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Tuberous sclerosis complex (TSC) represents the prototypic monogenic disorder of

the mammalian target of rapamycin (mTOR) pathway dysregulation. It provides the

rational mechanistic basis of a direct link between gene mutation and brain pathology

(structural and functional abnormalities) associated with a complex clinical phenotype

including epilepsy, autism, and intellectual disability. So far, research conducted in TSC

has been largely neuron-oriented. However, the neuropathological hallmarks of TSC

and other malformations of cortical development also include major morphological

and functional changes in glial cells involving astrocytes, oligodendrocytes, NG2 glia,

and microglia. These cells and their interglial crosstalk may offer new insights into the

common neurobiological mechanisms underlying epilepsy and the complex cognitive

and behavioral comorbidities that are characteristic of the spectrum of mTOR-associated

neurodevelopmental disorders. This review will focus on the role of glial dysfunction,

the interaction between glia related to mTOR hyperactivity, and its contribution to

epileptogenesis in TSC. Moreover, we will discuss how understanding glial abnormalities

in TSC might give valuable insight into the pathophysiological mechanisms that could

help to develop novel therapeutic approaches for TSC or other pathologies characterized

by glial dysfunction and acquired mTOR hyperactivation.

Keywords: tuberous sclerosis (TSC), mammalian target of rapamycin (mTOR), epilepsy, astrocyte, microglia,

oligodendrocyte, glia, epileptogenesis

INTRODUCTION

Tuberous sclerosis complex (TSC) is a rare, genetic multisystem disorder with a
prevalence of ∼1:6,000 newborns. Common symptoms in TSC include benign tumor
growth in kidney, heart, lung, eyes, skin, and brain (1). Characteristic lesions in the
brain are cortical tubers and ventricular subependymal nodules, which may progress
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into subependymal giant cell astrocytomas (SEGAs)
(2–4). Neurological manifestations include epilepsy,
neurodevelopmental delay, and TSC-associated neuropsychiatric
disorders (TANDs), such as intellectual disability and autism
spectrum disorder (ASD) (5–7). Moreover, as one of the most
debilitating symptoms, TSC represents the most common
genetic cause for pediatric epilepsy, with roughly 85% of cases
developing seizures, predominantly within the first year of
life, and 60% eventually presenting with refractory epilepsy
(8, 9). Because uncontrolled seizure activity aggravates cognitive
comorbidities, immediate seizure management after or ideally
before epilepsy onset is crucial for normal cognitive development
of patients (10–12). Currently, the most effective long-term
treatment for epilepsy in TSC is vigabatrin, a highly effective
drug against infantile spasms in TSC patients (13–15), whereas a
subgroup of eligible patients benefits from adjunctive everolimus
[mammalian target of rapamycin (mTOR) inhibitor] treatment
or surgical resection of the suspected epileptogenic lesion
(14, 16–19).

TSC is caused by loss-of-function mutations in the tumor
suppressors TSC1 or TSC2, both of which are negative regulators
of the mTOR (20, 21). Purely heterozygous germline mutations,
as well as mosaic mutations, have been detected in TSC patients
(21, 22). mTOR is a serine/threonine protein kinase and the
catalytic subunit of mTOR complex 1 (mTORC1) and mTORC2.
Under normal conditions, mTOR activity is tightly controlled
by upstream regulators and acts as important sensor of cellular
energy status and homeostasis. Environmental stimuli, such
as cytokines or growth factors can stimulate mTOR, enabling
cells to dynamically respond to various extracellular cues via
adaptation in metabolism or cellular growth (23, 24). Mutations
in either TSC1 or TSC2 lead to uncoupling from upstream
regulators and abnormal hyperactivation of mTORC1, causing
growth of the characteristic lesions during brain development.
While TSC represents the prototypic monogenic disorder
of mTOR hyperactivation, other malformations of cortical
development, such as megalencephaly, hemimegalencephaly,
and focal cortical dysplasia (FCD) are also characterized by
aberrant mTOR activation due to acquired mutations in various
mTOR regulators (25). Importantly, all share histopathological
and clinical characteristics with TSC; hence, this spectrum of
diseases is collectively referred to as mTORopathies [reviewed
in (26, 27)].

Importantly, mTOR hyperactivity seems to be directly linked
to epileptogenesis as mTOR inhibitors can suppress seizures
in preclinical TSC models (28, 29), as well as in clinical
studies aimed at treating TSC and SEGAs (16–19, 30, 31).
Current consensus is that mTOR inhibitors induce a temporary
anticonvulsant effect as do currently available antiepileptic drugs,
but may also possess disease-modifying potential (15, 32). The
clear causative role of mTOR as epileptogenic driver, as well as
implications of mTOR activation in acquired epilepsies (33–36),
makes TSC an attractive disease model to utilize as translational
prototype for epilepsy in general. Despite the progress in
understanding the role of the mTOR signaling pathway, there
is still a lack in pinpointing the precise cellular substrates
responsible for producing seizures. Interestingly, although the

neuropathological hallmarks of TSC are primarily found in
tubers, some studies showed that the seizure focus in TSC brains
could also originate from the surrounding normal-appearing
cortex, based on seizure freedom after resection of the perituberal
zone, tissue analysis, and electrocorticographic recordings (37–
40). However, further progress in the careful examination and
advances in the identification of novel histopathological markers
maymake a discrimination between tuber and perituber obsolete,
eventually. Nevertheless, surgical resection of the tuber leads to
seizure relief in 50% to 60% of cases, suggesting an important role
in epileptogenesis in at least a subset of patients with a clear-cut
epileptogenic “driver” lesion (41–44).

In the brain of TSC patients, mTOR hyperactivity promotes
development of often multifocal brain lesions characterized
by aberrant glioneuronal proliferation, cortical dyslamination,
and hypomyelination, along with the presence of dysplastic
neurons and improperly developed giant cells (4, 27, 45–47). TSC
tissue obtained from surgery due to refractory epilepsy usually
presents with a heterogeneous frequency of the aforementioned
histopathological hallmarks between patients (27, 46). TSC
lesions are thought to arise by the Knudson hypothesis, also
known as the “two-hit” hypothesis (48). Accordingly, somatic
mutations in either TSC1 or TSC2, resulting in the loss
of wild-type alleles, have been detected in different types
of TSC neoplastic lesions and to a lesser extent in cortical
tubers (21, 49, 50). Thus, it is still an ongoing matter of
discussion whether monoallelic inactivation of TSC1/TSC2 is
sufficient for tuber development or if the second hit occurs
in a specific cellular component complicating its identification
(21, 49, 50). Cell specificity, mutation load, and mutation
timing during brain development likely give rise to the diverse
neuropathological presentations. Recent evidence from in vitro
cell cultures and organoid models of TSC revealed that mTORC1
activity during cortical development is tightly controlled, and
mTORC1 suppression is required for proper neurogenesis (51).
Of note, mTORC1 hyperactivity promotes gliogenesis, likely
explaining the increased number of glia in tubers (52–56).
More specifically, mTORC1 was shown to activate STAT3
signaling, which represents a major driver of gliogenesis during
development (53, 57–60) Furthermore, gliosis and activation of
inflammatory signaling pathways are histopathological hallmarks
of TSC (46, 52, 61–64). Accordingly, although dysfunctional
neuronal circuitry is ultimately required for the development
of epilepsy and mTOR can directly regulate neuronal structure,
function, and plasticity (65–68), accumulating evidence shows
that glial cells represent a crucial element in the pathogenesis
of TSC and might pose novel therapeutic strategies (64). This
review will focus on the role of glial dysfunction related to mTOR
hyperactivity and its contribution to comorbidities, such as
epilepsy and TANDs in TSC. In this context, while many studies
primarily focused on neuroglial crosstalk, we will emphasize
aberrant interglial communication as an essential aspect of TSC.
Finally, studying glial abnormalities in TSC might give valuable
insight into pathophysiological mechanisms, which could help
to develop novel therapeutic approaches for TSC or other
pathologies characterized by gliopathic changes and acquired
mTOR hyperactivation (summarized in Figure 1).
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FIGURE 1 | Summary of gliopathic changes due to mTOR hyperactivation in TSC brain lesions. Astrocytes display increased proliferation, activation, and enhanced

expression of proinflammatory mediators. Moreover, astrocytes are characterized by decreased homeostatic functions related to ion homeostasis and

neurotransmitter metabolism. Radial glia, the neuroglial precursors of astrocytes, oligodendrocytes, and neurons, contribute to malformations of cortical development

and aberrant gliogenesis, as well as the formation of giant cells, which display characteristics of proinflammatory glia. Oligodendrocyte dysfunction leads to

hypomyelination and disturbed remyelination, and their proliferation is reduced. While dysfunction of NG2 glia in TSC deserves further investigation, they are crucially

involved in myelination and crosstalk with neurons, thus representing an essential component of TSC gliopathology. Finally, as for astrocytes, microglia are

characterized by enhanced proliferation, activation, and expression of proinflammatory mediators; however, these changes are likely secondary to mTOR activation in

the TSC brain. Collectively, these changes contribute to epilepsy and neuropsychiatric comorbidities in TSC. The influence of mTOR signaling on the individual cell

types is indicated by the size of gray circles.

ASTROCYTES

Astrocytes display distinct functional changes in a variety of

epilepsies with different etiologies, and it becomes increasingly

clear that they play crucial roles in the process of epileptogenesis,
including TSC (69, 70). Neuropathological hallmarks in resected
cortical tubers of TSC patients include increased expression of
glial fibrillary acidic protein (GFAP), vimentin, and S100β, as
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well as higher numbers of astrocytes. Moreover, these astrocytes
often present dysplastic and reactive phenotypes compared to
the perituberal area and control brain tissue (71, 72). While
most studies characterize the total population of astrocytes,
some report different subpopulations of astrocytes in TSC (52,
72). One study characterized two subpopulations of astrocytes:
“reactive” cells, which are large and vimentin positive and
reveal mTOR activation, and “gliotic” astrocytes, which are
smaller, do not show mTOR activation, and resemble gliotic
astrocytes found in hippocampal sclerosis (HS) (52). Gliotic
astrocytes, as in HS, present with decreased expression of
inwardly rectifying potassium (Kir) channel subunit Kir4.1,
a decrease in the glutamate transporters excitatory amino
acid transporter 1 (EAAT1) and EAAT2, and a decrease in
glutamine synthetase, all of which represent proepileptogenic
changes (70). The authors of this study concluded that the
gradual transformation from reactive to gliotic astrocytes might
represent a major driving force for the morphological dynamics
of tubers over time (52). Another study discriminated between
normal astrocytes (no mTOR activation, vimentin-negative,
and GFAP-positive), reactive astrocytes (no mTOR activation,
vimentin-positive, and GFAP-positive), and dysplastic astroglia
(mTOR activation, vimentin-positive, and GFAP-negative), the
latter representing an expression pattern common to immature
astrocytes and radial glia (72). Taken together, both studies
support the notion that populations of improperly differentiated
astrocytes with mTOR activation, as well as properly developed,
reactive astrocytes without mTOR activation, contribute to TSC
pathology. Here, the aforementioned continuum of pathological
changes in astrocytes and the precise cellular composition of
the tissue might reflect the intrinsic epileptogenicity of the
tuber. Importantly, the functional changes in TSC astrocytes
are likely caused by a combination of the reactive state in
response to seizures known from other diseases, such as mesial
temporal lobe epilepsy (TLE), which could induce secondary
mTOR activation (33), but also general disturbance in protein
translation caused by sustained mTOR activation in mutation-
carrying cells. Ultimately, both astrocyte subpopulations could
end up having different pathogenic origins, but similar functional
outcomes in terms of expression of Kirs, EAATs, or glutamine
synthetase, further increasing the epileptogenic potential of the
tuber.Whether the different degrees of mTOR activation underlie
the wide diversity of astrocyte functions and phenotypes in
TSC deserves further investigation. However, for neurons, it has
already been shown that extent of mTOR hyperactivity correlates
with seizure severity and associated neuropathology (73). Finally,
in addition to intrinsic astrocytic properties, maintenance of a
non-reactive state in astrocytes was also shown to depend on
neuronal mTORC1 signaling, adding yet another level to altered
astrocyte function in TSC (74).

The most striking evidence for astrocytic contribution to
epileptogenesis in TSC comes from a conditional Tsc1 knockout
mouse model (referred to as Tsc1GFAP mice), in which Tsc1 is
specifically deleted in GFAP-expressing cells during embryonic
development, leading to mTOR hyperactivity in these cells (75,
76). Notably, Tsc1 deletion is also induced in GFAP-positive
neural progenitor cells and can be found in neurons, thereby

blurring the specific contribution of astrocytes to some extent
(77). While this model does not recapitulate all pathological
hallmarks of human TSC (most notably lacking tuber formation
and giant cells), development of spontaneous recurrent seizures
arises in all animals at 1 month of age. This occurs likely via
diffuse astrocyte proliferation and dispersion of neurons, causing
altered neuronal circuitry. Interestingly, even post-natal deletion
of Tsc1 at 2 weeks of age leads to development of epilepsy
in half of the animals, although in a less severe form (77).
Consequently, TSC1 deletion appears to be the initial insult
followed by a latent stage of epileptogenesis, which in TSC
patients might be even prenatally. Notably, treatment of Tsc1GFAP

mice with the mTOR inhibitor rapamycin suppressed seizures,
whereas vigabatrin reduced seizures and partially inhibited
mTOR activity, astrogliosis, and neuronal disorganization (29,
78). Interestingly, TSC patients present with differences in disease
severity, depending on the underlying mutation, with TSC2
mutations causing a more severe neurological and cognitive
phenotype (22, 79–81). In conjunction with this, Tsc2GFAP mice
present with more severe epilepsy than Tsc1GFAP mice (82).

While the growth advantage of astrocytes plays an apparent
role in disruption of neuronal circuits, astrocytes in this model
also display functional changes. A pathological hallmark of
acquired epilepsy is impaired potassium buffering by astrocytes
(83). Its implication in epileptogenesis is based on increased
extracellular potassium upon neuronal depolarization, reduced
astrocytic clearance of excess potassium, and consequently
neuronal hyperexcitability and seizures. Key players in astrocytic
potassium buffering represent aquaporins, Kirs, and connexins,
which all display dysregulation in TSC-null astrocytes, Tsc1GFAP

mice, and surgically resected TSC tissue (84–87). Another well-
established player in neuronal hyperexcitability is impaired
astrocyte-mediated clearance of glutamate, which can predispose
neurons to sustained excitability, excitotoxicity, and epileptiform
activity. Astrocytes in human TSC display altered glutamate
receptor expression, whereas Tsc1GFAP mice present with
decreased expression of glutamate transporters, implying altered
extracellular glutamate metabolism (72, 88, 89). Pharmacological
upregulation of glutamate transporters in astrocytes of Tsc1GFAP

could reduce seizure frequency and some of the pathological
changes, exemplifying the likely importance of extracellular
glutamate clearance in TSC (88). Lastly, increased astrogliosis
and consequent enhanced astrocytic adenosine kinase activity in
epilepsy models and various epileptogenic pathologies, including
TSC, result in a deficient homeostatic adenosine tone at the
synapse and reveal a direct link between astrocyte activation and
network excitability (90, 91).

Besides the reported changes in potassium buffering,
glutamate clearance, and adenosine homeostasis, TSC is also
characterized by inflammatory changes, and astrocytes are
supposed to be both source and target of inflammatory signaling
therein (92–95). Indeed, human tuber and SEGA tissue also
display activation of inflammation in astrocytes, in particular,
the toll-like receptor 4 (TLR-4), interleukin 1β (IL-1β), and
complement pathways, as well as increased expression of IL-17,
intercellular adhesion molecule 1, tumor necrosis factor α

(TNF-α), and nuclear factor κB (NF-κB) (61–63, 96–98). In
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particular, several large-scale RNA-sequencing studies confirmed
that neuroinflammation is a hallmark of TSC-associated
lesions, and the retrieved data were enriched for both astrocyte
and microglial specific genes (21, 63, 99, 100). Additionally,
microRNAs (miRNAs) involved in the regulation of astrocytic
inflammatory responses are upregulated in TSC (101). In
comparison, astrocytes in Tsc1GFAP mice also present with
increased IL-1β and C-X-C motif chemokine 10 expression,
most notably, preceding the development of seizures, and are
also characterized by increased microglial proliferation (74).
Collectively, proinflammatory changes represent an important
pathogenic mechanism by further activating astrocytes and
could also reinforce mTOR-related dysfunctional processes, e.g.,
the immunoproteasome pathway, which might represent a direct
molecular link between inflammation, mTOR activation, and
epilepsy in TSC and other mTORopathies (102).

An additional pathogenic mechanism frequently encountered
and closely linked to inflammation in epilepsy is oxidative
stress (OS) (103–105). OS is defined as disturbance in the
cell’s redox state and was shown to be highly correlated with
inflammation in dysmorphic neurons, giant cells, and glia of TSC
and othermTORopathies (98). Glial cells in TSC displayed higher
expression of the enzymes inducible nitric oxide synthase (iNOS)
and cyclooxygenase 2 (COX-2) (98). Both enzymes produce
mediators that contribute to OS and inflammation, thereby
supporting the notion that glia are mediators of these pathogenic
processes in TSC. In addition, giant cells revealed strong
expression of OS (iNOS, cysteine/glutamate antiporter) and
inflammation (COX-2, TLR-4) markers, as well as accumulation
of NF-κB in the nucleus, supporting the strong correlation
between these two processes (98). Another article pointed at the
critical role of OS promoting an environment that favors the
positive selection of cells with higher antioxidant capacity due
to aberrant mTOR activation (106). Further research into OS
in TSC revealed that the proinflammatory miRNA-155 might
contribute to this sustained activation of antioxidant pathways
in giant cells and astrocytes, exemplifying the link between OS
and brain inflammation (107). Furthermore, the induction of
sustained, miR155-mediated antioxidant signaling in astrocytes
led to dysregulation of iron metabolism, which could result in
the potentiation of OS in TSC (107).

A final pathological hallmark of TSC is the disruption of
the blood–brain barrier (BBB) (108), with implications for a
modulatory role of matrix metalloproteinases in BBB remodeling
(62, 109–113). In this context, chronic BBB dysfunction and
epileptogenesis after status epilepticus (SE)–induced epilepsy
could be reduced via treatment with rapamycin, pointing toward
a more general role of mTOR-dependent BBB remodeling during
epileptogenesis in epilepsy (34, 35, 114).

GIANT CELLS AND RADIAL GLIA

In the context of gliopathy in TSC, it is noteworthy that
giant cells represent a cell type with features of immaturity,
highlighting the absence of differentiation to macroglial or
neuronal lineage cells prior to migration into the developing

cortex (72, 115–117). While the exact precursor of giant cells
is unclear, the differential expression of glial (GFAP and S100
protein), neuronal (neurofilament, synaptophysin, MAP2), and
neuroglial progenitor (SOX2, nestin, vimentin, CD133, β1-
integrin) markers suggests that these cells reflect intermediary,
undifferentiated stages of cellular development (45, 62, 115,
116, 118, 119). Many of the expression changes in astrocytes
mentioned before are recapitulated in giant cells in tubers;
however, on average, they display high heterogeneity, likely due
to variation in the frequency of mutations based on the “two-
hit” hypothesis (21, 49). Accordingly, balloon cells in FCD, a
cell type histologically resembling giant cells in TSC, have been
shown to also carry pathogenic somatic, second-hit variants
of mTOR regulatory genes, and their density correlates with
genetic findings (120). Moreover, non–cell-autonomous effects
of the mutation influencing both the interglial and neuroglial
crosstalk during cortical development may also contribute to
the histological phenotype of malformed cells. Thus, giant cells
and balloon cells might represent an important glioneuronal
cell type in the generation of disturbed cellular architecture in
developmental malformations related to mTOR dysregulation.
Functionally, giant cells might contribute to brain inflammation
by expressing complement factors and attracting immune cells
already very early in development (62, 121). Moreover, they
might be actively involved in the aberrant neuronal circuitry
leading to the neurological manifestations of TSC by expressing
glutamate and γ-aminobutyric acid (GABA) receptors and
transporters (72, 122, 123).

One proposed precursor for giant cells are radial glia,
progenitor cells of astrocytes and neocortical neurons, and
oligodendrocyte progenitors cells (OPCs) (124, 125). Radial glia
are localized in the subventricular zone of the developing brain,
giving rise to the proliferative, astrogliogenic/neurogenic niche in
the developing brain, as well as providing the physical substrate
for neurons to migrate along toward their cortical destination
(126). In light of this, radial glia perform vital functions in the
formation of the cortex, and their malfunction is hypothesized
to give rise to improperly differentiated cells, i.e., giant cells and
dysmorphic neurons, and malformed cortical cytoarchitecture.
Studies on radial glia-specific Tsc1 or Tsc2 knockout mice
displayed characteristic features of human TSC, such as aberrant
cortical architecture, hippocampal disturbances, astrogliosis, and
spontaneous seizures (127–129). Importantly, these alterations
displayed specific phenotypic differences between Tsc1 and Tsc2
knockout mice. Moreover, organoid model systems revealed
that higher mTOR baseline activation in outer radial glia, a
feature linked to the stemness of progenitor cells (130), is
specific to primate corticogenesis, suggesting that this cell niche
is highly susceptible to perturbations due to germline or somatic
mutations in the mTOR pathway and thereby could induce
aberrant formation of giant cells in the TSC brain (131, 132). This
primate-specific feature could also explain the limitations of most
TSC model organisms to reflect the histopathological features
of TSC, such as tubers and giant cells. The aforementioned
studies imply strong phenotypic effects, depending on the timing
of the mutation, as well as the cell type affected, potentially
explaining the phenotypic heterogeneity of dysmorphic cells
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and in particular astrocytes in human TSC (27). Another
highly intriguing finding from these studies on brain organoid
development revealed that cellular subtype differentiation of
progenitor cells might be perturbed in vitro due to enhanced
mTOR-dependent glycolysis and endoplasmic reticulum (ER)
stress (132, 133), features also implicated in TSC (134, 135).

OLIGODENDROCYTES

The central nervous system (CNS) pathology of TSC
comprises a range of white matter abnormalities, detectable
in presurgical magnetic resonance imaging (MRI) (136, 137),
as well as in resected lesional tissue (138). While cortical
tubers have classically been the neuropathological hallmark
feature observed in these patients, the widespread
hypomyelination/dysmyelination has emerged as a synonymous
and prominent indication for clinical phenotypes in TSC
patients. The cells responsible for the development and
maintenance of an intact white matter of the brain are
specialized cells called oligodendrocytes. They undergo a
complex and precisely timed cycle of proliferation, migration,
and differentiation to finally generate myelin by concentrically
wrapping axons with multilamellar sheets of plasma membrane
consisting of specific proteins and lipids (139). Two distinct terms
in regard to white matter pathologies have been established,
namely, demyelination and hypomyelination. The term
demyelination is generally used if there is loss of myelin,
occurring after a normal myelin development. This pathology
has been studied accurately in patients suffering from multiple
sclerosis (27, 140). Hypomyelination, on the other hand, may
emerge if myelin production is disturbed or was never initiated,
as seen in TSC patients (27).

Recent technological advances in MRI including diffusion
tensor imaging (DTI) and fractional anisotropy (FA) have further
emphasized hypomyelination in TSC (141, 142). Data revealed
that regions involved in the processing of visual auditory and
social stimuli contain more dysmyelinated axons in patients,
hence supporting behavioral and cognitive characteristics (142).
In addition, a major neuropathological aspect is the limited
myelination in resected lesions of TSC patients. A recent
study has reported a possible involvement of oligodendroglial
turnover, indicating that the inhibition of oligodendroglial cell
maturation, supposedly due to constitutive activation of mTOR,
may lead to insufficient myelination in TSC patients (138). A
principal feature of diseases with abnormal white matter is an
oligodendroglial pathology that is frequently associated with
cognitive impairments (64). The hypothesis that a dysfunctional
white matter and hence abnormal neural circuitry account for the
neurological manifestations in TSC has been further investigated
by a plethora of studies. Interestingly, TSC patients with ASD
have more crucial white matter abnormalities compared to
patients without ASD (143, 144).

Oligodendroglial development, from an OPC (also called
NG2 glia) to the maintenance of an intact myelin sheath,
is tightly controlled by a myriad of both extracellular and
intracellular factors, with two regulatory pathways in focus:

the mitogen-activated protein kinase kinase/extracellular signal-
regulated kinases 1 and 2/mitogen-activated protein kinase
(Mek/ERK1/2-MAPK), and the mTOR signaling pathway (145,
146). Specifically, during oligodendrocyte lineage progression
and initiation of myelination, the mTOR pathway via mTORC1
has emerged as a key player involved in this process (146). In a
recent study, the involvement of mTOR signaling in cytoskeletal
reorganization during oligodendrocyte development, as well as
in initiation of myelination, was demonstrated. Moreover, the
importance of the mTOR pathway on oligodendroglial branching
complexity was observed (147). One study demonstrated a
decrease in both myelin content and oligodendrocytes in and
around cortical lesions of mTORopathy specimens (138). This
decrease was linked to elevated mTOR expression and a possible
impairment of oligodendroglial turnover, suggesting that mTOR
pathway mutations cause a defect in oligodendrocytes (138).
Thus, high lesional-specific mTOR activation combined with a
decreased number of oligodendrocytes may further strengthen
the hypothesis of mTOR pathway-dependent modulation of
oligodendroglial differentiation and myelination properties. A
plethora of studies have proven the essential role of mTOR
signaling on the complex differentiation of oligodendrocytes to
the maintenance of an intact myelin sheath (148–150).

Animal models have delved further into the causal
relationship between mTOR pathway signaling and proper
CNS myelin formation and maintenance. However, there is still
considerable uncertainty with regard to the cell autonomous
effects of TSC ablation in oligodendrocytes or aberrant signaling
from TSC-deficient neurons or astrocytes that may indirectly
influence myelination processes in the brain. It has now been
suggested that CNS myelination, specifically myelin-associated
lipogenesis, and protein gene regulation are mainly dependent
on mTORC1 function (151). The same authors demonstrated
that oligodendrocyte-specific enhancement of mTORC1,
via loss of TSC1, results in abnormal myelination in mice
(151). Remarkably, brains of Tsc2Olig2 KO mice reveal distinct
hypomyelination, further supporting a cell-autonomous effect of
TSC2 inactivation on oligodendrocytes (152). Grier et al. (153)
drew attention to the important but more transient contribution
of mTORC2 signaling in myelinogenesis by utilizing a mouse
model lacking the rapamycin-insensitive companion of mTOR
(Rictor), a functional component of the mTORC2, in NG2
glia. They were able to observe that loss of Rictor in these cells
decreases and delays the expression of myelin related proteins
and causes a developmental hypomyelination (153).

Besides cell-autonomous effects, a recent study supports
the role of abnormal neuron–oligodendroglia communication
causing hypomyelination employing induced pluripotent stem
cell–derived neuronal and oligodendroglial cultures from TSC
patients. Interestingly, neuron–oligodendrocyte cocultures from
these patients revealed increased oligodendrocyte proliferation
but a decrease in maturation (154). In terms of neuron–glia
interaction, it was shown that Tsc1mutant mice display a striking
delay in myelination supporting the hypothesis of an underlying
abnormal neuron–oligodendrocyte communication that causes
white matter pathologies (155). Further, neuron-specific ablation
of Tsc1 in a mouse model results in an increase in connective
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tissue growth factor secretion that leads to a decrease in the
number of oligodendrocytes (156).

In conclusion, there is evidence that mTOR signaling is indeed
fundamental to oligodendrocyte differentiation and myelination,
as well as critical indications that both cell-autonomous effects
and interactions between neurons and oligodendrocytes cause
hypomyelination in mTORopathies. Because the outcome of the
mTOR pathway hyperactivation observed in TSC patients as well
as in animal models is hypomyelination and not the expected
hypermyelination, at least five mechanisms were hypothesized
to be responsible for this paradoxical impact on myelinogenesis.
The constitutive mTORC1 signaling might account for (1) a
delayed onset of myelination, (2) triggering non-physiological
toxic effects, such as ER stress or apoptosis of oligodendrocytes,
(3) TSC subunits exerting non-canonical functions that are
independent of mTORC1, (4) suppressing mTORC2 functions,
and (5) a negative feedback on mTORC1-independent targets,
such as Mek-Erk 1/2 and/or PI3K-Akt pathways [for a detailed
review, see (157)].

Because of the emerging evidence for a link between decreased
myelin content and the development of neurological deficits,
achieving remyelination of axons takes center stage in multiple
sclerosis research, implying that it might be beneficial for
mTORopathy patients as well (158, 159). As far as disease
control is concerned, an important question is whether the
observed hypomyelination in TSC patients may be reversible
by reducing the constitutive activation of the mTOR signaling
pathway. Latest research emphasizes the use of rapamycin or
the rapamycin analog, everolimus. Only few researchers have
addressed the question if and how the white matter is altered
after treatment with an mTOR inhibitor. A pharmacological
therapy administering everolimus was able to decrease mean
diffusivity and increase FA during DTI measurements in TSC
patients (160). In terms of everolimus treatment period, recent
data support the hypothesis that longer periods improve the
white matter microstructural integrity even more (161). In
summary, evidence from experimental and human studies
indicates that hypomyelination could be reversed by treatment
with everolimus; however, the mechanism of action needs to be
studied in more detail.

NG2 GLIA

Apart from astrocytes and oligodendrocytes, NG2 glial cells
represent a third macroglial subtype in the CNS, which has
received much attention in the past decade [for a detailed
review, see (162)]. In the literature, these cells are primarily
referred to as OPCs, but also as complex cells, synantocytes,
polydendrocytes, and GluR cells, as they depict glial and neuronal
functions (163, 164). NG2 glial cells are substantially spread
in both gray and white matter of the developing as well as
the adult brain (165, 166). A remarkable feature found in
cells expressing the proteoglycan NG2 is their proliferative and
differentiation potential throughout life (166, 167). Interestingly,
in post-natal white matter, these cells mainly differentiate
into myelinating oligodendrocytes (168–170), and especially

following demyelination, this process is amplified (171). In
contrast, NG2 glia in the gray matter retain their neuronal–
glial properties post-natally (11). These cell populations receive
direct neuronal glutamatergic and GABAergic synaptic input
and express voltage-gated ion channels for K+, Na+, and
Ca2+ that can trigger long-term potentiation; however, they
do not generate action potentials themselves (172–175). The
precise functional changes of these cells in response to synaptic
input remain largely unknown except some evidence on
modulation of inward rectifying potassium channels (176) and
proliferation (177, 178). Interestingly, cleaved NG2 was shown
to rescue diminished neuronal α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) currents in NG2 knockout
mice, establishing a reciprocal signaling loop between NG2 and
neurons (179). Apart from these neuronal properties, NG2 glia
in the human hippocampus do not couple to other glia via gap
junctions, such as astrocytes and lack glutamate transporters,
while expressing Kirs (180). Moreover, NG2 ablation was shown
to induce microglia-mediated neuroinflammation and neuronal
death in the hippocampus. The authors concluded that reduced
NG2-derived trophic support via hepatocyte growth factor was
responsible for this loss of neurons (181). Furthermore, NG2-
derived transforming growth factor β2 (TGF-β2) signaling to
TGF-β receptor 2 onmicroglia was shown to be a key regulator of
microglial CX3CR1-mediated immune responses, and deficiency
of this signaling axis via NG2 ablation led to neuronal loss and
inflammation (182). Hence, the ability of NG2 glia to respond to
neuronal inputs, as well as retaining a high proliferative potential
in the human brain, makes this cell type another interesting glial
cell in the context of TSC.

So far, only one study directly characterized NG2 cells in
TSC tubers (52). Although these authors concluded that there
were no detectable morphological alterations in oligodendrocytes
and NG2 cells, they also acknowledged the lack of knowledge
concerning specific activation markers for these cell types.
Moreover, this study mainly evaluated morphological changes
from an astrocyte perspective and did not convincingly rule
out functional changes in NG2 glia (52). Because mTOR is
an essential regulator of oligodendrocyte differentiation during
development (157), its therapeutic potential was investigated by
several studies. Moreover, the OPC-specific NG2 proteoglycan
appears be directly linked to mTOR and to positively regulate
its activity (183). Deletion of either TSC1 or phosphatase
and tensin homolog (PTEN) in NG2 cells, both negatively
regulating mTOR, induced an increase in mTORC1 activity.
Interestingly, whereas TSC1 deletion in these cells led to
the expected hypomyelination and impaired oligodendrocyte
development, ablation of PTEN resulted in enhanced NG2
glia proliferation and oligodendrocyte lineage progression. This
suggests the involvement of an mTORC1-independent PTEN-
downstream signaling process. Further, also deletion of the
PTEN-AKT downstream target glycogen synthase kinase 3β
(GSK3ß) resulted in a comparable increase in differentiation of
oligodendrocytes (184). These results may indicate a possible
remyelination mechanism via inhibition of the PTEN-AKT-
GSK3β pathway. McLane et al. (185) further revealed that an
ablation of TSC1 affects oligodendroglia differently, depending
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on the olig odendroglial lineage stage. A deletion of TSC1
from NG2 glia speeds up the remyelination process, although
TSC1-deficient proteolipid protein–positive oligodendrocytes
decelerate remyelination.

Although most research on NG2 glia focused on their
function as OPCs, there are also emerging lines of evidence
that link them to neuronal function and microglia-mediated
neuroinflammation. In the context of TSC, it would be interesting
to study models of mTOR activation specifically in gray matter
NG2 cells, where they reportedly serve more diverse functions.

MICROGLIA

Opposed to other neuroglia that are brain-borne, microglia
arise from yolk sac–primitive macrophages and invade the brain
during development before the BBB is fully formed (186–190).
This early migration is a well-preserved mechanism among
species, thereby emphasizing the important role of microglia
during brain development (188, 191–193). Indeed, the phagocytic
function of microglia is most prominent during development as
they are capable of phagocytosing newly formed neurons and
synapses in the developing brain (194–196). In the adult brain,
ramified microglia surveil the brain environment with their
processes and migrate to areas of need in response to activation
cues, such as chemokine signaling (197). In response to distress
signals, microglia can become activated, which is accompanied
by a variety of morphological and molecular changes (198,
199). In general, two states of activation can be distinguished:
a proinflammatory state (classically M1) that allows immune
responses against pathogens and dysfunctional cells, which at the
same time might exert damage on surrounding healthy tissue;
and an anti-inflammatory state (classically M2) that is thought
to be central in repair processes (200–202). However, thanks
to sequencing data, microglia activation was identified to be a
continuum in which many subtypes can be distinguished (203–
206). In addition to their classical role as resident immune-
competent cells and noteworthy in the context of TSC, microglia
were also shown to modulate neuronal activity directly (207) and
can be activated in response to excessive neuronal activity in
epilepsy (208).

Several studies have shown increased density and activation
of microglia cells in the brains of TSC patients (45, 62,
110, 121, 209). In cortical tubers, microglia with an activated
morphology were found throughout the lesional tissue, mostly
localized in close proximity to dysmorphic neurons and giant
cells with mTOR activation, indicated by phosphorylation of
the mTOR target ribosomal protein S6 kinase (pS6K), as well
as around blood vessels (62). Similarly, in other epilepsies
characterized by mTOR activation, such as FCD, TLE, and
Rasmussen encephalitis, increased expression of microglial
markers has been found in the respective brain lesions (33,
209–213). Moreover, in TLE patients with glial scarring due to
drug-resistant epilepsy, mTOR activation was mostly found in
microglia and to a lesser extent in astrocytes (33). Functionally,
these microglia have been suggested to have a damaging role
as they were shown to colocalize with several proinflammatory

markers and surrounded cells expressing caspase 3, indicating
that they might be involved in apoptosis (62). Moreover,
in FCD lesions and glioneuronal tumors, the number of
microglia has been correlated with seizure frequency of the
patients (210, 214). Although it remains difficult to pinpoint
whether microglia activation is causative or consequential of
neurological deficits in these pathologies, the colocalization with
pS6-positive cells indicates that microglia respond to mTOR
hyperactivation in TSC. Sun et al. (215) showed that microglia
activation in FCD and TSC might be partially caused by
reductions in the immune modulatory molecules CD47 and
CD200 on neurons and their respective receptors on microglia.
When exogenously introduced, these molecules could potentially
exert anti-inflammatory effects on microglia by suppressing
proinflammatory cytokines, such as IL-6 (216).

Several attempts have been made to study aberrant mTOR
activation in microglia and its impact on their function. Zhao
et al. (217) showed that deletion of the Tsc1 gene in CX3CR1-
expressing cells (referred to as Tsc1CX3CR1), either congenitally or
post-natally, increasedmicroglial mTOR activity and their overall
number in the cortex and hippocampus. All of the Tsc1CX3CR1

mice developed spontaneous recurrent seizures around 5 weeks
of age, as well as two-thirds of the post-natally induced
conditional knockout mice. However, that same year, Zhang et
al. (218) reported that CX3CR1-Cre driver lines in Tsc1CX3CR1

animals target not solely the alleged microglia cells, but also
NeuN- and rarely GFAP-positive cells. Therefore, they concluded
that the effects seen in Tsc1CX3CR1 mice were not exclusively
driven by reactive microglia but could also be elicited by affected
neurons and astrocytes. Furthermore, post-natal induction of
the knockout, which had a higher specificity for microglia
showing only 5% of non-microglial cells affected, did not result in
spontaneous ictal activity (218), in contrast to the previous study
(217). These studies emphasize that it is essential to precisely
target and characterize cell types in TSC KO models, as only
small percentages of affected neurons can lead to increased
neuronal excitability (219). Nevertheless, isolated microglia from
Tsc1CX3CR1 animals displayed clear cellular alterations. Thus,
these two studies support the role of mTOR-dependentmicroglial
abnormalities, and its role in epileptogenesis, especially in the
context of inflammation, cannot be excluded.

In another model, direct manipulation of the mTOR pathway
was induced by in utero electroporation of constitutively active
Rheb, an mTORC1 activator. With this method, Nguyen et al.
(73) observed that mTOR hyperactivity resulted in a global
increase in Iba1-positive microglia that were both larger and had
a more activated morphology. Furthermore, these Iba1-positive
microglia were positively correlated with seizure frequency.
However, with this technique, not only microglial cells were
targeted. Indeed, mTOR activation also induced hypertrophy
and cytoarchitectural misplacement of neurons in these animals,
which together with the activated microglia were concluded
to be responsible for seizure generation. Finally, in the BV2
microglial cell line direct activation of mTOR by MHY1485
treatment in vitro induced expression of proinflammatory
cytokines, such as TNF-α, IL-6, and HMGB1, and decreased anti-
inflammatory cytokines, such as TGF-β and IL-10. Furthermore,
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microglia displayed a shift from an anti-inflammatory toward
a proinflammatory subtype, and markers of autophagy were
reduced due to mTOR activation (220).

Besides direct genetic or chemical activation of the mTOR
signaling pathway, the majority of research on the interaction
of microglia and mTOR is supported by experiments that
evaluated microglia in disease states characterized by increased
mTOR activity through various brain injuries and/or by
means of chemical mTOR inhibition. For example, pilocarpine-
induced SE resulted in mTOR activation in neurons and
microglia, and subsequent rapamycin treatment could alleviate
microgliosis and had beneficial effects on cognitive performance
of animals (221). Moreover, kainic acid–injected rats treated
with rapamycin displayed reduced microglial activation (35). In
contrast, rapamycin treatment in an electrically induced post-
SE model did not change expression of inflammation markers
or number of CD11b/c and CD68-positive cells, indicating that
rapamycin did not affect brain inflammation in this model.
Other studies have used brain injuries, such as stroke or
vascular dementia in combination with mTOR blockage to
evaluate microglial changes. Treatment with rapamycin or its
derivatives everolimus or sirolimus could revert medial cerebral
artery occlusion (MCAO)–induced increases of cytokines and/or
chemokines, as well as promote anti-inflammatory microglial
polarization (222, 223). In this same study, RaptorCX3CR1

mice, characterized by lacking regulatory-associated protein of
mTOR (Raptor) specifically in microglia leading to mTORC1
activation, undergoing MCAO were found to have similar
beneficial responses to chemical mTOR inhibition in terms of
microglia activation and cytokine induction. Treatment with
everolimus inmice with bilateral common carotid artery stenosis,
a vascular dementia model that induces mTOR activation, also
caused a shift toward anti-inflammatory microglia due to a
loss of inhibitory feedback of mTORC1 on PI3K, alternatively
activating the prosurvival kinase Akt (224). Likewise, spinal
cord injury induced increases in OX42-positive microglia, which
could be attenuated by treatment with wortmannin, an inhibitor
of the PI3K/Akt/mTOR pathway (225). Interestingly, according
to Yang et al. (226), because of its ability to also interact
with mTORC2, everolimus is more effective than rapamycin
in counteracting lipopolysaccharide (LPS)/kainic acid–induced
microglial responses. Of note, some authors argued that the
anti-inflammatory effect of mTOR inhibitors might be mediated
primarily by other cell types than microglia (222). Despite these
claims, in pure microglia cell cultures, such as the BV2 and
N9 cell line, inhibition of mTOR activity after oxygen glucose
deprivation, LPS, or a cytokine challenge reduced both microglia
activation and inflammation (224, 227–229). Furthermore, LPS-
stimulated N9 microglia even exerted neuroprotective effects
after rapamycin treatment, as conditioned medium could
suppress neurotoxicity in a neuronal cell line (229). Lastly, in
a kainic acid–induced SE model, the long-term epileptogenic
effects of early life seizures could be reduced via treatment with
an inhibitor of microglia activation, minocycline, directly linking
microglial activation and epileptogenesis (230).

Finally, assuming microglial activation secondary to mTOR-
driven malformations of cortical development in TSC, depletion

of resident microglia, and repopulation of the brain with fresh
microglia might offer a drastic, yet promising therapeutic option
to resolve chronic neuroinflammation (231). Importantly, this
approach could relieve the neuroinflammatory burden in the
post-natal TSC brain even after aberrant brain development.
Adjunctive with mTOR inhibitors, this approach could target
source (mTOR hyperactivation) and symptom (microglia
activation) of TSC brain malformations simultaneously and offer
a valuable disease-modifying therapy.

INTERGLIAL CROSSTALK

While neuron–glia interactions are the focus in many of the
studies discussed here, interactions between glia may offer
new therapeutic and diagnostic opportunities (Figure 2). In
the context of neuroinflammation, bilateral signaling between
microglia and astrocytes likely plays an essential role in brains
of TSC patients. For example, Tsc1GFAP mice do not only
display alterations in astrocytes, but microglia number and
size were abnormally increased in cortex and hippocampus,
pointing toward an indirect effect of mTOR hyperactivation
in astrocytes on microglia (232). However, the importance of
microglia in the induction of a reactive phenotype in astrocytes
has been shown (233), andTsc1CX3CR1 mice also display increased
proliferation and reactive changes of astrocytes (217). Together,
this reinforcing crosstalk might be crucial for the maintenance
of a proinflammatory environment in TSC with contributions
from functionally normal glia, as well as glia with cell-
autonomous mTOR-related alterations. The effect of microglia
is likely contributing to the proinflammatory environment of
TSC tubers as their functions involve inflammation initiation and
propagation in conjunction with astrocytes (233, 234). Moreover,
microglia activation may exert proinflammatory/damaging
effects on oligodendrocytes and neurons, contributing to
neuronal dysfunction and resulting neurological comorbidities
and hyperexcitability (235, 236).

Next to microglia, particularly interesting in the context
of interglial crosstalk in TSC is the role of astrocytes to
directly influence the production and survival of cells of the
oligodendrocyte lineage (237, 238). Accordingly, reactive and
enlarged dysplastic astrocytes with enhanced activation of mTOR
and gain of aberrant functions in cortical tubers, including
a proinflammatory phenotype, may pose detrimental in the
function of other glia in TSC. In support of this, there is
a growing body of evidence that supports the concept of
astrocytopathies within the field of childhood white matter
disorders in which dysfunctional astrocytes have been suggested
to drive degeneration of the white matter (239, 240). As
mentioned previously, astrocytic gap-junction coupling in TSC
models is disturbed (85), and heterotypic gap-junction coupling
between astrocytes and oligodendrocytes was shown to be
essential for (re-)myelination in animal models (241–243).
Moreover, dysregulation of glutamate metabolism by astrocytes
in TSC (72, 88, 89) could promote excitotoxic cell death in
oligodendrocytes as they express functionalN-methyl-D-aspartic
acid, AMPA, and kainate-type receptors that mediate toxic effects
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FIGURE 2 | Interglial crosstalk of the three main glial cell types in the TSC brain. Astrocytes and microglia can stimulate and reinforce proliferation and phenotypic

activation of each other, thereby promoting proinflammatory gene expression. These alterations mediate negative consequences on oligodendrocyte survival,

differentiation, and myelination.

of excess glutamate (244–247). Moreover, astrocyte-specific NF-
κB activation in TSC might also play a role in suppressing
myelination (248). Lastly, evidence from the “twitcher” mouse
model supports the role of microglial COX-2 in demyelination.
Here, secreted microglial prostaglandins (PGDs) could stimulate
PGD receptors on astrocytes, inducing astrogliosis as indicated
by hypertrophy and a rise in intracellular calcium, and blocking
this pathway increased oligodendrocyte survival (249). Because
increased COX-2 expression is observed not only in glia, but
also giant cells/balloon cells and dysmorphic neurons in TSC and
FCD (98), this specific crosstalk might link hypomyelination to
COX-2 expression.

As for mature oligodendrocytes, NG2 function in TSC likely
depends on other glia. In vitro, it was shown that astrocyte-
and microglia-conditioned medium exerts important effects in
the development of oligodendrocytes, with astrocytic factors
promoting oligodendrocyte survival and microglial factors
supporting differentiation and myelination (250). Considering
aberrant number and function of both cell types already early
in development, this interglial crosstalk might contribute to the

hypomyelination observed in TSC. Moreover, NG2 glia survival
and differentiation can be impaired by OS and TNF produced
by activated microglia (251–253). In essence, astrocytes and
microglia could participate in the pathological link between
OS, inflammation, and the dysregulated iron metabolism in
TSC by inducing aberrant oligodendrocyte maturation and
myelination in TSC (252, 254). Importantly, OS-dependent
dysregulation of histone–deacetylase activity could promote
astrogenesis/neurogenesis over oligodendrogenesis potentially
contributing to the disturbed cell ratio observed in TSC brain
tissue (252).

CONCLUSIONS

While the most debilitating CNS symptoms of TSC, epilepsy,
and neurodevelopmental comorbidities ultimately result from
neuronal dysfunction, it is also clear that glial alterations
contribute and shape the complex mechanisms generating these
symptoms. Moreover, glia provide the proliferative precursor
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of pre-natal and post-natal neurons in the form of radial glia
and astrocytes, respectively. It is important to stress that in
TSC there is likely a mixture of cells with cell-autonomous
mTOR activation because of intrinsic TSC mutations and cells
with regular mTOR activity that respond to changes due to this
intrinsically dysfunctional cellular substrate. Nevertheless, the
major triad of glial cells displays conserved features in response
to mTOR activation in TSC, TSC models, and conditions of
mTOR hyperactivation.

Although it is likely that increased proliferation of astrocytes
and resulting physical disruption of neuronal circuits can
impact epileptogenesis in TSC, studies on surgically resected
tubers and TSC models suggest that astrocytes also present
with epileptogenic functional changes. More importantly,
these changes are likely caused by a mixture of primary
astrocytic changes during brain development due to mTOR
activation and secondary effects that promote reactive states
of astrocytes, such as brain inflammation later on. Finally,
astrocyte dysfunction in TSC recapitulates findings from other
epileptogenic pathologies, thus potentially representing common
astrocytopathic mechanisms of epilepsy that could be targeted by
novel astrocyte-centered therapies.

For oligodendrocytes, it is of utmost interest to find
targets by which the endogenous remyelination in TSC
patients might be enhanced. The mTOR signaling pathway
has been proposed to be an attractive target to promote
remyelination; however, recent results emphasize the
importance of correctly applied therapeutics, because what
may be beneficial to OPC development might be noxious to
myelinating oligodendrocytes.

Lastly, alterations in microglial functions in TSC might be
caused by cell-autonomous mTOR activation or secondary to
the altered brain environment in TSC. Whether their activation
depends on either or both is not clearly defined yet; however, the
presence of proinflammatory microglia upon mTOR activation
likely contributes to pathology, while a shift toward an anti-
inflammatory phenotype via mTOR inhibition might have
beneficial effects.

Although challenging, a better understanding of the
complexity of the glial pathology in TSC may provide
opportunities for novel therapeutic approaches targeting
glial-mediated mechanisms. In particular, a combinatorial
therapy targeting different glial cell types and their crosstalk
might be translated into disease-modifying treatments for
various epilepsies associated with a deregulation of mTOR.
Considering the evidence for mTOR inhibition not only
rescuing neuronal, but also glial dysfunction, in preclinical
TSC models (29, 255, 256), mTOR inhibitors, which were
recently approved by the US Food and Drug Administration
and European Medicines Agency for the treatment of refractory
seizures associated to TSC starting from the age of 2 years (257),
represent promising candidates to target TSC gliopathy. Finally
and most importantly, mTOR inhibition as therapy of TSC
could potentially be extrapolated to other genetic and acquired
epilepsies (258, 259).
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