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Antigen-specific CD4+ T cell responses to Mycobacterium tuberculosis (Mtb) infection 
are important for host defense against tuberculosis (TB). However, Mtb-specific IFN-γ-
producing T cells do not distinguish active tuberculosis (ATB) patients from individuals 
with asymptomatic latent Mtb infection (LTBI). We reasoned that the immune phenotype 
of Mtb-specific IFN-γ+CD4+ T cells could provide an indirect gauge of Mtb antigen load 
within individuals. We sought to identify immune markers in Mtb-specific IFN-γ+CD4+ 
T cells and hypothesized that expression of caspase-3 Mtb-specific CD4+ T cells would 
be associated with ATB. Using polychromatic flow cytometry, we evaluated the expres-
sion of caspase-3 in Mtb-specific CD4+ T cells from LTBI and ATB as well as from ATB 
patients undergoing anti-TB treatment. We found significantly higher frequencies of Mtb-
specific caspase-3+IFN-γ+CD4+ T cells in ATB compared to LTBI. Caspase-3+IFN-γ+CD4+ 
T cells were also more activated compared to their caspase-3-negative counterparts. 
Furthermore, the frequencies of caspase-3+IFN-γ+CD4+ T cells decreased in response 
to anti-TB treatment. Our studies suggest that the frequencies of caspase-3-expressing 
antigen-specific CD4+ T cells may reflect mycobacterial burden in vivo and may be useful 
for distinguishing Mtb infection status along with other host biomarkers.

Keywords: tuberculosis, caspase-3+iFn-γ+cD4+ T cells, active tuberculosis, latent Mtb infection, anti-tuberculosis 
treatment, monitoring

inTrODUcTiOn

Tuberculosis (TB) is one of the world’s major causes of illness and mortality (1) with about 10 million 
new cases and 2 million deaths occurring each year. Approximately 10% of individuals infected 
with Mycobacterium tuberculosis (Mtb) develop active TB (ATB), while 90% have no overt signs of 
clinical disease and are considered to have latent Mtb infection (LTBI) (2) indicating that the host 
immune response is capable of controlling infection. Several studies have shown that the majority 
of individuals infected with Mtb mount robust antigen-specific CD4+ T cell responses involving T 
helper 1 (Th1) cytokines, such as IFN-γ and TNF-α, which are critical for activating macrophages 
and containing bacteria in the lung. However, Th1 cytokines are not sufficient for protection against 
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Table 1 | Clinical characteristics of enrolled participants.

active 
tuberculosis

latent Mycobacterium 
tuberculosis infection

Participants, n 22 23
Male, n (%) 20 (91%) 14 (61%)
Median age 53.5 (23–83) years 34.0 (22–61) years
Black race, n (%) 19 (86%) 8 (35%)
Culture proven pulmonary, n (%) 22 (100%) Not done
ESAT6-CFP10 responders, n (%) 22 (100%) 23 (100%)
HIV seropositive, n (%) 0 (0%) 0 (0%)
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ATB disease and Mtb-specific IFN-γ-producing CD4+ T cells are 
present in individuals with ATB disease as well as in asymptomatic 
individuals with LTBI. Moreover, Mtb-specific IFN-γ-producing 
T cells fail to discriminate between active and LTBI (3, 4) and are 
not useful for assessing response to active TB treatment, which is 
typically monitored by sputum culture conversion (5, 6).

In an effort to identify biomarkers in human peripheral blood 
mononuclear cells (PBMCs) that distinguish active and LTBI 
states, we previously characterized the immune phenotype of 
Mtb-specific IFN-γ-producing CD4+ T  cells in ATB and LTBI. 
We showed that compared to individuals with LTBI, PBMCs 
from ATB patients harbored significantly higher frequencies of 
Mtb-specific IFN-γ+CD4+ T cells expressing immune activation 
markers CD38 and HLA-DR and the intracellular proliferation 
marker Ki-67 (7). These markers accurately identified ATB 
patients and correlated with response to anti-TB treatment (7). 
Our studies showed that activated Mtb-specific IFN-γ+ produc-
ing CD4+ T cells can serve as an indirect gauge of Mtb antigen 
load within individuals. In this study, we extend the concept of 
antigen-specific T cell phenotypes as readouts of pathogen burden 
and investigate the expression of active caspase-3 in individuals 
with ATB and LTBI. Caspase-3, a member of the caspase family 
of cysteine proteases is expressed in CD4 effector T cells down-
stream of anti-CD3-mediated T  cell receptor (TCR) activation 
(8) and has been shown to orchestrate apoptotic pathways during 
microbial infection following T cell activation and regulate T cell 
activation, cell cycle entry, proliferation, and differentiation 
(8–12). Since ATB patients have higher frequencies of activated 
Mtb-specific CD4+ T cells compared to LTBI, we hypothesized 
that ATB would also harbor higher frequencies of Mtb-specific 
CD4+ T cells expressing active caspase-3.

Using polychromatic flow cytometry, we evaluated the expres-
sion of active caspase-3 in Mtb-specific CD4+ T cells from ATB 
patients and individuals with LTBI. We found significantly higher 
frequencies of active caspase-3+IFN-γ+CD4+ T  cells in ATB 
compared to LTBI. Further, caspase-3-expressing IFN-γ+CD4+ 
T cells were more activated compared to their caspase-3-negative 
counterparts and the frequencies of caspase-3+IFN-γ+CD4+ 
T cells decreased following successful anti-TB treatment, indicat-
ing that caspase-3 expression in Mtb-specific IFN-γ+CD4+ T cells 
is associated with mycobacterial burden.

MaTerials anD MeThODs

study Participants
This study was conducted according to the principles expressed 
in the Declaration of Helsinki. Ethical approval was obtained 
from the Emory University Institutional Review Board. All 
participants were provided written informed consent for the 
collection of samples and subsequent analyses. HIV-negative 
subjects between 23 and 83 years of age with LTBI (n = 23) or 
with pulmonary ATB disease (n = 22) were recruited in Atlanta, 
GA, USA. The 22 patients with confirmed pulmonary ATB were 
enrolled at Grady Memorial Hospital (Atlanta, GA, USA), prior 
to initiation of anti-TB treatment. Diagnosis of pulmonary 
ATB was based on the presence of clinical symptoms, sputum 

positivity by acid-fast bacilli (AFB) smear, positive amplified 
Mycobacterium Tuberculosis Direct assay, and positive culture 
(Table  1). All the ATB patients underwent the anti-TB treat-
ment. However, only eight patients receiving the standard 
regimen of anti-TB treatment were followed longitudinally for 
6 months. Anti-TB treatment was provided according to Centers 
for Disease Control (CDC) guidelines (13) for drug-susceptible 
TB and consisted of 2 months of isoniazid, rifampicin, pyrazi-
namide, and ethambutol, followed by 4 months of isoniazid and 
rifampicin. Resolution of TB was assessed by clinical, radiologi-
cal, and microbiological criteria as described in Table 1. Healthy 
subjects from Atlanta, GA were identified as having LTBI by 
a positive ESAT6-CFP10-specific IFNγ-ELISPOT assay as 
described previously (14). These individuals were all HIV nega-
tive, non-smokers with no recent history of severe respiratory 
disease and had a normal chest X-ray. The presence of IFN-
γ+CD4 +T cells in PBMCs from both ATB and LTBI groups was 
assessed by flow cytometry and intracellular cytokine staining 
(ICS) following stimulation with Mtb-CW antigens and ESAT6 
and CFP10 peptide pools.

PbMc isolation, antigens, and Peptides 
for cell stimulations
Blood samples were collected from all subjects at baseline and 
longitudinal time points. PBMCs were isolated from blood as 
described previously (14) using cell preparation tubes (CPT, 
BD Biosciences) and cryopreserved in 90% fetal FBS (Hyclone, 
South Logan, UT) and 10% dimethyl sulfoxide (Sigma-Aldrich, 
St. Louis, MO, USA). PBMCs were stimulated with Mtb cell 
wall (CW) antigens (NIH-TBVRM contract, BEI) and ESAT6-
CFP10 peptides pools, which were composed of 15-mers with 
11 amino-acid overlap (Genemed Synthesis Inc., San Antonio, 
TX, USA).

Flow cytometry and staining
For ICS, cryopreserved PBMCs were rested overnight at 37°C, 
5% CO2 in RPMI-1640 medium (Lonza, Walkersville, MD, USA) 
containing 10% FBS, 2  mM glutamine, 100  IU/ml penicillin, 
and 100  µg/ml streptomycin. The viability of the lymphocytes 
was 75–95%. 1–2 × 106 PBMCs were each stimulated with Mtb 
CW antigens (10 µg/ml; BEI Resources) and ESAT-6 and CFP-
10 peptide pools (10 µg/ml) for 2 h followed by the addition of 
Brefeldin A (10 µg/ml) (BD Biosciences, San Diego, CA, USA) 
and further incubated for 16  h. PBMCs were stained for dead 
cells with the LIVE/DEAD Fixable Yellow Dead Cell Stain (Life 
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FigUre 1 | Caspase-3 expression on Mycobacterium tuberculosis (Mtb)-specific IFN-γ+CD4+ T cells differentiates between active tuberculosis (ATB) and latent Mtb 
infection (LTBI). Peripheral blood mononuclear cells from individuals with LTBI and ATB were stimulated with Mtb cell wall antigens and ESAT6-CFP10 peptide pools 
or non-stimulated (NS) (a) Representative flow plots for one active tuberculosis (ATB) and one LTBI individual and (b) cumulative data for ATB (n = 22) and LTBI 
(n = 23) groups. The frequencies of caspase-3+IFN-γ+ T cells were compared between LTBI and ATB groups. Mann–Whitney U test was used to compare the two 
groups. A P-value of less than 0.05 was considered to be statistically significant. Bars represent means.
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Technologies, OR) at the beginning, and then surface-stained 
with appropriate antibodies: CD4 PerCp-Cy5.5 (clone L200), 
CD8 V500 (clone SK1), HLA-DR PE-Cy7 (clone L243), all from 
BD Biosciences, CD38 ECD (clone LS198.4.3) from Beckman-
Coulter (Fullerton, CA, USA), CD45RA BV711 (clone HI100) 
from Biolegend (San Diego, CA, USA); permeabilized with 
Cytofix/Cytoperm Kit (BD Biosciences), stained intracellularly 
with appropriate antibodies: active caspase-3 FITC (clone C92-
605), IFN-γ Alexa Fluor 700 (clone B27), IL-2-APC (clone MQ1- 
17H12), Ki-67 PE (clone B56), and CD3 APC-H7 (clone 
UCHT1), all from BD Biosciences, TNF-α BV650 (Clone MAb11,  
Biolegend); and fixed with 1% paraformaldehyde before acqui-
sition on an LSR-II flow cytometry (BD Biosciences). Flow 
cytometry data were analyzed with FlowJo software (Tree Star 
Inc., San Carlos, CA, USA). Positive Mtb-specific CD4+ T  cell  
responses were defined by a frequency of CD4+IFN-γ+ T cells of 
≥0.05%. The minimum number of CD4+IFN-γ+ T cells used in 
this study to assess caspase-3 expression was 175 events.

statistical analysis
Data were analyzed using Graphpad Prism 6.0b software. The 
Mann–Whitney U test was used to compare two groups. The 
means was used for descriptive statistics for each parameter. 
Differences between paired samples were analyzed using the 
Wilcoxon matched-paired rank test. A P-value of less than 0.05 
was considered to be statistically significant.

resUlTs

expression of caspase-3 in Mtb-specific 
cD4+ T cells in individuals With  
aTb and lTbi
Gating on live lymphocytes (Figure S1 in Supplementary Material), 
we evaluated the expression of active caspase-3 on IFN-γ+CD4+ 
T  cells in 22 ATB patients and 23 healthy subjects with LTBI 
(Table 1), after stimulating PBMCs with Mtb-CW antigens and 
ESAT6-CFP10 peptides pools. A representative flow cytometry 
plot from one ATB patient and one LTBI subject (Figure  1A) 
and the summarized data (Figure 1B) show that ATB patients 
harbor significantly higher frequencies of Mtb-specific IFN-
γ+CD4+ T cells expressing caspase-3 compared to LTBI (9.1 vs 
0.1, p < 0.0001 with Mtb CW antigens; 4.1 vs 0.1, p < 0.0001 with 
ESAT6-CFP10 peptides pools). These differences were restricted 
to antigen-specific IFN-γ+CD4+ T cells as expression of caspase-3 
in bulk, non-stimulated populations of CD4+ T cells was similar 
in both groups (Figure S2 in Supplementary Material).

caspase-3+iFn-γ+cD4+ T cells in aTb 
Patients Display an activated  
effector Phenotype
Since LTBI individuals do not express caspase-3+IFN-γ+CD4+ T cells 
(Figure 1), to assess the activation state of caspase-3+IFN-γ+CD4+ 
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FigUre 3 | Caspase-3+IFN-γ+CD4+ T cells display more effector phenotype than caspase-3 −IFN-γ+CD4+ T in active tuberculosis patients. (a) Representative flow 
plots for one patient and (b) cumulative data for 17 patients. The frequencies of the memory differentiation markers CD27, CD127, and CD45RA were compared 
between caspase-3+IFN-γ+ and caspase-3−IFN-γ+CD4+ T cells. Mann–Whitney U test was used to compare the two groups. A P-value of less than 0.05 was 
considered to be statistically significant. Bars represent means.

FigUre 2 | Caspase-3+IFN-γ+CD4+ T cells are more activated than caspase-3−IFN-γ+CD4+ T in ATB patients. (a) Representative flow plots for one patient and  
(b) cumulative data for 17 patients. The frequencies of immune activation markers CD38, HLA-DR, and the intracellular proliferative marker Ki-67 were compared 
between caspase-3+IFN-γ+ and caspase-3 −IFN-γ+CD4+ T cells. Mann–Whitney U test was used to compare the two groups. A P-value of less than 0.05 was 
considered to be statistically significant. Bars represent means.
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T cells in ATB, we examined the expression of immune activation 
markers CD38, HLA-DR, and the intracellular proliferative marker 
Ki-67 in caspase-3+IFN-γ+ and caspase-3−IFN-γ+CD4+ T cells. We 
found that caspase-3+IFN-γ+CD4+ T cells express higher levels of 
CD38 (75 vs 55%, p = 0.019), HLA-DR (98 vs 80%), and Ki-67 
(40 vs 20%) compared to caspase-3−IFN-γ+CD4+ T cells (Figure 2) 
upon stimulation with Mtb-CW antigens. These data show that the 
expression of caspase-3 in Mtb-specific CD4+ T cells is associated 
with an activated cycling state. To assess the differentiation state 
associated with caspase-3+IFN-γ+CD4+ T  cells, we analyzed the 
expression of CD27, CD45RA, and CD127. Caspase-3+IFN-γ+CD4+ 

T  cells were characterized by mostly CD27−CD45RA−CD127− cells 
indicating an effector phenotype (Figure 3).

reduced il-2 Production in Mtb-specific 
caspase-3+iFn-γ+ compared to caspase-
3−iFn-γ+cD4+ T cells in aTb Patients
Several studies have demonstrated the presence of functional 
Mtb-specific CD4+ T cell responses in treatment-naïve pulmonary 
TB patients by assessing the production of IL-2, TNF-α, and 
IFN-γ in PBMCs stimulated with Mtb antigens. To evaluate the 
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FigUre 4 | Caspase-3+ and caspase-3− antigen-specific CD4+ T cell subsets are polyfunctional. Polyfunctional cytokine responses from caspase-3+ and 
caspase-3− antigen-specific CD4+ T cell subsets in active tuberculosis patients. Data are represented as the percentage of responding CD4+ T cells that are triple 
producers, double producers, or single producers of IFN-γ (G), TNF-α (T), and IL-2 (2) and summarized by the pie charts. Each slice of the pie represents the 
fractions of the total response that consists of CD4+ T cells positive for a given function.

FigUre 5 | IL-2 and TNF-a expression caspase-3+ and caspase-3− antigen-specific CD4+ T cell subsets in active tuberculosis patients. (a) Representative flow 
plots for one patient and (b) cumulative data for 17 patients.
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functionality of caspase 3-expressing Mtb-specific CD4 T cells, 
we investigated the expression of IL-2 and TNF-α in caspase-
3+IFN-γ+ and caspase-3−IFN-γ+ CD4 T  cell subsets. Both 
caspase-3+ and caspase-3− subsets exhibited polyfunctional 
responses, as seen by their capacity to produce IFN-γ, TNF-α, and 

IL-2 in response to Mtb antigen stimulation (Figure 4). However, 
caspase-3+IFN-γ+CD4+ T cells exhibited lower levels of IL-2 com-
pared to caspase-3−IFN-γ+CD4+ T cells (40 vs 55%, p = 0.003; 
Figures 5A,B). Thus, caspase-3 expression in Mtb-specific CD4+ 
T cells in ATB is associated with reduced IL-2 levels.
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FigUre 6 | Frequencies of caspase-3+ Mycobacterium tuberculosis 
(Mtb)-specific CD4+ T cells at baseline and 6 months after anti-TB treatment. 
Analysis of the frequencies of caspase-3+IFN-γ+CD4+ T cells in individuals 
with treatment-naive active tuberculosis (ATB) (n = 23) as well as those who 
received 6 months of anti-TB treatment (ATB treated 6 months; n = 8). 
Mann–Whitney U test was used to compare the two groups. A P-value of 
less than 0.05 was considered to be statistically significant. Bars represent 
means.
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Frequencies of Mtb-specific caspase-
3+iFn-γ+ cD4 T cells Decrease Following 
successful anti-Tb Treatment
The standard treatment regimen for TB consists of a 2-month 
intensive phase with isoniazid, rifampicin, pyrazinamide, and 
ethambutol (HRZE) followed by a month-continuation phase 
with isoniazid and rifampicin (HR) (15). To investigate whether 
frequencies of caspase-3+IFN-γ+CD4+ T  cells in treatment-
naive ATB patients are altered following anti-TB treatment, 
we compared treatment-naïve ATB patients with those who 
successfully completed 6 months of anti-TB treatment (n =  8) 
by assessing frequencies of caspase-3+IFN-γ+CD4+ T  cells in 
PBMCs stimulated with Mtb-CW and ESAT6-CFP10. The 
frequencies of caspase-3+IFN-γ+CD4+ T cells were significantly 
lower in the treated ATB group (ATB treated-6 months) com-
pared with untreated ATB group (Figure 6). We next assessed 
caspase-3+IFN-γ+ CD4+ T  cell frequencies at baseline (time 0) 
and at multiple time points after treatment initiation for a subset 
of individuals for whom we had longitudinal samples (n =  8). 
Baseline diagnosis by sputum AFB smear and culture is indicated 
for each patient, and sputum was monitored for AFB smear and 
culture conversion during treatment (Figure  7). Conversion 
to a negative sputum culture at 2 months after the initiation is 
currently the most objective indicator of response to treatment 
(15). Caspase-3+IFN-γ+CD4+ T  cells were relatively prevalent 
until 30–60 days after anti-TB treatment, after which their levels 
were greatly reduced (Figures 7A–C). Overall, these data show 
that, compared to treatment naive ATB patients, the frequencies 
of caspase-3+IFN-γ+CD4+ T cells were significantly reduced after 
successful completion of the 6-month standard regimen of anti-
TB treatment (Figures 6 and 7). These data suggest that reduction 
in mycobacterial burdens during successful anti-TB treatment 

correlates with reduced frequencies of caspase-3 in Mtb-specific 
IFN-γ+CD4+ T cells.

DiscUssiOn

Several studies have demonstrated that the immune phenotypes 
of antigen-specific T cells, including the expression of activation 
markers, their maturation, and differentiation states and cytokine 
profiles, generally reflects the antigen burden within individuals 
infected with viral and bacterial pathogens (7, 16–18). Distinct 
T cell phenotypes have been associated with active pulmonary 
TB, where antigen burdens are typically high, compared to per-
sistent or chronic infections (LTBI) with low antigenic burdens or 
after treatment-induced clearance of infection (7, 14, 19–28). We 
previously showed that frequencies of Mtb-specific IFN-γ+CD4+ 
T cells expressing each of the immune activation markers CD38 
and HLA-DR and the intracellular proliferation marker Ki-67, 
accurately classified ATB and LTBI status and correlated with 
decreasing mycobacterial loads during treatment (7). In this 
study, we extended the concept of antigen-specific T cell pheno-
types as indirect readouts of pathogen burden and investigated 
the expression of active caspase-3 in activated Mtb-specific CD4+ 
T cells. Caspase-3 is known to be a major executor of apoptosis 
in antigen-stimulated T cells (29). However, several reports have 
suggested that caspase-3 might have an additional role in the 
immune system by promoting lymphocyte activation and prolif-
eration (8–11, 30). For example, in studies on acute LCMV infec-
tion in mice, caspase-3 mRNA levels were shown to be selectively 
increased in peripheral T cells after antigen-specific stimulation 
(9) or following TCR stimulation (31). It has also been shown that 
caspase-3 is expressed in non-apoptotic T lymphocytes (32–34). 
In this study and gating on live lymphocytes, we showed higher 
frequencies of caspase-3-expressing Mtb-specific IFN-γ+CD4+ 
T cells in individuals with ATB compared to LTBI subjects, sug-
gesting that the caspase-3 pathway is operant during active TB 
phase but not during the latent phase. We also showed that the 
caspase-3-expressing Mtb-specific IFN-γ+CD4+ T  cells express 
high levels of T cell activation markers CD38 and HLA-DR and 
the proliferation marker Ki-67 (Figure  2), suggesting that cas-
pase-3 expression is associated with activation and proliferation 
of CD4+ T cells during active TB disease. Indeed, caspase-3 has 
been shown to be involved in regulating early steps of lympho-
cyte activation, cell cycle entry, and proliferation (8, 35). The 
importance of caspases in T cell activation is also highlighted by 
defective T cell activation observed in humans lacking functional 
caspase-8, and caspase blockers have been shown to inhibit human 
T cells proliferation in response to various antigen stimulations 
(36, 37). It has recently been shown that the activation profile of 
Mtb-specific CD4+ T cells as assessed by the expression of CD38, 
HLA-DR, and Ki-67 reflects TB disease in both HIV infected 
and uninfected individuals (24). It is interesting to speculate that 
expression of caspase-3 in Mtb-specific CD4+ T cells from HIV-
infected ATB patients will be similarly higher compared to HIV 
infected individuals with LTBI despite the reduction of peripheral 
CD4+ T cells during HIV infection (25, 38, 39).

Our observation of reduced IL-2 production in Mtb-specific 
caspase-3+ CD4+ T  cells compared to caspase-3− CD4+ T  cells 
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FigUre 7 | Comparison of the frequencies of caspase-3+IFN-γ+CD4+ T cells in 7 TB patients undergoing the 6-month regimen of anti-TB treatment.  
(a) Representative flow plots for one patient, (b) frequencies of caspase-3+IFN-γ+CD4+ T cells in eight different ATB patients over the course of anti-TB treatment 
after stimulation with Mtb-CW, and (c) cumulative data for eight patients are shown for the frequencies of caspase-3+IFN-γ+ T cells. The 2-month intensive phase 
(HRZE) and 4-month continuation phase (HR) are indicated. Abbreviations: S = sputum smear, C = culture.
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