al., 2011; Krawczyk et al., 2012; Miné-Hattab and Rothstein, 2012; Seeber et al.,
2013; Lottersberger et al., 2015; Strecker et al., 2016; Herbert et al., 2017; Lawrimore et al.,
2017; Miné-Hattab et al., 2017; Caridi et al., 2018a; Smith et al., 2019; Zada et al., 2019). The
significance of the genome-wide increase in nuclear exploration is still under debate, but this
response might increase the frequency of DNA contacts to facilitate homology search (Gehen et al.,
2011; Neumann et al., 2012; Mine-Hattab and Rothstein, 2013; Amitai and Holcman, 2018), or
reflect chromatin relaxation to promote access for repair (Kruhlak et al., 2006; Ziv et al., 2006;
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Seeber et al., 2013; Delabaere and Chiolo, 2016). Third, repair
sites undergoing HR aggregate into larger units, or “clusters”
(Figure 1C) (Lisby et al., 2003; Aten et al., 2004; Kruhlak et al.,
2006; Chiolo et al., 2011, 2013; Krawczyk et al., 2012; Neumaier
et al., 2012; Cho et al., 2014; Caron et al., 2015; Aymard et al.,
2017; Caridi et al., 2018a; Schrank et al., 2018; Oshidari et al.,
2019a; Waterman et al., 2019) (reviewed in Chiolo et al., 2013;
Guénolé and Legube, 2017; Schrank and Gautier, 2019), likely to
facilitate DSB signaling and resection, e.g., by increasing the local
concentration of checkpoint and repair proteins (Chiolo et al.,
2013; Schrank et al., 2018; Kilic et al., 2019; Oshidari et al., 2019a;
Schrank and Gautier, 2019). This response also occurs in G1 in
human cells (Aten et al., 2004; Aymard et al., 2017), where HR
cannot be completed with the sister chromatid, and clustering
might temporarily sequester breaks that will be repaired in S
phase (Aymard et al., 2017). Clustering can also be deleterious,
as increasing the proximity of DSBs on different chromosomes
promotes chromosomal translocations (Agmon et al., 2013;
Roukos et al., 2013; Lee et al., 2016; Cohen et al., 2018).
Fourth, DSBs relocalize to specific subnuclear compartments
when the lesion occurs in DNA regions that are difficult to repair.
Specifically, DSBs in pericentromeric heterochromatin relocalize
to the nuclear periphery in Drosophila cells (Figure 1D) (Chiolo
et al., 2011; Ryu et al., 2015, 2016; Janssen et al., 2016, 2019;
Caridi et al., 2018a), and to the periphery of heterochromatin
“domains” (or “chromocenters”) in mouse cells (Jakob et al., 2011;
Chiolo et al., 2013; Tsouroula et al., 2016; Caridi et al., 2018a).
rDNA sequences move to the nuclear periphery in budding
yeast (Torres-Rosell et al., 2007; Horigome et al., 2019) and to
nucleolar caps in mammalian cells (Harding et al., 2015; van
Sluis and McStay, 2015; Korsholm et al., 2019; Marnef et al.,
2019). Relocalization of repair sites to the nuclear periphery is
also a response to damaged CAG repeats in budding yeast (Su
et al., 2015; Aguilera et al., 2020; Whalen et al., 2020), collapsed
replication forks in yeast and mammalian cells (Nagai et al., 2008;
Su et al., 2015; Lamm et al., 2018; Aguilera et al., 2020; Whalen
et al., 2020), and damaged telomeric or subtelomeric sequences
in yeast (Therizols et al., 2006; Khadaroo et al., 2009; Cho
et al., 2014; Chung et al., 2015; Churikov et al., 2016; Oshidari
et al., 2018; Aguilera et al., 2020). Similar relocalization occurs
as a result of persistent/unrepairable DSBs (Nagai et al., 2008;
Kalocsay et al., 2009; Oza et al., 2009; Horigome et al., 2014, 2016;
Swartz et al., 2014; Marcomini et al., 2018). In these contexts,
relocalization appears to prevent aberrant recombination with
ectopic repeated sequences (Torres-Rosell et al., 2007; Chiolo
et al., 2011; Ryu et al., 2015, 2016; Su et al., 2015; Caridi
et al., 2018a; Dialynas et al., 2019; Aguilera et al., 2020) and/or
promote alternative repair mechanisms (Therizols et al., 2006;
Nagai et al., 2008; Khadaroo et al., 2009; Oza et al., 2009;
Horigome et al., 2014, 2016; Churikov et al., 2016; Aguilera
et al., 2020) (reviewed in Amaral et al., 2017; Caridi et al., 2017,
2019; Rawal et al., 2019). Further dynamics have been associated
with other repair pathways. For example, deprotected telomeres
are mobilized in mouse cells to promote non-homologous end-
joining (NHEJ) (Dimitrova et al., 2008; Lottersberger et al.,
2015). Additionally, a few chromosome territories reposition in
response to damage in human fibroblasts, perhaps reflecting

large-scale changes in chromatin organization (Mehta et al.,
2010; Kulashreshtha et al., 2016). Several molecular mechanisms
governing chromatin dynamics in response to DSBs have been
identified, and specialized pathways appear to participate in
different contexts [reviewed in Amaral et al. (2017); Caridi et al.
(2017); Zimmer (2018); Oshidari et al. (2019b)]. Together, these
studies revealed important roles for nuclear dynamics in DSB
repair, particularly for homology search and for isolating repeated
DNA sequences at high risk for aberrant recombination, enabling
“safe” repair or alternative rescue pathways.

METHODS TO CHARACTERIZE
NUCLEAR DYNAMICS DURING DSB
REPAIR

Several techniques have been applied to study the nuclear
dynamics of DSBs in different organisms, with “gold standard”
approaches relying on damage induction with endonucleases
or ionizing radiation (IR), and on monitoring repair sites
with lacO/tetO arrays and fluorescent-tagged HR repair
components (Figures 1E–G).

A widely used approach relies on the induction of site-
specific DSBs with an endonuclease (e.g., I-SceI, or HO), which
recognizes a target sequence proximal to tetO or lacO arrays
(Figure 1E). The position of the damage site is monitored using
fluorescent-tagged TetR or LacI proteins that bind to the arrays,
resulting in bright nuclear spots (or foci) (Robinett et al., 1996).
Given that endonucleases can digest both sister chromatids, the
sister is mostly unavailable as a template for repair, promoting
inter-homolog exchanges (Miné-Hattab and Rothstein, 2012).
In yeast, this approach enabled the study of nuclear dynamics
associated with inter-homologous recombination (Miné-Hattab
and Rothstein, 2012; Neumann et al., 2012; Miné-Hattab et al.,
2017), unrepairable DSBs (Nagai et al., 2008; Kalocsay et al.,
2009; Dion et al., 2012; Horigome et al., 2014, 2016; Saad et al.,
2014; Herbert et al., 2017), sub-telomeric breaks (Khadaroo
et al., 2009; Chung et al., 2015; Churikov et al., 2016; Oshidari
et al., 2019b), and rDNA lesions (Torres-Rosell et al., 2005).
Similar systems have been used to characterize DSB clustering
in budding yeast and human cells (Lisby et al., 2003; Roukos
et al., 2013; Waterman et al., 2019). A variant of this approach
employs a lacO array close to the cut site and a tetO array on
a different chromosome, enabling the simultaneous tracking of
both damaged and undamaged loci (Miné-Hattab and Rothstein,
2012; Miné-Hattab et al., 2017). These studies and others (Seeber
et al., 2013; Herbert et al., 2017) revealed that not only damaged
sites, but also undamaged chromatin explores a larger nuclear
volume in response to DSB formation. An alternative system
employed sequence-based tethering of oligomerizing fluorescent
proteins that spread along the DNA, to study the dynamics
of resected DNA (Saad et al., 2014). Here, resection results in
loss of DNA-associated proteins and reduced signal at repair
sites, and correlates with a local reduction in focus dynamics
(Saad et al., 2014). These approaches are very powerful, but
also limited to the site targeted by the endonuclease. Given
that repair responses and relocalization pathways are affected by
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FIGURE 1 | Examples of damage-induced changes in chromatin dynamics. (A) A damaged chromatin site explores a larger nuclear volume during HR repair of
DSBs. (B) Larger nuclear exploration is also observed for undamaged chromatin sites, indicating that the change in chromatin mobility is a genome-wide response.
(C) Multiple DSB repair sites cluster together. (D) Damaged heterochromatic sites relocalize to the nuclear periphery with directed motions in Drosophila cells. (E,F)
Three main approaches to study nuclear dynamics in response to DSBs rely on: (E) enzymatic digestion to induce damage and lacO or tetO arrays to follow damage
sites; (F) IR to induce damage and fluorescent tagging of repair proteins to detect repair foci; (G) laser, alpha particles, or heavy ions, to induce damage along linear
tracks where repair protein recruitment is detectable by live imaging or immunofluorescence. Illustration by Olga Markova.

chromatin state (Delabaere and Chiolo, 2016; Hauer and Gasser,
2017), nuclear positioning (Lemaitre et al., 2014), and the phase
separated nature of nuclear subdomains (Altmeyer et al., 2015;
Kilic et al., 2019; Lenzken et al., 2019; Oshidari et al., 2019a;
Pessina et al., 2019) (reviewed in Clouaire and Legube, 2019;
Rawal et al., 2019), the endonuclease-based approach would

need to be applied to a large number of sites to provide a
comprehensive understanding of the mechanisms responsible
for these dynamics in different contexts.

Site-specific endonucleases have also been used to induce
DSBs in highly repeated DNA sequences. For example, studies
using Cas9 targeting heterochromatic satellites (Tsouroula et al.,
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2016) or PpoI or Cas9 recognizing rDNA sequences (Harding
et al., 2015; van Sluis and McStay, 2015; Korsholm et al., 2019;
Marnef et al., 2019) revealed the dynamics of these sites in
mammalian cells. It is important to consider that Cas9 affects
the processing of repair intermediates (Richardson et al., 2016,
2018; Brinkman et al., 2018), potentially affecting outcomes and
dynamics of repair.

Another commonly used approach relies on inducing damage
with ionizing radiation (IR), and detecting repair sites using
fluorescent-tagged HR components (Figure 1F). This has been
an invaluable approach to characterize focus mobility relative to
other nuclear structures, such as the heterochromatin domain,
the nuclear periphery, or other repair foci (Kruhlak et al., 2006;
Falk et al., 2007; Miné-Hattab and Rothstein, 2012; Chiolo
et al., 2013; Lottersberger et al., 2015; Ryu et al., 2015, 2016;
Caridi et al., 2018a,b; Schrank et al., 2018; Dialynas et al.,
2019; Oshidari et al., 2019a; See et al., 2020). These studies
established, for example, that heterochromatic DSBs move to
the nuclear periphery to continue repair in Drosophila cells
(Chiolo et al., 2011, 2013; Ryu et al., 2015, 2016; Caridi et al.,
2018a). A major advantage of inducing DSBs with IR, relative
to using chemical treatments or enzymatic digestion, is that
IR-induced DSBs form within a very tight time window. This
enables synchronous responses, and an easier characterization of
focus dynamics and kinetics at the population level, including
in animal tissues (see for example: Lisby et al., 2004; Delabaere
et al., 2017; Caridi et al., 2018b; See et al., 2020). Further, IR
treatments are well suited to damaging chromatin that is difficult
to access with enzymatic digestion, such as heterochromatin
(Goodarzi et al., 2008; Iacovoni et al., 2010; Chiolo et al.,
2011; Ryu et al., 2015, 2016; Caridi et al., 2018a,b). A potential
limitation of this approach is that tracking several sites in the
nuclei requires frequent time points to minimize ambiguous
tracks, which increases the potential for photobleaching and
phototoxicity effects in long kinetics (Caridi et al., 2018b;
See et al., 2020).

Alternative approaches employed lasers, alpha-particles, or
heavy ions to induce damage along linear tracks in the nucleus
of mammalian cells (Figure 1G), and repositioning of damage
sites is monitored relative to these tracks and specific nuclear
compartments (Aten et al., 2004; Chiolo et al., 2011; Jakob
et al., 2011; Reynolds et al., 2013). These approaches revealed,
for example, that repair foci cluster over time (Aten et al.,
2004), and that damage in pericentric heterochromatin results
in relocalization of repair sites to outside the chromocenters in
mouse cells (Jakob et al., 2011). Using laser beams mounted
on a microscope is also an effective method to investigate early
damage responses (Bekker-Jensen et al., 2006). However, the
high energy associated with some of these damage sources might
also impair the chromatin state and repair outcomes (Singleton
et al., 2002; Lukas et al., 2005; Reynolds et al., 2013; Kong
et al., 2018), and even directly affect relocalization mechanisms
(Chiolo et al., 2011).

Thus, several approaches have been developed to characterize
the dynamics of repair foci. The preferred method depends
on the type of question and the features of the motion
under investigation.

MSD ANALYSIS

A traditional approach to characterize the dynamics of damaged
DNA is the mean-square displacement (MSD) analysis of the
positional data of repair sites (reviewed in Spichal and Fabre,
2017; Caridi et al., 2018b). The MSD curve represents the amount
of space a locus explores in the nucleus, and its shape has been
used to describe the nature of the movement (Michalet and
Berglund, 2012; Oswald et al., 2014; Spichal and Fabre, 2017;
Caridi et al., 2018b; Figure 2). The time-averaged MSD of a single
trajectory is calculated using the following equation:

MSD (n ·1t) =
1

N − n

N−n∑
i=1

[
(xi+n − xi)

2

+ (yi+n − yi)
2
+ (zi+n − zi)

2]
where N is the number of points in the trajectory, (x, y, z)
the coordinates of the locus in 3-dimensions, and 1t the time
interval of the acquisition. MSDs are typically calculated for
several trajectories across distinct nuclei, and averaged to extract
a time-ensemble-averaged MSD. The data are then fitted to a
curve to characterize the type of diffusion. In the following
sections, we present different models used in the literature to fit
averaged MSD curves.

Brownian Motion
When a molecule freely diffuses, its MSD curve is linear at
increased time intervals and its motion is called Brownian
(Figure 2A). In this case, the MSD follows:

MSD (1t) = 2dD1t

where d is the dimension of the movement, D is the diffusion
coefficient of the locus, and 1t is the time interval. The term
2dD1t is the theoretical MSD for Brownian motion in the
absence of any experimental noise. However, when measuring the
position of a molecule in living cells, the experimental location
accuracy can strongly affect the experimental MSD. The error in
location for molecules detected by live imaging can be divided
into two components (Supplementary Table S1):

• Error in the determination of the position due to convolution
of the sample with the point spread function (PSF). This
depends on imaging conditions and microscope features (e.g.,
the numerical aperture of the objective, the number of photons
collected by the camera, and the wavelength of light). This
error is higher at short acquisition times since the number of
photons collected is small.
• Error due to the movement of the spot during the acquisition.

This error, referred as “motion blur” is higher at longer
exposure times.

Experimental MSD curves for Brownian motion, taking into
account the location errors, can be fitted by Michalet (2010):

MSD (1t) = 2dD1t + σ2
0(1+

DtExp

s2
0

)−
4
3

tExp
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FIGURE 2 | MSD curves identify different types of motions. (A) Illustration of Brownian, anomalous, confined and directed motions, with corresponding MSD curves.
(B) Examples of complex motion. Left: a mixed trajectory alternating anomalous, directed, and confined motion. Right: a motion of a site characterized by a diffusion
coefficient Amicro, in a region that itself diffuses with a diffusion coefficient Amacro. Inspired by De Gennes’s reptation model (Gennes, 1982). Illustration by Olga
Markova.
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where σ2
0 is the localization accuracy of an immobile particle;

s2
0 is the variance of the PSF;

tExp is the exposure time of the camera.

Sub-diffusive Motion
In living cells, DNA motion is often slower than Brownian
and is called “sub-diffusive” (Barkai et al., 2012). This is
due to the existence of constraints that limit chromatin
movement, including the polymeric nature of the chromatin,
chromatin compaction, molecular crowding, phase separation,
and anchoring to subnuclear compartments (Marshall et al., 1997;
Spichal and Fabre, 2017; Caridi et al., 2018b). Two types of sub-
diffusive motions have been described: confined sub-diffusion
and anomalous sub-diffusion.

Confined Sub-diffusion
When a chromosomal locus stays confined inside a sub-volume
of the nucleus, its motion is called confined sub-diffusion (Figure
2A). The MSD exhibits a plateau (Marshall et al., 1997) and
follows the equation:

MSD (1t) = R2
∞(1− e−2dD1t/R2

∞)+ ε

where R∞ is the measured plateau of the MSD, D is the diffusion
coefficient of the locus and ε is the noise due to the experimental
measurements. The confinement radius (Rc) of the motion
is given by the relation: Rc = R∞

√
(d + 2)/d, where d is the

dimension of the motion. It refers to the radius of a sphere inside
which the motion is contained. The MSD curve starts to bend at
time tc = R2

c /(2dD), representing the characteristic equilibration
time after which the effect of boundaries appears.

Anomalous Sub-diffusion
When the force or structure that restricts the motion is not a
simple confinement but is modulated in time and space with
scaling properties, the motion is called anomalous sub-diffusion
(Barkai et al., 2012; Metzler et al., 2014) (Figure 2A). In this case,
sub-diffusive loci are constrained, but, unlike confined loci, they
can diffuse without boundary and thus reach further targets if
given enough time. For sub-diffusive motion, the MSD exhibits
a power law,

MSD (1t) = A1tα + ε

where α, the anomalous exponent, is smaller than 1.
The anomalous exponent α is linked to the degree of

recurrence of DNA exploration, i.e., the number of times a
locus reiteratively scans neighboring regions before reaching a
distant position (Ben-Avraham, 2000). When α is small, the
locus recurrently explores the same environment for a long
time, while a large α indicates that the locus is able to explore
new environments often. The anomalous diffusion coefficient
A represents the amplitude of the motion; it is proportional to
the diffusion coefficient only in the case of normal diffusion
(when α = 1), which is rarely observed in biological systems
(Barkai et al., 2012).

Experimental noise ε can strongly affect MSD measurements
also in the case of anomalous sub-diffusion. The exact formula to

fit the MSD curves of anomalous diffusion, including localization
accuracy, is given by the formula:

MSD (1t) = A1tα + σ2
0 (1+

AtαExp

4s2
0

)−
Aα(1− α)t2

Exp

121t2 1tα

−
2A

(α+ 1)(α+ 2)

which has been calculated and used to characterize chromatin
mobility at multiple time scales (Miné-Hattab et al., 2017).

Directed Motion
Recent studies of chromatin mobility in the context of DNA
repair have revealed the existence of transient directed motion in
living cells (Cho et al., 2014; Caridi et al., 2018a,b; Lamm et al.,
2018; Oshidari et al., 2018) (Figure 2A). For directed motion,
MSD values rapidly increase at higher time intervals, as follows:

MSD (1t) = 2dD1t + ν 21t2
+ ε

where D is the diffusion coefficient, ν is the velocity of the directed
motion and ε is the noise due to the experimental measurements.

MSD ANALYSES REVEAL INCREASED
NUCLEAR EXPLORATION OF DAMAGED
AND UNDAMAGED CHROMATIN IN
RESPONSE TO DSBs

MSD analyses have been used to characterize the dynamics of
repair sites in different contexts, from yeast to mammalian cells,
deriving descriptive parameters like diffusion coefficient and
confinement radius. In yeast, for example, MSD analyses of repair
sites in response to ISceI-induced breaks revealed that resected
DSBs explore a nuclear volume up to ten times larger than before
damage (Dion et al., 2012; Miné-Hattab and Rothstein, 2012).
This response depends on resection, chromatin remodeling,
checkpoint activation, the strand invasion component Rad51
(Oza et al., 2009; Dion et al., 2012; Miné-Hattab and Rothstein,
2012; Neumann et al., 2012; Horigome et al., 2014; Saad et al.,
2014; Amitai et al., 2017; Miné-Hattab et al., 2017; Smith et al.,
2018), and it has been linked to homology search (Dion et al.,
2012; Miné-Hattab and Rothstein, 2012; Neumann et al., 2012;
Miné-Hattab et al., 2017). This process is exceptionally efficient.
For example, in S. cerevisiae, a single recipient locus and a single
donor locus that share as little as 1.2 kb of homology will find
each other in the 15,000 kb of genome, and engage in repair
with 90% efficiency within 2 h after DSB formation (Aylon
et al., 2003; Miné-Hattab and Rothstein, 2012). Increased nuclear
exploration is more pronounced in diploid than in haploid cells
(Dion et al., 2012; Miné-Hattab and Rothstein, 2012), potentially
reflecting a more active search when the homologous partner is
available (Mine-Hattab and Rothstein, 2013). Indeed, HR repair
with the sister chromatid, which is kept in close proximity
through cohesion, is not associated with extensive dynamics
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(Dion et al., 2012, 2013), further linking nuclear exploration with
inter-homologous repair in yeast.

Importantly, studies in yeast revealed that undamaged loci
also become more dynamic in response to damage, exploring
a nuclear volume up to four times larger, and more DSBs
induce larger nuclear exploration (Miné-Hattab and Rothstein,
2012; Seeber et al., 2013; Herbert et al., 2017; Lawrimore et al.,
2017; Miné-Hattab et al., 2017). Changes in chromatin mobility
are thus a general feature of the cellular response to DSBs
affecting the whole genome. Experimental and theoretical studies
suggest that changes in chromatin mobility of both damaged
and undamaged loci increase the probability of contact between
distant loci, thus promoting the kinetics of homologous pairing
(Miné-Hattab and Rothstein, 2012; Guerin et al., 2016; Miné-
Hattab et al., 2017; Amitai and Holcman, 2018).

Increased nuclear exploration of damaged sites during HR
repair is also observed in mammalian and Drosophila cells
(Chiolo et al., 2011; Krawczyk et al., 2012; Becker et al., 2014;
Cho et al., 2014; Lottersberger et al., 2015; Ryu et al., 2015; Caridi
et al., 2018a,b; Schrank et al., 2018). Studies of Rad52 foci in S
phase of human cells revealed significant dynamics even when the
sister chromatid is used as a template, and linked it to clustering
of repair sites (Schrank et al., 2018) (Supplementary Table S1).
Notably, in human cells NHEJ appears to operate more frequently
than HR (Beucher et al., 2009), and does not require extensive
movement (Krawczyk et al., 2012; Aymard et al., 2017; Schrank
et al., 2018; Schrank and Gautier, 2019), except at unprotected
telomeres (Dimitrova et al., 2008; Lottersberger et al., 2015).
This might explain why repair focus dynamics have not been
detected in early studies (Nelms et al., 1998; Soutoglou et al., 2007;
Jakob et al., 2009). Further, studies in Drosophila cells treated
with IR, revealed that both euchromatic and heterochromatic
repair foci are mobilized (Caridi et al., 2018a), with the most
extensive nuclear exploration associated with heterochromatic
sites that relocalize to the nuclear periphery (Ryu et al., 2015;
Caridi et al., 2018a).

Although the movement of undamaged sites has not
been consistently tracked in these systems, the dynamics of
other (undamaged) chromosomal loci (e.g., telomeres and
centromeres) before and after damage suggest that global
chromatin mobilization is also conserved (Lottersberger et al.,
2015; Caridi et al., 2018a).

What promotes the dynamics of undamaged loci in response
to DSBs? Different contributing mechanisms have been
identified: (i) the release of structures that anchor chromosomal
loci to the nuclear periphery, (ii) repair and checkpoint proteins;
(iii) the transfer of cytoplasmic forces to the chromatin through
the LINC complex; and (iv) global chromatin modifications.
Specifically, anchoring of centromeres, telomeres and the
nucleolus to the nuclear envelope provides constraints to the
motion of interphase chromosomes in budding yeast, limiting
chromosome dynamics (Berger et al., 2008; Therizols et al., 2010;
Wong et al., 2012; Agmon et al., 2013; Verdaasdonk et al., 2013;
Strecker et al., 2016; Lawrimore et al., 2017). Releasing telomere
and centromere attachments reproduces chromatin mobility
observed in response to DSBs (Strecker et al., 2016; Lawrimore
et al., 2017). These studies also identified a Mec1-dependent
phosphorylation of the kinetocore protein Cep3 as an essential

player in global chromatin mobilization (Strecker et al., 2016). In
addition to checkpoint kinases, Rad51 and Rad52 HR proteins
are required to facilitate global chromatin dynamics (Seeber
et al., 2013; Miné-Hattab et al., 2017; Smith et al., 2018, 2019).
Further, studies in yeast and mammalian cells suggest that
cytoplasmic actin and microtubules induce a global chromatin
“shake-up” in response to DSB formation (Lottersberger et al.,
2015; Spichal et al., 2016; Amitai et al., 2017; Lawrimore et al.,
2017). Finally, intrinsic modifications of chromatin properties
following DSBs, such as chromatin decondensation and changes
in chromatin stiffness, appear to contribute to the global increase
in chromatin dynamics. Global chromatin decondensation in
response to DNA damage has been described across different
model systems and likely results from histone modifications,
chromatin remodeling, and histone loss (Ziv et al., 2006; Ayoub
et al., 2008; Chiolo et al., 2011; Luijsterburg et al., 2012; Seeber
et al., 2013; Strecker et al., 2016; Amitai et al., 2017; Hauer et al.,
2017). These modifications might promote nuclear exploration
by reducing chromatin compaction and increasing its flexibility.
Additional studies applied numerical simulation of chromatin
dynamics, mainly based on Rouse-like models (Arbona et al.,
2017), to predict chromatin mobility in response to DSBs
both at the damaged site and genome-wide (Herbert et al.,
2017; Lawrimore et al., 2017; Miné-Hattab et al., 2017). For
example, β-polymer modeling and simulations suggest that
local chromatin expansion is sufficient to drive extrusion of
the damage site from its local domain, affecting longer-range
dynamics (Amitai et al., 2017). However, multi-scale tracking
of chromatin (see: Multi-scale motion section, below) and
polymer simulations also suggest the importance of chromatin
stiffening in local and global chromatin dynamics (Herbert et al.,
2017; Lawrimore et al., 2017; Miné-Hattab et al., 2017). This is
potentially in contradiction with the role of chromatin relaxation
in the same responses, and might reflect a different extent of
relaxation/stiffening across distinct loci or time points following
damage formation. Thus, more studies are needed to establish
the relative contribution of chromatin stiffening and relaxation
to increased chromatin exploration, toward an integrated model
for damage-induced chromatin dynamics.

Of note, studies in yeast revealed that increased nuclear
exploration does not correlate with higher speed of locus
movement. In fact, the diffusion coefficient does not significantly
change in response to damage, both at damaged and undamaged
loci (Miné-Hattab and Rothstein, 2012; Mine-Hattab and
Rothstein, 2013). In other words, changes in mobility allow
chromatin to go further but not faster.

Overall, MSD analyses have been an invaluable tool for
identifying damage-induced nuclear dynamics, revealing a
significant increase of nuclear exploration in response to DSBs
for both damaged and undamaged chromatin, and identifying
several molecular mechanisms responsible for these dynamics.

LIMITATIONS OF MSD ANALYSES

Recent studies of chromatin trajectories in response to DNA
damage revealed that MSD analyses also suffer from several
limitations, and can even mask the existence of certain
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characteristics of the motion. First, MSDs are typically calculated
as time-ensemble-averaged values over several trajectories to
obtain a precise estimate of the parameters describing the
motion (e.g., confinement radius and diffusion coefficient).
This is in part to compensate for the location measurement
errors mentioned above, and in part to enable the use of
relatively short trajectories limited by photo-bleaching and
photo-toxicity effects. However, averaging the behavior of several
trajectories affects the ability to detect the differences between
them, i.e., it does not account for heterogeneity across different
cells and break sites. Second, MSD calculations assume that
each site undergoes homogenous motion during the time of
acquisition, which is rarely the case. For example: (i) repair
sites can be transiently bound to the nuclear periphery or other
nuclear structures; (ii) their motion can be different inside or
outside phase separated domains; and (iii) directed motions can
occur for limited time periods (Figure 2B, left). A locus can
also undergo distinct diffusion regimes at different time scales,
which simultaneously contribute to the motion of a particle. For
example, a locus can exhibit a subdiffusive motion characterized
by Amicro, in a region that itself moves with a diffusion coefficient
Amacro (Figure 2B, right). Additionally, chromatin motion is
not purely sub-diffusive even in the absence of DNA damage;
studies in budding yeast (Heun et al., 2001) and Chinese hamster
ovary cells (Levi et al., 2005) showed that chromatin undergoes
confined random motion alternating with rare fast jumps that
likely reflect rare events of active diffusion.

Accordingly, simulations of a particle moving with different
types of motions: confined, directed, and a combination of
confined and directed (mixed trajectory), show how MSD
curves can mask the presence of directed motions (Figure 3
and Supplementary Movies S1–S3) (Bacher et al., 2004;
Masedunskas et al., 2017). The simulation of a mixed trajectory
accounts for asynchronous motion, where the starting point of
directed motion and its duration is different for each particle as
observed experimentally. While MSD curves for confined and
directed motions display the expected shapes (Figures 4A,B),
the MSD graph for mixed trajectories resembles that describing
a subdiffusive confined motion (Figure 4C), confirming that
the MSD approach is not suitable to describe heterogenous and
asynchronous motions.

In the following sections, we will illustrate two major types
of complex motions occurring in response to DNA damage
(Figure 4), and we will discuss experimental approaches and
analytical methods that enabled their characterization beyond
simple MSD analyses.

MIXED TRAJECTORIES

A major question in the field of nuclear dynamics is whether
repair focus motion is driven by active forces, or alternatively
subdiffusive motions followed by anchoring to subnuclear
structures are sufficient to generate these dynamics. Recent
studies revealed the existence of directed motions in a context
of mixed trajectories for at least some damage-induced responses
(reviewed in Caridi et al., 2019).

First, IR-induced heterochromatic repair foci that relocalize
to the nuclear periphery in Drosophila cells, are characterized
by directed motion driven by transient nuclear actin filaments
(F-actin) and myosins (Caridi et al., 2018a; Dialynas et al.,
2019; See et al., 2020) (reviewed in Caridi et al., 2019)
(Figure 4A, left). Repair foci slide along the filaments, and focus
movement requires myosins’ ability to walk along filaments,
suggesting that nuclear F-actin provides “highways” for the
relocalization of repair sites via myosin motors (Caridi et al.,
2018a). Myosins and the actin nucleator Arp2/3 associate with
the heterochromatin repair component Smc5/6 in response
to damage, suggesting Smc5/6 as a physical link between
heterochromatic repair sites and the motor system (Caridi et al.,
2018a). Smc5/6 also recruits the myosin activator Unc45 to repair
sites, inducing chromatin mobilization (Caridi et al., 2018a).
Further, relocalization requires SUMOylation, checkpoint and
resection proteins, similar to other relocalization pathways
(Chiolo et al., 2011; Ryu et al., 2015, 2016; Amaral et al.,
2017; Caridi et al., 2018a). Defective relocalization results in
unrepaired or misrepaired DSBs, revealing the importance of
this pathway for “safe” HR in heterochromatin (Chiolo et al.,
2011; Ryu et al., 2015, 2016; Caridi et al., 2018a; Dialynas
et al., 2019). Notably, in this context, directed motions primarily
occur between the periphery of the heterochromatin domain
[a distinct structure in Drosophila cells (Chiolo et al., 2011; Li
et al., 2017)] and the nuclear periphery, which is where most
nuclear actin filaments are organized (Caridi et al., 2018a).
Directed motions typically last 24 min, corresponding to the
average time required for repair sites to reach the nuclear
periphery and the average duration of nuclear actin filaments
(Caridi et al., 2018a). However, time points coinciding with the
initial movement of repair sites from inside the heterochromatin
domain to its periphery are characterized by confined diffusion
(Caridi et al., 2018a; Rawal et al., 2019), similar to the rest of
undamaged heterochromatin that behaves like a phase separated
domain (Larson et al., 2017; Strom et al., 2017). Time points
following focus association with the nuclear periphery also
display confined diffusion (Ryu et al., 2015; Caridi et al., 2018a;
Rawal et al., 2019). In this context where directed motions
alternate with diffusive motions, and initiate asynchronously
in the population of foci, directed motions are not detected
in a simple time-ensemble MSD analysis (Ryu et al., 2015;
Caridi et al., 2018a,b) (Supplementary Table S1). Time points
characterized by directed motions were identified using an
analytical method that scans the trajectory of each focus at
variable time windows and initiation times, and detects time
windows in which MSD graphs displays upward curvature
(Caridi et al., 2018a,b) (Supplementary Table S1). Isolating these
time points also required imaging techniques that minimize cell
movement and correct for modest rotational and translational
motion of the nuclei (Amitai et al., 2017), removing a significant
amount of noise from the system (Caridi et al., 2018b; See et al.,
2020) (Supplementary Table S1). Additionally, given the long
time span along which these motions occur, optimizing imaging
conditions for long time imaging and sufficiently spaced time
intervals is essential for their detection (Ryu et al., 2015; Caridi
et al., 2018a,b; See et al., 2020).
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FIGURE 3 | Simulation of confined motion, directed motion and mixed trajectories. The motion of a particle in a sphere of 1 µm radius was simulated using 1,000
iterations (Bacher et al., 2004; Masedunskas et al., 2017). Early timepoints are colored in red, late timepoints in yellow. (A) Example of a trajectory obtained by
simulating a confined motion (D = 0.005 µm2/s, Rc = 0.3 µm) (see also corresponding Supplementary Movie S1). (B) Example of a trajectory obtained by
simulating directed motion until the particle reaches the surface of the sphere (D = 0.005 µm2/s, ν = 1 µm) (see also corresponding Supplementary Movie S2).
(C) Example of a mixed trajectory characterized by confined motion (D = 0.005 µm2/s, Rc = 0.3 µm) lasting 200 timepoints, followed by directed motion
(D = 0.005 µm2/s, ν = 1 µm for t = 201–400) and confined motion for the last 600 time points (D = 0.005 µm2/s, Rc = 0.3 µm. Time-ensemble MSDs were
calculated over 10 trajectories. For panel (C), each trajectory is characterized by a different time point when the directed motion starts, and different duration of the
directed motion (see also Supplementary Movie S3).

Notably, these studies also established that the average
speed of focus motion associated with the relocalization of
heterochromatic DSBs is not higher at time points characterized
by directed motion relative to time points characterized
by confined diffusion (Caridi et al., 2018a; Rawal et al.,
2019). This is consistent with a model where actin filaments
and motors do not increase motion speed. Rather, they
provide directionality and counteract other forces that might

limit the release of repair foci from the heterochromatin
domain (e.g., chromatin compaction and/or phase separation)
(Rawal et al., 2019).

Second, in a study currently in preprint, application of similar
analysis methods identified short time points characterized by
directed motions for damaged replication forks in human cells,
which also correlate with the formation of nuclear actin filaments
and the restart of stalled forks (Lamm et al., 2018).
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FIGURE 4 | (A) Illustration of examples of mixed trajectories. Left: in Drosophila cells, the motion of DSBs leaving the heterochromatin domain and reaching the
nuclear periphery is characterized by: (1) confined diffusion inside the heterochromatin domain; (2) myosin-driven directed motion along actin filaments between the
heterochromatin domain periphery and the nuclear periphery; and (3) confined diffusion at the nuclear periphery. Right: in budding yeast, repair sites: (1) cluster into
larger foci; (2) are “captured”İ by short microtubules; and (3) move by kinesin-driven directed motions along long nuclear microtubules that pivot around the
microtubule organizing center (MTOC). (B) Illustration of multi-scale motion. Chromatin imaging at different time scales reveals anomalous diffusion at short time
intervals (1t) and confined diffusion at longer time intervals. It is important to keep in mind that experiments reveal only the mobility of molecules accessible with the
specific imaging conditions used during the acquisition. Thus, different imaging settings can shed light on different diffusive behaviors, which are visible only at
certain time scales. Illustration by Olga Markova.

Third, directed motions have been detected during homology
search for HR repair of telomeres in ALT human cells (Cho
et al., 2014), which might also potentially include C-circles
released from telomeres (Henson et al., 2009; Schrank and
Gautier, 2019; Zhang et al., 2019). In this case, time-ensemble-
average MSD graphs were characterized by α > 1 when
calculated at selected time points preceding telomere-telomere
association for ALT repair, effectively limiting the analysis to
time points when the motion is homogeneous (Supplementary
Table S1).

Fourth, directed motions have been described for
subtelomeric DSBs repaired by the HR sub-pathway break-
induced replication (BIR) in S. cerevisiae (Oshidari et al.,
2018) (Figure 4A, right). These damage sites move along a
single nuclear microtubule but directed motions are not easily
detectable using canonical MSD analyses because of two major
confounding effects: (i) DSB movement along microtubules is
transient; and (ii) microtubules pivot around the microtubule
organizing center (MTOC), resulting in non-linear directed
motions (Oshidari et al., 2018). In this case, directed motions
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were identified by directional change distribution (DCD)
analysis, which measures changes in the angle of a trajectory
and can reveal broader motion profiles by increasing the
temporal coarse graining (Oshidari et al., 2018) (reviewed in
Oshidari et al., 2019b) (Supplementary Table S1). This study
also identified a role for Kar3 in kinesin-dependent directed
motions and BIR completion (Oshidari et al., 2018). Notably, loss
of Kar3 does not affect the average speed of motion (Oshidari
et al., 2018), suggesting that also in this context, filaments and
motors have a role in providing directionality to the repair
site motion rather than affecting speed. In addition to these
functions, short nuclear microtubules have been proposed
to generate a flow that facilitates clustering of repair foci,
and additional short filaments departing from these clusters
promote the capturing of repair centers by the main microtubule
(Oshidari et al., 2019a).

Fifth, application of the DCD analysis also identified directed
motions for persistent DSBs that move to the nuclear periphery
in budding yeast (Oshidari et al., 2018), reverting the previous
conclusion that these are characterized by diffusive motion
followed by nuclear periphery anchoring (Amitai et al., 2017).

Finally, Arp2/3 and nuclear actin polymerization contributes
to repair focus clustering and HR repair in Drosophila and
mammalian cells (Caridi et al., 2018a; Schrank et al., 2018),
and short actin filaments travel with repair foci in human
cells (Schrank et al., 2018), suggesting a direct role of
these structures in mobilizing damage sites. While directed
motions have not been directly investigated in this context,
and myosins do not seem to be involved (Caridi et al.,
2018a), the requirement of nuclear filaments suggest that
directed motions might also contribute to these dynamics
(Caridi et al., 2019).

It is worth noting that, in addition to heterochromatin, other
membraneless -or phase separated- compartments exist in the
nucleus, including nucleoli and repair foci per se (Altmeyer
et al., 2015; Frottin et al., 2019; Kilic et al., 2019; Min et al.,
2019; Singatulina et al., 2019) (reviewed in Mine-Hattab and
Taddei, 2019; Rawal et al., 2019), which can affect the dynamics
of repair foci at different levels. Phase separation of a nuclear
domain might promote diffusion of repair sites inside the
domain, while limiting release from the domain due to surface
tension (Hyman et al., 2014). Phase separation properties of
repair components might also contribute to the clustering of
repair foci into larger structures, promoting local dynamics
(Altmeyer et al., 2015; Kilic et al., 2019; Oshidari et al., 2019a).
Notably, as repair sites move from one domain to another,
their motion is likely to change properties exhibiting successive
diffusion regimes, which cannot be detected with time-ensemble
MSD analyses (Figure 4A, right). In all these cases, dedicated
analytical methods should be applied to characterize the diffusion
regimes involved.

Further, damage-induced nuclear dynamics can occur in the
context of a dynamic nucleus, which adds rotational motion
to the system. In yeast, removal of nuclear rotations via
Latrunculin treatment enabled the identification of modes of
diffusion that are otherwise masked by the nuclear rotational
movement (Amitai et al., 2017). In mouse and Drosophila

cells, these rotational movements were corrected by registering
the nuclei relative to repair foci prior to tracking repair
sites to establish repair locus trajectories (Ryu et al., 2015;
Caridi et al., 2018a,b; See et al., 2020) (Supplementary
Table S1).

These studies point to the importance of applying dedicated
imaging approaches, image processing methods, and analytical
tools to identify directed motions. They also suggest that
nuclear structures and motors contribute to repositioning repair
sites in more situations than initially thought, including where
diffusive motions appear to prevail. More studies are needed
to identify repair contexts relying on directed movements and
the structural/motor components mediating these dynamics, and
more methods need to be developed to account for different types
of mixed trajectories.

MULTI-SCALE MOTION

Chromatin presents several levels of organization, which
translates into different scales of chromatin mobility (Mine-
Hattab and Darzacq, 2018). These different modes of diffusion
can be unraveled by imaging the chromatin at different time-
scales (Figure 4B and Supplementary Table S1). For example,
in the absence of DNA damage, chromatin undergoes anomalous
diffusion when observed at short time intervals (10-ms to 1-s)
(Maeshima et al., 2010; Weber et al., 2010; Burnecki et al., 2012;
Hajjoul et al., 2013; Lucas et al., 2014; Backlund et al., 2015;
Amitai et al., 2017; Miné-Hattab et al., 2017). However, at longer
time scales, MSD exhibits a plateau characteristic of confined
diffusion, consistent with the chromatin remaining confined
inside a sub-volume of the nucleus (Marshall et al., 1997; Heun
et al., 2001; Maeshima et al., 2010; Masui et al., 2011; Miné-Hattab
and Rothstein, 2012; Backlund et al., 2015).

Several recent studies applied multi scale imaging to
characterize chromatin mobility in response to DSBs. Increased
exploration of the nuclear space is detected in response to
I-SceI-induced DSBs when imaging is done at 1.5s or longer
time intervals (Dion et al., 2012; Miné-Hattab and Rothstein,
2012). However, remarkably, imaging at 100 ms time intervals
or faster reveals lower mobility of the damaged site relative to
undamaged conditions (Miné-Hattab et al., 2017). Given that
a shorter time scale for data collection investigates chromatin
motion on a smaller temporal and spatial scale, the low mobility
observed at short time scales reflects reduced local mobility
of the cut site (Miné-Hattab et al., 2017). These dynamics
can be modeled assuming that chromatin persistence length (a
measure of the bending stiffness of a polymer) globally increases
(Herbert et al., 2017; Miné-Hattab et al., 2017). At the damaged
sites, such response likely results from the recruitment of the
repair machinery that increases chromatin stiffness (Mine et al.,
2007). Accordingly, reduced local mobility has been associated
with resected DNA and requires Rad51 (Saad et al., 2014;
Miné-Hattab et al., 2017).

The reduced mobility detected at lower time scales also
characterizes undamaged chromatin, consistent with a global
increase in chromatin stiffness that spreads beyond the damaged

Frontiers in Genetics | www.frontiersin.org 11 August 2020 | Volume 11 | Article 800

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00800 August 25, 2020 Time: 17:51 # 12

Miné-Hattab and Chiolo Methods for Studying DSB Dynamics

loci (Herbert et al., 2017; Miné-Hattab et al., 2017). This might
depend on H2A phosphorylation, which spreads for kilobases
to megabases from the cut site (Rogakou et al., 1999), and
introduces negative charges into the chromatin (Herbert et al.,
2017). As a consequence of a global increase in chromatin
stiffness, intrachromosomal loci become more distant and their
dynamics change, as observed experimentally in yeast (Herbert
et al., 2017; Miné-Hattab et al., 2017).

It has been proposed that increased rigidity of the chromatin
facilitates the movement of the cut site through the dense
nucleoplasm (Miné-Hattab et al., 2017). In other words, a
stiffer chromatin (with more rigidity associated with the break
site) would enable resected DNA to navigate through adjacent
obstacles more efficiently, thus allowing it to reach farther targets.
The stiffer chromatin would act like a needle to help move
damaged DNA through the chromatin mesh, likened to a “ball
of yarn” (Miné-Hattab et al., 2017). Of note, there is currently no
method to directly measure chromatin flexibility in living cells.
The two studies referred to here (Herbert et al., 2017; Miné-
Hattab et al., 2017) use indirect methods to assess chromatin
stiffness, by comparing conformation and dynamics of tagged
chromosomal loci with polymer simulation.

These studies emphasize the importance of interrogating
different spatiotemporal scales to understand chromatin
motions, potentially revealing distinct dynamic processes
and regulatory mechanisms. Additionally, more sophisticated
and refined mathematical tools are necessary to account
for the composite nature of chromatin motion, and for
example to distinguish between the local diffusion of a
locus in a region that itself moves with a different mode
of diffusion.

CONCLUSION AND PERSPECTIVES

A large number of studies in the past decade have shown that
DSBs trigger a larger exploration of the nucleus for damaged and
undamaged chromatin sites, and this response is conserved from
yeast to mammalian cells. Increasing chromatin confinement
radius, or changing the nature of its motion, dramatically
enhances the ability of a locus to sample neighboring DNA
sequences during homology search. In addition to this response,
recent studies have shown that chromatin motion is more
complex than initially anticipated. Relocalization of repair sites
via molecular motors typically results in mixed trajectories, where
directed motions occur in alternation with subdiffusive regimes.
Further, the transient directed movement of repair sites along
oscillating structures (e.g., nuclear microtubules), nuclear flows,
and phase separation of nuclear domains, add complexity to
the trajectories. Additionally, distinct diffusion regimes typically
occur at different time scales, likely reflecting different level of
chromatin organization. A simple MSD analysis is not adapted
for such composite motions, as it assumes a homogenous
mode of diffusion during the acquisition. Additionally, time-
ensemble MSD analyses mix different type of motions that

start asynchronously and occur for different durations. New
analytical methods enabled the dissection of some of these
dynamics. To reveal the existence of several diffusion regimes,
multi-scale tracking, simulations, and mathematical models of
complex motions need to be performed. The identification of
several contexts where nuclear dynamics is dependent on nuclear
actin filaments or microtubules, and characterized by short
or long tracts of directed motions, suggests the existence of
forces that drive the motion in more situations than initially
thought. The development of new dedicated analytical methods
started unlocking the door toward a deeper understanding of
these dynamics, and the discovery of the molecular mechanisms
responsible for their regulation. Nuclear dynamics facilitate DNA
repair in different contexts, but nuclear exploration of damaged
sequences is also responsible for chromosome rearrangements
(Neumann et al., 2012; Roukos et al., 2013; Marcomini et al.,
2018). Defects in relocalization pathways also result in genome
instability (Torres-Rosell et al., 2007; Chiolo et al., 2011; Ryu
et al., 2015, 2016; Su et al., 2015; Caridi et al., 2018a; Dialynas
et al., 2019; Aguilera et al., 2020) (reviewed in Caridi et al., 2017;
Caridi et al., 2019; Schrank and Gautier, 2019), and establishing
the mechanisms responsible for these dynamics is a necessary
step to understand how their misregulation contributes to cancer
and other genome instability disorders.
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