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Collagen Synthesis in Tenocytes, Ligament Cells and
Chondrocytes Exposed to a Combination of Glucosamine
HCl and Chondroitin Sulfate

Louis Lippiello

Nutramax Laboratories Edgewood, MD 21040, USA

Clinical testing of the nutraceuticals glucosamine (glcN) and chondroitin sulfate (CS) has shown

efficacy in providing relief from symptoms in osteoarthritic patients. In vitro and in vivo studies support

existence of a synergistic relationship upregulating synthetic activity in chondrocytes. A combination

of glcN and CS may also be useful as adjunct therapy in sports-related injuries if similar upregulation

of collagen synthesis is elicited in accessory ligament and tendon joint tissue. Collagen and non-

collagenous protein (NCP) synthesis in cultures of bovine tenocytes, ligament cells and chondrocytes

exposed to glcN þ CS were assayed by uptake of radiolabeled proline into collagenase-sensitive

material. Assay of radiolabel in hydroxyproline (a specific marker for collagen synthesis) following

HPLC isolation confirmed the specificity of the metabolic effect. Synthesis of total collagenase-

sensitive material was maximally upregulated at physiologically obtainable doses of glcN þ CS. Tissue

response followed the sequence ligament cells (þ69%) > chondrocytes (þ56%) > tenocytes (þ22%).

Labeled hydroxyproline increased by 132% in ligament cells, 27% in tenocytes and 49% in epitendon

cells after a 48 h exposure to 5 mg ml�1 glcN þ 4 mg ml�1 CS. Low dose combinations of glcN and CS

effectively stimulate in vitro collagen and NCP synthesis by ligament cells, tenocytes and chondrocytes.

Hence, therapeutic use following accessory joint tissue trauma may help augment repair processes.
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Introduction

The combination of glucosamine (glcN) and chondroitin

sulfate (CS) has been extensively tested for clinical efficacy

of symptomatic relief in patients with osteoarthritic (OA)

joints (1–4). Assessment of joint cartilage degeneration and

anti-inflammatory effects has also been examined in diverse

animal models of arthritis (5–8). In addition, in vitro and in

vivo studies support existence of a synergistic relationship of

these two agents associated with upregulation of matrix

proteoglycan synthesis and downregulation of metalloprotease

activity (1,9–11) suggesting a ‘chondroprotective’ effect. For

the most part, these studies have only examined responses of

articular chondrocytes but conceptually OA is considered a

disorder of the entire articulating joint including the ligament

and tendon accessory joint structures (12).

Ligaments and tendons are dense fibrous connective tissues

providing mechanical stability to joints during movement. The

cellular fibroblastic-like cells are surrounded by an organized

fibrous extracellular matrix composed primarily of type

I collagen, elastin, non-collagenous proteins (NCP), and

small amounts of keratan and CS. Aging-related alterations

or trauma to tendons and ligaments play a role in altering joint

dynamics and predispose the joint to early onset of osteoar-

thritis (13,14). Tendon/ligament failure by traumatic rupture,

overuse and/or inflammatory processes is ranked as the 15th

most common musculoskeletal condition and 30–50% of all

sports injuries (15). Moreover, the annual incidence of acute

rupture of the anterior cruciate ligament has been estimated to

be one in 3000 in the American population, with �95 000 new

cases per year (16).
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Current therapies for the treatment of ligament/tendon injuries

emphasize non-steroidal anti-inflammatory agents (NSAIDs)

to minimize inflammation and subsequent damage to tissue

integrity. However, caution has been recommended against

excessive use of some NSAIDs since these agents have an

inhibitory effect on proteoglycan synthesis and cell proliferation

(17) and in animal models do not provide any biochemical

benefit (18). A number of growth promoting factors including

platelet-derived growth factor, transforming growth factor beta

and basic fibroblast growth factor have demonstrated significant

stimulation of matrix synthesis in vitro but have not proved

successful in vivo (19). There is currently no efficacious therapy

for enhancing the rate and/or ability of these tissues to heal (17).

Nutraceutical supplements including creatine, ephedra, etc.,

have been associated with side effects and lack rigorous quality

assurance to warrant their use (20).

Clinical trials using nutraceutical preparations for healing

and minimizing inflammatory processes in dense connective

tissues have not been performed. The significant advantage

of such therapy for sports-related injuries is the possibility

of enhancing natural repair processes and/or minimizing

NSAIDs use.

The rationale for exploring whether the combination of

glcN þ CS has a beneficial effect on collagen synthesis in

ligaments and tendons is based on previous studies suggesting

that they act as biological response modifiers upregulating

metabolic activity of chondrocytes (10). Since the cells

of ligament/tendon tissue have a similar origin as articular

chondrocytes, exhibit similar aging-related changes in meta-

bolism and mechanical properties (21), are less responsive to

repair stimuli (22) and are capable of maintaining normal

remodeling processes (23), it was of interest to examine

whether they respond in similar fashion as articular chondro-

cytes. Moreover, the majority of published studies with these

agents have been on articular cartilage examining proteogly-

can synthesis and degradation and anti-inflammatory activity.

Little is known of their effect on collagen synthesis, a major

component of cartilage as well as dense connective tissue. To

this end, we took advantage of the availability of a commercial

preparation, Cosamin�DS (CDS; Nutramax Laboratories Inc.,

Edgewood, MD), a mixture of glucosamine HCl (FCHG49�,

99% purity), CS (TRH122�, 98% purity) and manganese

ascorbate in the ratio 5:4:1 for which numerous clinical

and in vitro data are available. The material was used as a

combination rather than testing of individual components

since previous data indicates that both agents exert an

upregulation of synthetic activity of chondrocytes, but the

combination of agents has greater efficacy clinically (1) as

well as acting synergistically on articular cartilage in vitro (8).

Materials and Methods

Articular cartilage was obtained from the articulating surfaces

of metacarpal joints of 3- to 5-year-old Holstein cows.

Ligament tissue was resected from between the 3rd and 4th

metacarpal bones and a large segment of the extensor tendon

was excised from an area adjacent to the metacarpal joint.

All three minced tissues were digested with Type I (tendon

and ligament) or Type II (cartilage) bacterial collagenase

(Sigma/Aldrich Chemical Co., St Louis, MO) at 220 units

ml�1. The cell population was expanded by culturing in 75 cm2

flasks containing DMEM/F-12 þ 10% fetal calf serum,

50 mg ml�1 ascorbic acid 2-sulfate and antibiotics. In some

studies, the epitenon was dissected from the tendon and

cultured separately. After a single passage, sufficient cells

were obtained for seeding into multiplate wells. All cultures

were brought to a metabolic steady-state by culturing for an

additional 5 days in DMEM/F-12 þ 10% FCS. Twenty-four

hours prior to testing, cell cultures were acclimated to DMEM/

F-12 with 1% fetal calf serum, 50 mg ml�1 ascorbic acid and

5 mM glucose. All subsequent studies were done with media

containing physiological levels of glucose (5 mM) and varying

doses of CDS. Two methods were utilized to monitor

neosynthesis of collagen and NCP.

Method 1: Incorporation of Tritiated Proline (pro)

into Collagenase-Sensitive Material

Cells cultured in 24-well plates at a high density of 200 000

cells per well were exposed at 37�C for 24 h to CDS at doses of

1, 10, 50 and 100 mg ml�1 and 5 mCi ml�1 3H-proline (specific

activity 97 Ci mM�1). There were eight replicates/treatments

in a total media volume of 0.5 ml. IGF-1 at 50 ng ml�1 was

used as a positive control. Cultures were terminated by freeze-

thawing and sonication to rupture cells. Soluble collagen and

NCP synthesis were assayed following the addition of 50%

trichloroacetic acid (TCA) to precipitate all proteins contained

in the combined cell layer and media (final TCA concentration

5%). The plates were centrifuged at 3000 r.p.m. in microplate

carriers for 15 min and the supernatant removed. TCA (5%

containing 1 mM proline) precipitation was repeated until the

supernate was free of unincorporated radiolabel. Residual

TCA was removed by a final rinse of ethanol:ethyl ether (1:1)

and the culture plates air dried.

Assay of collagenase-sensitive material was done according

to the method of Diegelmann et al. (24) Briefly, collagen in the

TCA precipitated air-dried plates was digested by adding an

incubation cocktail containing 25 mg purified collagenase

(Worthington Biochemical Corp., Lakewood, NJ) in 200 ml of
0.05 M Tris (pH 7.6) containing 0.005 M CaCl2. The plates

were incubated for 3 h at 37�C. The supernatant was removed

after centrifugation and the collagenase digestion repeated a

second time. Radioactivity in the pooled supernates (total

collagen fraction) was counted in multiplate wells after

addition of 300 ml of scintillant (Hewlett Packard) to 100 ml
of sample. The residue (NCP) was dissolved by heating at

50�C in 1 N NaOH for 15 min and similar aliquots were

counted as described above. The data are expressed as CPM ±

SEM associated with collagenase-sensitive material and NCP.

Unless otherwise stated, all tendon cultures consisted of a

mixture of three cell types: sheath fibroblasts, epitenon and

endotendon tenocytes.
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Method 2: Specific Activity of Hydroxyproline (Hyp)

In repeat experiments, cells seeded at a density of 500 000

per well in 12-well multiplates were treated for 48 h with

10 mg ml�1 CDS. The supernate from the collagenase

digestion (total collagen fraction) was made up to 6 N HCl

with concentrated acid and hydrolyzed at 120�C under vacuum

for 24 h. After evaporation of the HCl, the amino acid residue

was dansylated by adding 100 ml of 500 mM NaHCO3 and

100 ml of 20 mM Dns-Cl in acetone to 100 ml of hydrolyzed
sample. Samples were reacted in the dark for 40 min at 65�C.
High-pressure liquid chromatography (HPLC) separation of

the dansylated imino acids was accomplished on a Ultrasphere

ODS C-18 (250 mm · 4.6 mm) column using a stepwise

gradient of 25 mM NaH2PO2 þ 25 mM acetic acid/acetonitrile

(86:14) (Solvent A) and 100% acetonitrile (Solvent B) (25).

Peaks corresponding to authentic hyp and pro were collected

and assayed for incorporated radioactivity and quantitated by

comparison with known standards. The data were expressed as

specific activity (cpm hyp or pro mg�1 hyp or pro).

Statistical Analysis

The cell culture data were expressed as the mean CPM ± SEM.

Experiments were done with cells from different animals to

insure the validity of the results. The percent change from

control cultures was also calculated and the means compared

using ANOVA and Student’s t-test for multiple group

comparisons. An unpaired two-tailed Student’s t-test was

used to test the percentage differences for statistical signifi-

cance. Significance was accepted at P < 0.05.

Results

Characterization of Cell Cultures

Phase microscopy of tendon cell cultures revealed a mixture of

cell types derived from tendon tissue. Morphologically,

epitendon (sheath) cells appear as large oval fibroblasts while

tenocytes are small spindle-shaped fibroblasts. Ligament and

chondrocyte cultures were homogeneous in cell type.

Upregulation of Collagen Synthesis

An inverse dose–response in uptake of tritiated proline into

collagenase-sensitive material was observed in all three

cell types exposed to varying dosages of CDS (Table 1). In

each cell type, maximum uptake into collagen occurred at

1–10 mg ml�1, the lowest doses tested. At doses higher than

50 mg ml�1, no effect or slight inhibition of collagen synthesis

was noted (Table 1). The sensitivity of response of each

cell type with regard to collagen synthesis was ligament cells

(þ 69%) � chondrocytes (þ 56%) > tenocytes (þ 22%).

Confirmation of CDS-induced stimulation of collagen

synthesis was observed by assessment of the specific activity

of hyp and pro. Expressed as a percentage change from control

cultures, the specific activity of hyp in ligament cells was

significantly greater than that in tenocytes or epitendon cells

(132% versus 27% and 49%) (chondrocytes not analyzed)

(Table 2).

Calculation of Collagen to NCP Ratio

In Method 2, calculation of NCP synthesis was based on the

assumption that the ratio of pro to hyp in type I collagen was

similar to that in type II collagen and is equal to 1.42. It also

assumes that the specific activity of the two imino acids is

identical since hyp derives from pro in post-translational

reactions. Hence, the synthesis of NCP was calculated as:

Labeled hyp·1:42¼ labeledpro in collagen

Total labeledpro� labeledpro in collagen¼ labeledpro inNCP

Based on this information, the ratio of collagen to NCP
synthesis in the three cell types was calculated by
measurement of the amount of labeled proline in collagen
and NCP. The data presented in Table 3 indicate that

Table 1. Collagen synthesis by chondrocytes, ligament cells and tenocytes exposed to varying doses of CDS

Control IGF (50 ng ml�1) CDS (1 mg ml�1) CDS (10 mg ml�1) CDS (50 mg ml�1) CDS (100 mg ml�1)

Chondrocytes 380 (60) 600 (96)† 592 (112)† 560 (60)† 580 (112) 352 (58)

Ligament Cells 520 (32) 944 (132)† 880 (120)† 920 (148)† 656 (120) 576 (56)

Tenocytes 316 (43) 460 (35)† 385 (35)† 419 (30)† 364 (45) 345 (43)

Data presented as Mean (±SEM) (n ¼ 8) CPM tritiated proline uptake into collagenase-sensitive material (collagen).
†Denotes statistical significance at P < 0.05 to 0.001.

Table 2. Comparative analysis of hydroxyproline and proline-specific activity in collagen of connective tissue cells exposed to CDS and IGF-1

Assay Ligament Tendon Epitendon

Control CDS IGF Control CDS IGF Control CDS IGF

SA Hyp 68 (13) 158† (35) 195† (38) 250 (23) 318† (25) 626† (120) 378 (45) 563† (120) 740† (160)

SA Pro 120 (26) 196† (25) 348† (69) 230 (35) 326† (45) 555† (110) 180 (24) 167 (28) 300† (55)

Data given as Mean (±SEM) specific activity (cpm hyp mg�1 hyp and cpm pro mg�1 pro) in cultures exposed to agents for 48 h.
†Indicates values statistically significant from control value at P < 0.05.
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IGF-1 has a greater stimulatory effect on collagen
synthesis versus NCP synthesis in both chondrocytes and
tenocytes but not on ligament cells. In contrast, exposure
to CDS did not significantly alter the collagen to NCP
ratio from control values in any cell type.

Discussion

The combination of glcN and CS effectively stimulates

neosynthesis of collagen in cell cultures of ligament,

tendon and cartilage tissue. Based on the ratio 5:4:1 of the

commercial product Cosamin�DS, a 10 mg ml�1 dose exposed

cells to 5 mg ml�1 glucosamine (�23 mM), 4 mg ml�1 CS

(�0.25 mM) and 1 mg ml�1 Mn ascorbate. In comparison to in

vivo levels, CS at 0.25 mM is probably at the low range of that

obtainable with repeated dosing (26). The doses of glcN

are within the range of serum levels according to the latest

published data [23 mM versus 10–60 mM (27,28)]. The effects

noted in vitro can be attributed to glucosamine and CS

since our media contained 50 mg ml�1 ascorbate, negating

any effect by the small amount of ascorbate present in the

formula.

We observed these results under in vitro conditions in media

containing glucose at levels existing in serum and at cell

densities known to maintain cell phenotype (29). Standard

DMEM/F-12 culture media, optimized for cell growth,

contains 17 mM of glucose. Such high levels of sugar may

be found in serum of diabetics while normal serum levels

of glucose are closer to 5 mM. Previous studies using

fibroblastic-like cells indicate that high glucose levels

(>5 mM) reduce collagen type I synthesis (30,31). In a

preliminary study using chondrocytes, we observed up to a

28% reduction in radiolabeled proline uptake into collagenase-

sensitive material at 17 mM glucose compared to 5 mM

glucose (data not presented). The addition of 1% fetal calf

serum was considered to be the minimal amount necessary for

maintenance and adherence of the cells in culture.

Epitenon cells are considered to be the collagen-producing

cells involved in healing of tendons (21), but in vivo ligaments

are considered to be functionally and metabolically the more

active tissue compared to tendons or chondrocytes (32). Our

data confirms these findings insofar as ligament cells

incorporated almost twice the radioactivity into collagenase-

sensitive material than tenocytes or chondrocytes (Table 1).

This was also seen in calculation of the specific activity of hyp

(þ132% in ligament versus þ27% in tenocytes). Interestingly,

when comparing the ratio of radiolabeled proline in collagen

versus radiolabeled proline in NCP, a 3-fold increase was seen

with IGF-1 in chondrocytes and tenocytes but not ligament

cells. Moreover, the ratio in cells exposure to CDS did not

significantly differ from controls. This suggests that the

response of chondrocytes and tenocytes to CDS may differ

mechanistically from that of IGF-1.

Few publications have been devoted to the effect of glcN or

CS on collagen synthesis. Bassleer et al. (33) found that CS

had no effect on human cartilage collagen synthesis and

Anderson et al. (34) failed to detect an effect of glucosamine

on canine chondrocyte collagen synthesis. However, the data

of Jimenez et al. (35) and O’Grady et al. (36) indicate

increased gene expression for collagen synthesis with both

agents as well as with a combination of agents. The disparity in

results may be a reflection of the doses used, the culture

system, i.e. cells clusters versus explants or may indicate that

the increase in mRNA levels is not reflected in the actual

assayable final product.

The inhibitory effect of high levels of CS on glycosami-

noglycan synthesis by chondrocytes has been observed by

others (9,37). Although our preparation consisted of a mixture

of glcN and CS, the inhibition of collagen synthesis observed

at doses higher than 50 mg ml�1 (20 mg ml�1 CS) suggest that

the effect is due to the CS component. An explanation for

the inverse dose–response of connective tissue cells to CS

was not investigated in this study nor has any explanation been

forthcoming by other authors (9,37). It may be a reasonable

conjecture that the response resembles a typical non-

monotonic dose–response (i.e. a non-linear curve where the

slope of the dose–response reverses sign somewhere along the

curve).

There are several complementary and alternative therapies

related to connective tissue metabolism and repair. For

example, a recent review by Ahmed et al. (38) describes the

use of botanicals in osteoarthritis. Bromelain (39) and bee

venom acupuncture (40) have also been proposed for a similar

application. The addition of glucosamine and CS to the list of

alternative therapies provides an additional tool to alternative

non-invasive treatment.

The clinical significance of these data relates to documenta-

tion that patients with meniscus and ligament injuries of the

knee have a high incidence of developing degenerative

radiological changes within a 10–20 year period (14). Since

collagen is the major component of these tissues, our

hypothesis is that upregulation of its synthesis by a combina-

tion of glcN and CS may accelerate tissue repair and diminish

the probability of OA development. However, it is too prema-

ture to extrapolate our in vitro data to in vivo circumstances

by stating that these agents accelerate ligament and tendon

healing. However, under conditions of trauma/stress where

collagen degradation is occurring the combination of glcN and

CS may circumvent and/or accelerate repair processes (Fig. 1).

It should also be noted that these results pertain to in vitro

direct effects of the agents on connective tissue cell

metabolism. Clinical efficacy in vivo relates to symptomatic

Table 3. Ratio of labeled proline in collagen to labeled proline in NCP

Chondrocytes Tenocytes Ligament cells

Control 1.09 (0.12) 0.72 (0.11) 0.90 (0.08)

CDS 0.80 (0.04) 1.06 (0.10) 0.97 (0.25)

IGF-1 3.15 (0.66)† 2.15 (0.55)† 0.83 (0.20)

Data expressed as ratio of CPM (±SEM) of labeled proline in collagen versus
labeled proline in NCP.
†Indicates statistically significant at P < 0.05.
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relief by virtue of their anti-inflammatory action and therefore

does not necessarily equate to the observed metabolic

responses.
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