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Abstract

The marine cyanobacteria Prochlorococcus have been considered photoautotrophic microorganisms, although the
utilization of exogenous sugars has never been specifically addressed in them. We studied glucose uptake in different high
irradiance- and low irradiance-adapted Prochlorococcus strains, as well as the effect of glucose addition on the expression of
several glucose-related genes. Glucose uptake was measured by adding radiolabelled glucose to Prochlorococcus cultures,
followed by flow cytometry coupled with cell sorting in order to separate Prochlorococcus cells from bacterial contaminants.
Sorted cells were recovered by filtration and their radioactivity measured. The expression, after glucose addition, of several
genes (involved in glucose metabolism, and in nitrogen assimilation and its regulation) was determined in the low
irradiance-adapted Prochlorococcus SS120 strain by semi-quantitative real time RT-PCR, using the rnpB gene as internal
control. Our results demonstrate for the first time that the Prochlorococcus strains studied in this work take up glucose at
significant rates even at concentrations close to those found in the oceans, and also exclude the possibility of this uptake
being carried out by eventual bacterial contaminants, since only Prochlorococcus cells were used for radioactivity
measurements. Besides, we show that the expression of a number of genes involved in glucose utilization (namely zwf, gnd
and dld, encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and lactate dehydrogenase,
respectively) is strongly increased upon glucose addition to cultures of the SS120 strain. This fact, taken together with the
magnitude of the glucose uptake, clearly indicates the physiological importance of the phenomenon. Given the significant
contribution of Prochlorococcus to the global primary production, these findings have strong implications for the
understanding of the phytoplankton role in the carbon cycle in nature. Besides, the ability of assimilating carbon molecules
could provide additional hints to comprehend the ecological success of Prochlorococcus.
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Introduction

Prochlorococcus [1] constitutes an abundant group of marine

cyanobacteria, being currently considered as one of the main

global primary producers, since it is a significant part of the marine

phytoplankton (recent estimates gave the number of 1027

Prochlorococcus cells on Earth), which in turn contributes roughly

half of the net primary production in the biosphere, given that ca.

half that population enters every day the trophic chain in the

oceans [2]. The scarcity of nutrients in their natural habitats and

the very low light available at depth were probably the main

challenges faced by these organisms to colonize and become a

predominant player in intertropical oceans. Several mechanisms

have been proposed to explain this success: namely the

development of specific, optimized photosynthetic machinery

extremely efficient in the capture and utilization of the available

light energy [3]; and the fine tuning of their metabolic pathways to

focus only on the available nutrients, while removing non-essential

genes, thus preventing unnecessary expenses of energy, in a

process of evolutive genome compaction involving both gain and

loss of genes [4–8]. For instance, all studied Prochlorococcus strains

are devoid of enzymes which are almost universally found in other

cyanobacterial groups, such as nitrate reductase [9], possibly due

to the high energetic cost of assimilating nitrate.

In addition to the features discussed above, Prochlorococcus has

been considered for long as an obligate photoautotrophic organism,

performing photosynthesis to obtain energy and synthesize organic

matter. Zubkov and co-workers reported the first evidences of

mixotrophy in Prochlorococcus, showing the uptake of organic

nitrogen compounds [10–13]. Dimethylsulfoniopropionate uptake

has also been demonstrated in Prochlorococcus [14]. However the

utilization of molecules containing only carbon skeletons has never

been studied thus far, to the best of our knowledge. This could be

probably explained by the very low concentrations of organic

nutrients present in the large oligotrophic regions where Prochlor-

ococcus thrives [15]. The values of dissolved organic matter (and

sugars in particular) determined in the oceans reflect a steady state

and can be very low [16,17] because these compounds are being

used very quickly upon release, so that there is a tight coupling

between their production and utilization [18]. Due to these reasons,
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the possibility of sugar utilization by Prochlorococcus has been largely

overlooked, and very little information is available on this matter.

Nevertheless, under specific circumstances, and given that the

production of dissolved organic matter is heterogeneous in time and

space [19,20], Prochlorococcus could benefit from the assimilation of

organic molecules, such as sugars, that could be utilized as sources

for carbon skeletons and/or to obtain reducing power, thus

complementing the energetic income of the cells. Cyanobacteria

differ greatly in their abilities to metabolize sugars [21]. In nature,

cyanobacteria live under light/dark cycles. During the light period,

they obtain energy from sunlight to produce organic matter by

photosynthesis; under darkness, glucose residues from glycogen are

catabolized via the oxidative pentose phosphate pathway, the final

steps of glycolysis, and an incomplete tricarboxylic acid cycle,

producing NAD(P)H and biosynthetic intermediates [21,22]. The

possibility of glucose utilization by Prochlorococcus was already

proposed in an early study [23], based on the expression decrease

of the photosynthetic gene psbA after glucose addition to cultures

subjected to darkness. Yet, glucose consumption has never been

specifically addressed in Prochlorococcus cells.

In this paper, we present the results of two kind of studies

focused on glucose uptake and its effect on gene expression. First,

radioactively labelled glucose was added to samples of different

Prochlorococcus strains to check whether this sugar was being taken

up; then Prochlorococcus cells were separated from contaminants by

using a cell sorter coupled to a flow cytometer. These cells were

used to determine glucose uptake. Second, we carried out gene

expression studies on Prochlorococcus cultures after glucose addition.

Uptake analysis were performed on high irradiance- and low

irradiance-adapted ecotypes of Prochlorococcus, while expression

studies were done in the low irradiance-adapted SS120 strain,

considered to be a representative of ecotypes inhabiting environ-

ments where low light energy is available and therefore glucose

utilization could be most useful.

Results

Characterization of glucose uptake in Prochlorococcus
As described in Materials and Methods, radiolabelled glucose

(1 mM final concentration) was added to culture samples of high

irradiance- and low irradiance-adapted strains. Then Prochlorococcus

cells were sorted out by flow cytometry, and used to determine

glucose uptake by filtration and radioactivity determination in a

scintillation counter. We used stringent criteria for cell sorting, in

order to avoid any kind of contaminants, so that radioactivity

measured in uptake experiments was derived from Prochlorococcus

cells exclusively (Supporting Figure S1).

The amount of glucose taken up by Prochlorococcus cells was

strictly proportional to the number of cells sorted, as shown in

Figure 1A, validating the method and discarding that any

radioactivity other than that carried by Prochlorococcus cells was

measured. Negative control experiments were carried out by using

axenic Prochlorococcus PCC 9511 cells boiled for 5 min, in order to

ensure that the determined uptake was the result of biological

activity. The value from these controls (2.5460.31 DPM per

103 cells) has been substracted from the values corresponding to

Figures 1, 2, 3 and 4 and Supporting Figure S2. Besides, negative

control experiments were performed using Nostoc sp. strain PCC

7120 cells (an organism known to lack the capability for glucose

uptake [24]), where the obtained values were very close to those

corresponding to boiled Prochlorococcus cells (not shown).

Glucose uptake was linear for at least 90 min, as shown for

Prochlorococcus PCC 9511 in Figure 1B; it must be noted that the

strain PCC 9511 is axenic, being the first pure strain of

Prochlorococcus obtained in the laboratory [25]. The same kind of

experiments was carried out for all studied strains (see Supporting

Figure S2). These results demonstrate that Prochlorococcus cells are

actively taking up glucose, and that this uptake is not due to the

activity of contaminants.

A lower glucose concentration (0.1 mM), closer to that observed

in the oceans [15,18] was also tested (Figure 2), finding that the

uptake was also significant (ca. 5 fold lower than the uptake rates

observed on 1 mM glucose). Therefore, our results indicate that

glucose uptake can be efficiently carried out by Prochlorococcus, even

at concentrations close to those observed in nature.

Glucose uptake by different Prochlorococcus strains
Figure 3 shows the average uptake of radioactive glucose by several

Prochlorococcus strains after 60 min incubation. Specific results for each

strain are provided in Supporting Figure S2. All tested strains took up

glucose at a rather high rate, although there was a 2 to 4-fold
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Figure 1. A. Glucose uptake vs number of Prochlorococcus PCC
9511 cells (axenic, high irradiance-adapted strain). Radiolabelled
glucose, 1 mM final concentration, was added to Prochlorococcus
cultures and incubated for 60 min in the light. Cells were sorted to
obtain samples containing 5,000, 10,000 and 15,000 cells and glucose
uptake was determined. B. Time course of glucose uptake in
Prochlorococcus PCC 9511. Radiolabelled glucose, 1 mM final concen-
tration, was added to Prochlorococcus cultures and samples taken at the
indicated times and processed as described in Materials and Methods.
Bars indicate the average from three independent experiments, each of
them determined in triplicate, 6s.d.
doi:10.1371/journal.pone.0003416.g001
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variation among them. We found no clear correlation between the

rate of glucose uptake and the depth from which the tested

Prochlorococcus strain was isolated. However, the large variations found

and the low values of standard deviation within each strain, suggest

that this could be a feature specific for the different Prochlorococcus

isolates. As a reference, we have shown in Figure 3 the glucose uptake

values obtained after FACS sorting of the heterotrophic population

from a Prochlorococcus SS120 culture. It is worth noting that the values

of glucose uptake are given on a per cell basis, and therefore the total

amount of glucose taken up by the heterotrophs is much lower than

that of Prochlorococcus since the number of contaminants is only a few

percent of the total cells of the culture.

For a comparison, the uptake rate of the freshwater strain

Synechocystis PCC 6803, capable to grow photoheterotrophically on

glucose [26,27], was also included, and found to be 2 to 10 times

lower than those of Prochlorococcus cells. As stated above, it is worth

noting that our comparative data are expressed in a per cell basis;

even so, Prochlorococcus is taking up at least double amount of glucose

than Synechocystis cells, which are much bigger. Should the data be

expressed in concentration units, the differences would be even

higher. Interestingly, it has been reported that the rate of amino acids

uptake by Prochlorococcus is also 10-fold higher than by marine

Synechococcus strains [12].

Effect of darkness on glucose uptake in Prochlorococcus
SS120

Our initial hypothesis considered that glucose uptake could be

most useful for Prochlorococcus under conditions of energy limitation.

To this purpose, we compared the rate of radiolabelled glucose

incorporation in cultures of the low-irradiance adapted Prochlor-

ococcus SS120 subjected to 24 h of darkness vs a control culture

kept under standard light; the results are shown in Figure 4. The

incubation of cells for 24 h in the dark intended to deplete their

energy reserves, which would (according to our hypothesis) induce

an increase in glucose uptake. However, and much to our surprise,

the glucose uptake rate was found to be higher under light, with a

ca. 40% decrease when cells were subjected to darkness. In good

agreement with these results, light also enhances the uptake of

sugars in other cyanobacteria [28,29], and that of amino acids in

Prochlorococcus (50% increase) [13,29].

Changes in gene expression after glucose addition to
Prochlororococcus SS120 cultures

Since the above reported results showed that Prochlorococcus was

actively taking up glucose, we studied the effect of glucose addition on

the expression of Prochlorococcus SS120 genes involved in different

metabolic pathways, to find out if the addition of glucose induced
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Figure 2. A. Glucose uptake vs number of Prochlorococcus SS120 cells
(low irradiance-adapted strain). Radiolabelled glucose, 0.1 mM final
concentration, was added to Prochlorococcus cultures and incubated for
60 min in the light. Cells were sorted to obtain samples containing
5,000, 10,000 and 15,000 cells and glucose uptake was determined. B.
Time course of glucose uptake in Prochlorococcus SS120. Radiolabelled
glucose, 0.1 mM final concentration, was added to Prochlorococcus
cultures and samples taken at the indicated times and processed as
described in Materials and Methods. Bars indicate the average from
three independent experiments, each of them determined in triplicate,
6s.d.
doi:10.1371/journal.pone.0003416.g002
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Figure 3. Glucose uptake by several Prochlorococcus strains:
PCC 9511, TAK9803-2, MIT9313, SS120, GP2, NATL1-A, by
Synechocystis sp. strain PCC 6803, and by heterotrophic
bacteria sorted from a Prochlorococcus SS120 culture. Data are
the average of the radiolabelled glucose (1 mM final concentration)
taken up after 60 min incubation in the light, from three independent
experiments, each of them determined in triplicate, 6s.d. PCC 9511 and
TAK9803-2 are high irradiance-adapted strains; MIT9313, SS120, GP2
and NATL1-A are low irradiance-adapted strains.
doi:10.1371/journal.pone.0003416.g003
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changes in gene expression, and if so, to address whether it was a

general transcriptional effect or specific for some of the studied genes

(Figure 5). As described in Materials and Methods, we used the

available genome of Prochlorococcus SS120 to design the primers for

qRT-PCR quantification of gene expression. Furthermore, we

performed, at the end of every experiment of gene quantification, a

determination of the melting point of the amplified fragments, to

ensure that only a single fragment of DNA is amplified in each tube.

Besides, samples were subjected, after amplification, to electropho-

resis to confirm the presence of a single band of the expected size in

each tube. This strongly suggests that our amplifications are specific

for Prochlorococcus.

For the sake of clarity, we only show the results obtained for

seven of them: glnA, encoding glutamine synthetase; ntcA and glnB,

encoding the regulatory proteins NtcA and PII respectively (which

control the expression of genes involved in the assimilation of

nitrogen, in a process depending on the C/N balance [30–33]);

melB, encoding a putative sugar transporter; zwf and gnd, encoding

the enzymes glucose-6-phosphate dehydrogenase and 6-phospho-

gluconate dehydrogenase, participating in the pentoses phosphate

pathway, which is the major route for catabolism of sugars in

cyanobacteria [34]; and finally dld, encoding D-lactate dehydro-

genase, which could participate in the regeneration of NAD+ from

NADH, allowing the partial utilization of glucose [21,35].

All genes showed some oscillations in the first hours, but we

observed that glucose addition provoked significant increases in the

expression of zwf, dld and gnd (ca. 6, 5 and 4-fold, respectively after

24 h of glucose addition), all of them involved in pathways of

glucose metabolization. Interestingly, the expression of zwf was also

increased early in studies on Synechocystis PCC 6803 during glucose

feeding [36]. Besides, the expression of melB, a putative sugar

transporter, was also increased 3-fold. Although the actual function

of this gene annotated as melB in the Prochlorococcus genomes is not

known, the clear increase in its expression after glucose addition to

cultures suggests that it might be in fact involved in sugar uptake. By

contrast, the expression of other genes not involved in glucose

utilization (glnA, ntcA, Fig. 5; glsF, icd, not shown), had minor

oscillations. Interestingly, the glnB gene experimented a certain

increase (more than 2-fold after 3 h since glucose addition). This is

consistent with the role of PII (encoded by glnB) in the coordination

of the carbon and nitrogen metabolisms in cyanobacteria [30].

Our studies on gene expression show that glucose provokes

indeed an upregulation of genes directly involved in its utilization,

a logic event from a physiological point of view, if glucose is to be

utilized by Prochlorococcus. We are currently undertaking compar-

ative proteomic studies to analyze the effects of glucose on

Prochlorococcus, and preliminary observations seem to confirm that

its addition induces changes in the proteome.

Pathways for glucose utilization in Prochlorococcus
Cyanobacteria are natural photoautotrophs. However, about half

of the tested strains can also consume glucose or other carbohy-

drates for heterotrophic growth [27,34]. Figure 6 outlines the

metabolic pathways in Prochlorococcus SS120, enabling the utilization

of glucose. All the genes encoding the enzymes catalyzing those

reactions are present in the genome of Prochlorococcus SS120. In five

of the enzymatic reactions, there is production of reducing

equivalents (either NADPH or NADH); besides, net ATP is

produced also as a result of the metabolization of glyceraldehyde-

3-phosphate and phosphoenolpyruvate. This means that, even in

the absence of a complete Krebs cycle (a feature shared by all

cyanobacteria [37]), Prochlorococcus can actually obtain energy and

reducing power from glucose. If we take into account that

Prochlorococcus populations can live at depths down to 200 m, where

there is very little energy input from sunlight, the utilization of

glucose could be an advantage to survive under such conditions.

Table 1 shows a list of the proteins involved in the pathways

shown in Figure 6; the corresponding genes are present in all

Prochlorococcus genomes available thus far (with the exception of the

gene dld, which is present only in the SS120 and MIT9211 strains),

indicating that they possibly belong to the common core shared by

the genus Prochlorococcus [8]. This, in combination with our results,

strongly suggests that exogenous glucose can be utilized by the

whole population of Prochlorococcus.

Discussion

The results presented in this paper evidence that Prochlorococcus is

capable of glucose uptake and strongly suggest its utilization, in

contrast to its previously accepted status as a strictly autotrophic

organism. Mixotrophy is known long ago in cyanobacteria [27],

and both glucose [34] and amino acid [38] utilization have been

reported in different cyanobacterial strains. The uptake of amino

acids has been previously described in Prochlorococcus [10–

13,29,39], providing initial evidence for mixotrophy in these

cyanobacteria, but nitrogen and not carbon was considered to be

the main interest of that uptake, since nitrogen is often a limiting

nutrient in oligotrophic environments. The discovery of organic

carbon molecules being also taken up by Prochlorococcus has deep

consequences in ecological terms. The Prochlorococcus consideration

with regard to the global carbon cycle should take into account

that, besides being a primary producer when performing

photosynthesis, it could also utilize organic carbon molecules.

This shows different behaviours depending on the environmental

conditions. In addition, it must be stressed that no contribution to
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fulfill the standard nutrient limitations in the oceans (N, P, Fe) can

be drawn from glucose, thus suggesting that the benefit could

derive from the reducing power and ATP obtained by the

metabolization of glucose (Fig. 6).

In order to discard the possibility that our results could be derived

from Prochlorococcus incorporation of radiactive CO2, previously

released to the media after glucose was used for respiration by

heterotrophic bacteria, we carried out some calculations: since our

Prochlorococcus samples contained ca. 1.16107 cells/ml, with an

average uptake rate of 0.05 fmol/cell, they would take up

0.55 nmol glucose in 1 hour. Since we added 1 nmol of glucose

to samples, it means that Prochlorococcus cells were taking roughly

55% of the added gluose in 1 h. Considering that we have, at most,

3% of contaminant heterotrophic bacteria in non axenic Prochlor-

ococcus samples, it means that, to account for the hypothesis here

analyzed, they should excrete 33-fold more radiolabelled C per cell

Glucose

Glucose

melB?

G6P

F6P

F1,6P2

6PG

Ru5P

Glycogen

zwf
gnd

GA3P

PEP

OAA

PYR

Citrate Isocitrate

AcCoA

2-OG
icd

GS/GOGAT

LAC

NAD+

dld

Figure 6. Pathways for glucose utilization repreented in the genome of Prochlorococcus SS120. The genes whose expression was
quantified in this study are shown. The complete list of genes involved in these pathways and the corresponding enzymes are shown in Table 1.
Abbreviations: G6P, glucose 6-phosphate; 6PG, 6-phosphogluconate; F6P, fructose 6-phosphate; Ru5P, ribulose 5-phosphate; F1,6P2, fructose 1,6-
bisphosphate; GA3P, glyceraldehyde 3-phosphate; PEP, phosphoenolpyruvate; OAA, oxalacetate; PYR, pyruvate; LAC, lactate; AcCoA, acetyl-
coenzyme A; 2-OG, 2-oxoglutarate.
doi:10.1371/journal.pone.0003416.g006
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than it is taken up by Prochlorococcus. In turn, this means they should

have an uptake ratio even higher (given they would not excrete all

the radiolabelled carbon coming from glucose). Furthermore, even

accepting the idea that bacteria excreted all the carbon from

glucose, each heterotrophic bacterium should excrete 1.2610213 g

of C per hour to produce the values observed by us, which

represents an amount of C 8–10 times higher than the total C

content of such cell (i.e., approx 10214 g of C).

On the other hand, if we assumed an uptake rate for

heterotrophic bacteria 10 times higher than that for Prochlorococcus,

it would lead, in the first measured sample at 30 min, to an uptake

of 85 pmol of glucose, and if all that glucose was excreted, it would

give a concentration of 85 nM. However, we measure an uptake

value of 275 pmol. Consequently, these simple calculations

evidence that our results can not be explained on the base of an

hypothetical uptake of CO2 excreted by heterotrophic bacteria

and later incorporated into organic matter in Prochlorococcus by

means of photosynthesis.

It is worth noting that glucose uptake is linear for, at least,

90 min (Figs. 1 and 4, Supporting Figure S2), indicating its

metabolization, since otherwise the internal glucose concentration

after 60 min would build up to very high level, in the order of

0.1 M or higher, which is far above the Km values from known

enzymes utilizing glucose represented in cyanobacteria (i.e., 0.1–

0.5 mM in the case of glucokinases) and could even pose an

osmotic problem.

Glucose can not be oxidized in Prochlorococcus through the Krebs

cycle, since cyanobacteria have been known for long to posses an

incomplete cycle lacking 2-oxoglutarate dehydrogenase [37]. In

addition, Prochlorococcus genomes lack the gene encoding the 6-

phosphofructokinase, which is present in other cyanobacterial

genomes, thus preventing the transformation of fructose-6-

phosphate into fructose-1,6-bis-phosphate, an essential step of

the glycolytic pathway. This gene is also absent in marine

Synechococcus, Gloeobacter violaceus, Trichodesmium erythraeum (as de-

duced from their genomes) and Synechocystis PCC 6308 [34].

However, a complete oxidative pentose phosphate pathway is

present in all Prochlorococcus genomes, meaning that glucose could

be fully oxidized. Glyceraldehyde-3-phosphate and fructose-6-

phosphate could be produced from pentoses phosphate through

Table 1. Proteins involved in the pathways of glucose utilization outlined in Figure 6.

Protein Gene EC code Gene code in SS120

Hypothetical sugar transporter melB - Pro1404

Phosphoglucomutase pgm 5.4.2.2 Pro0090

Glucokinase glk 2.7.1.2 Pro1065

Glucose-6-phosphate isomerase pgi 5.3.1.9 Pro0946

Glucose-6-phosphate dehydrogenase zwf 1.1.1.49 Pro1124

6-phosphogluconolactonase nagB 3.1.1.31 Pro0844

6-phosphogluconate dehydrogenase gnd 1.1.1.44 Pro0843

Phosphoribulokinase prk 2.7.1.19 Pro0861

Pentose-5-phosphate-3-epimerase rpe 5.1.3.1 Pro0839

Ribose-5-phosphate isomerase rpi 5.3.1.6 Pro1644

Transketolase tktA 2.2.1.1 Pro1770

Transaldolase tal 2.2.1.2 Pro0519

Triosephosphate isomerase tpi 5.3.1.1 Pro0901

Glyceraldehyde-3-phosphate dehydrogenase gap3 1.2.1.12 Pro1577

3-phosphoglycerate kinase pgk 2.7.2.3 Pro0221

Phosphoglycerate mutase gpmB 5.4.2.1 Pro0515

Enolase eno 4.2.1.11 Pro0235

Piruvate kinase pykF 2.7.1.40 Pro0923

Fructose-1,6-bisphosphatase aldolase I fda 4.1.2.13 Pro0856

Fructose-1,6-bisphosphatase aldolase II cbba 4.1.2.13 Pro0855

Fructose-1,6-bisphosphatase / Sedoheptulose 1,7-biphosphate phosphatase glpX 3.1.3.11 Pro0840

Glucose-6-phosphate isomerase pgi 5.3.1.9 Pro0946

Pyruvate dehydrogenase E1 alpha subunit acoA 1.2.4.1 Pro1362

Pyruvate dehydrogenase E1 beta subunit acoB 1.2.4.1 Pro0766

Pyruvate dehydrogenase E2 component (Dihydrolipoamide S-acetyltransferase) aceF 2.3.1.12 Pro0401

Dihydrolipoamide dehydrogenase lpd 1.8.1.4 Pro1372

Citrate synthase gltA 2.3.3.1 Pro0185

Aconitase acnB 4.2.1.3 Pro1866

Isocitrate dehydrogenase icd 1.1.1.42 Pro1752

Phosphoenolpyruvate carboxylase ppc 4.1.1.31 Pro1730

Gene codes are shown for the Prochlorococcus SS120 genome, but all of them are present in the available Prochloroccus genomes.
doi:10.1371/journal.pone.0003416.t001
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the action of transaldolase and transketolase, giving in turn

glucose-6-phosphate that could undertake another decarboxyl-

ation cycle. In this way, twelve molecules of NADPH could be

produced per glucose (Fig 6). The production of reducing power

could be important in Prochlorococcus, under conditions of strong

energetic limitations. In the case of strains possessing the dld gene

(as SS120), encoding D-lactate dehydrogenase, it could be used to

obtain 2 molecules of ATP per glucose metabolized, by

regeneration of NAD+, as we have previously proposed [35].

Additional work is necessary to confirm this hypothesis. It is

generally accepted that in vivo NAD-dependent lactate dehydro-

genase from cyanobacteria functions in the conversion of pyruvate

to lactate. Excretion of D-lactate under dark anoxic conditions as

an end product of endogenous carbohydrate catabolism has been

reported for Synechococcus PCC 6716 [21,40].

Furthermore, this could provide an explanation for the

maintenance of Prochlorococcus populations in seasons when they

almost disappear at some specific environments. The utilization of

organic carbon could allow to survive at very low metabolic rates,

by providing a small but appreciable source of energy and

reducing power, even under conditions that make impossible to

survive from photosynthesis alone (i.e., at depth in periods of very

low surface irradiance). In this way, a tiny population would persist

until the conditions become more favourable, enabling it to

colonize again the same environment, as reported [41]. The

glucose uptake in high irradiance-adapted ecotypes would be less

relevant, since these cells are living in an environment that is not

limited in irradiance. Future studies will address the actual utility

of glucose uptake by Prochlocoroccus, since we have not yet studied

this topic experimentally.

With regard to the big picture of the metabolic adaptations, the

results here reported indicate that the genes required for

exogenous glucose uptake and metabolization belong to the core

set of conserved genes, seemingly occurring in all Prochlorococcus

ecotypes [8]. In good agreement with this idea, the gene melB is

present in all Prochlorococcus genomes thus far available. This fact

strongly suggests that the importance of sugar uptake is high for all

Prochlorococccus strains. Furthermore, the adaptive response sensory

histidine kinase 8 (EC 2.7.13.3), required for heterotrophic growth

in Synechocystis PCC 6803 [22], is present also in all available

Prochlorococcus genomes. Interestingly, the gene dld appears only in

the low irradiance-adapted strains SS120 and MIT9211, suggest-

ing it could be useful under conditions of energy and oxygen

limitation [35]. It is worth noting that Prochlorococcus is the

dominant organism in the deep clorophyl maximum found in

oxygen minimum zones [42,43].

Given that metabolic pathways have been extensively modified

along the evolution of Prochlorococcus, the widespread glucose

utilization in this microorganism suggests that this process is very

important for its survival. Besides, it is tempting to speculate that,

contrary to expectations, the utilization of glucose by Prochlorococcus

-even in the very oligotrophic environments, which are its natural

habitat- is worthwhile. Although it is known that glucose is often

the only free neutral sugar detectable in the oceans [44], there is

little information regarding its actual concentration [45]. In

addition, its rapid uptake by the heterotrophic and mixotrophic

organisms inhabiting those environments could provoke a strong

underestimation of its availability.

A potentially important outcome of this study is the possibility of

some degree of mutualism between Prochlorococcus and coexistent

bacteria in nature; although the presence of sugars is not a

condition for Prochlorococcus to grow (as evidenced by the utilization

of artificial media without any sugar to culture Prochlorococcus [46]),

it might contribute to a better development of cells, thus

explaining the often difficult and unpredictable growth of this

cyanobacterium in the laboratory. It is noteworthy that glucose

addition to the first axenic strain of Prochlorococcus, PCC 9511, was

found to be tolerated and seemed to slightly prolong survival [25].

The results reported here point out to an unexpected behaviour in

Prochlorococcus. This is the first study, to our knowledge, providing

evidence for sugar uptake and strongly suggesting its utilization in

Prochlorococcus. While the actual utility of this glucose uptake remains

to be elucidated, we can conclude that the current consideration of

Prochlorococcus as one of the paramount primary producers on a global

scale should be complemented. Rather than constraining its

ecological contribution to that role, we should consider Prochlorococcus

as evolved cyanobacteria whose genomes have been subjected to a

large specialization [5,7]. This enables them to remain competitive at

the specific environment inhabited by each ecotype, by removing

unnecessary genes, and keeping only the essential ones for survival,

including the utilization of different nutrients (both organic, as sugars,

and inorganic) in different environments. In this model, Prochlorococcus

appears as a mixotrophic organism, relying mainly on autotrophy,

but willing and able to take up organic compounds (i. e., amino acids

and sugars) from the environment when available. While mixotrophy

in oceanic protists [47] and bacteria [48] is well established, it has not

been considered as a standard feature in cyanobacterial picophyto-

plankton thus far [47]. Although glucose uptake has not been tested in

marine Synechococcus strains, the presence of putative sugar transport-

ers (as melB) in their genomes, and the overall metabolic similarities

between Synechococcus and Prochlorococcus, all suggest this might be the

case. Therefore, we propose that mixotrophy is a widespread feature

in oceanic picophytoplankton, in good agreement with recent reviews

supporting this hypothesis [48]. The ecological relevance of this

proposition remains open for study in the future, but it seems

plausible to draw important consequences on the global carbon flow

models in the ocean.

Materials and Methods

Strains and culturing
Prochlorococcus marinus strains PCC 9511, TAK9803-2 (high

irradiance-adapted) and GP2, SS120, MIT9313 and NATL1A

(low irradiance-adapted) were routinely cultured in polycarbonate

Nalgene flasks using PCR-S11 medium as described by Rippka and

coworkers [25]. The seawater used as the basis for this medium

was kindly provided by the Instituto Español de Oceanografı́a

(Spain). Cells were grown in a culture room set at 24uC under

continuous blue irradiance (40 or 4 mmol quanta m22 s21 for

high- and low-irradiance adapted strains, respectively). Culture

growth was determined by measuring its absorbance at 674 nm.

Synechocystis sp. strain PCC 6803 was cultured as described

elsewhere [49], in BG-11 medium. For experiments requiring

darkness, culture bottles were completely wrapped with two layers

of aluminium foil, and the sampling was performed in the dark.

For experiments addressing the changes in gene expression

induced by glucose addition, 1 mM glucose (final concentration)

was added to one of them, while another aliquot from the same

original culture with no addition was used as control, and samples

were taken from both carboys at the indicated times.

Flow cytometry analysis of cell samples
Prochlorococcus was enumerated in freshly unstained samples by

using its specific chlorophyll autofluorescence. One millilitre samples

from each Prochlorococcus culture were used for analysis. When

required, cells were fixed with 10% paraformaldehyde [50]. Cell

counting was performed following the method described by Marie

and coworkers [51], by using an Epics XL flow cytometer equipped
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with the software Expo 32 ADC and Expo 32 Analysis, from Beckman

Coulter. The cytometer was calibrated by using 1 mm diameter

fluorescent beads (Flow Check High Intensity Green Alignment, Polysciences

Inc). From each sample 10,000 events were analyzed. As internal

reference, 1 mL of a freshly prepared dilution of the beads solution (1

drop in 5 mL of filtered distilled water) was added to each culture

sample. Forward scatter vs red fluorescence (i.e., emission between

660–700 nm, corresponding to the pigment composition of Prochlor-

ococcus cells) was used to draw charts to identify the Prochlorococcus

populations and the possible contaminants.

Fluorescence-activated cell sorting (FACS)
Prochlorococcus cells were flow sorted utilizing a FACS Vantage flow

cytometer (Becton Dickinson) equipped with CellQuest Pro software.

The reproducibility of gate sorting was checked in triplicate, using

three samples from different cultures. Time course glucose uptakes

were measured by sorting 156103 Prochlorococcus cells at several

times. Sorted cells were collected onto 0.22 mm filters (Millipore),

washed with 25 mM Tricine-KOH pH 8.1 buffer and radio-

assayed. Typical settings were as follows: SSC = 400; FL3 = 700;

all parameters were set on logarithmic amplification. Discrimina-

tor was set on FSC with a threshold of 100. Nozzle diameter was

70 mm. The working flow was adjusted to reach ca. 1,000 events/s

in order to avoid coincidences while counting [51,52]. Gating was

done on FL3 acquisition. Enumeration of heterotrophic bacteria

was carried out by staining samples with SYBR-Green I in a

1:10,000 dilution [53].

Glucose uptake determination
Cultures were kept at 24uC under 4 mmol quanta m22 s21 blue

light as described [54]. [U-14C]-glucose (281 mCi/mmol, Sigma)

was added to 1 mL of culture sample to reach a final

concentration of 0.1 mM or 1 mM, depending on the experiment,

and aliquots were taken at the indicated times, sorted and filtered

through 0.22 mm Millipore filters. Once filtered, the samples were

washed with 25 mM Tricine-KOH pH 8.1 and then introduced

into scintillation counting vials. Scintillation was started by the

addition of 3 mL Ready Protein Cocktail (Beckman Coulter) in a

LS6000IC Scintillation Counter (Beckman Coulter). Under our experi-

mental conditions, one pmol of radiolabelled glucose corresponds

to 623.82 disintegrations per minute (DPM).

RNA isolation
Cells were harvested by centrifugation at 30,1006g for 5 min at

4uC. After pouring most of the supernatant and carefully pipetting

out the remaining medium, the pellet was directly resuspended in

cold buffer (10 mM sodium acetate pH 4.5, 200 mM sucrose,

5 mM EDTA). Cells obtained from 500 mL of culture were

resuspended in 250 mL of this buffer and immediately frozen and

stored at 280uC until used. For RNA isolation the kit Aurum Total

RNA Mini Kit from Bio-Rad was used, following the instructions

from the manufacturer.

Semi-quantitative real time RT-PCR determination of
gene expression changes induced by glucose addition

Reverse transcription of RNA samples was carried out using the

iScript cDNA Synthesis Kit from Bio-Rad following the instructions of

the manufacturer. Real time amplification was monitorized by

addying SYBR Green I/fluorescein (Bio-Rad) to samples, using an

iCycler iQ Multi-Color Real Time PCR Detection System equipped with

the software iCycler iQ v 3.0, from Bio-Rad.

PCR amplification samples (25 mL) contained 0.2 mM dNTPs,

0.6 mL of a SYBR Green I/fluorescein 1024 dilution in DMSO,

0.4 units of Taq polymerase, 2.5 mL PCR buffer 106 (both

provided by BioTools, Madrid, Spain), and different primers

concentrations for each gene (depending on their efficiencies,

which were previously calculated in order to optimize the

amplification reactions [55]). Primers were designed utilizing the

Oligo v. 4.05 software (Molecular Biology Insights), on the basis of the

Prochlorococcus SS120 genome (whose sequences were retrieved

from the CYORF database, available at http://cyano.genome.ad.

jp/). The primers are described in Table 2.

The amplification protocol was optimized to ensure that a single

amplification product was obtained. This was monitorized by

Table 2. List of primers utilized in quantification of gene expression by semi-quantitative RT-PCR.

Gene Protein Primer Sequence

dld D-lactate dehydrogenase Forward TCGCTGTTTTTGCTGTAAG

Reverse TTAAATGCGTCAAATGTTC

glnA Glutamine synthetase Forward GCGTCTTGTTCCTGGCTTC

Reverse AGCATCTCCTGACCTGAACTC

glnB PII protein Forward TTTGGGCGACAAAAAGGA

Reverse TCAACACTTTCATCAGCAACAA

gnd 6-phosphogluconate dehydrogenase Forward AAAGCAGGTCAAAAAGGAA

Reverse AGAAGCGTAAATGGTAGGG

melB Hypothetical sugar transporter Forward GCTTTTATGGCAGGTTCTTT

Reverse CAAATAGCCGCAAGACTCAG

ntcA NtcA Forward AGCTCCTGCTGGCTCAGTTA

Reverse GAGAAGTAGCCCAACCCCAC

rnpB Ribonuclease P Forward CTCTCGGTTGAGGAAAGTC

Reverse CCTTGCCTGTGCTCTATG

zwf Glucose-6-phosphate dehydrogenase Forward ACGAGAAGCGATGAGGTAG

Reverse ATAAGGATAAGTTGGAAGTTG

doi:10.1371/journal.pone.0003416.t002
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electrophoresis, observing that all primers pairs give rise to the

appearance of a single band, so that all fluorescence detected by

the optical system of the iCycler thermocycler was produced only by

the specific product of amplification.

The thermal amplification protocol was as follows: 1 cycle at

95uC for 5 min, 35 cycles of: 95uC for 15 s, 58uC for 30 s and 72uC
for 30 s. After this protocol was ended, a melting point calculation

protocol was routinely done in order to check that only the correct,

single product was amplified in each tube. The expression of rnpB

was used as internal standard to normalize the values obtained for

all other genes. The mathematical treatment of data to calculate

relative gene expression was performed according to Pfaffl [55], so

that the expression was calculated by using the formula:

Relative gene expression~2{DDCt,

where DDCt corresponds to the increase in the threshold cycle of the

problem gene with respect to the increase in the threshold cycle of

the housekeeping gene (rnpB, in this study). Hence, the final

quantification value for each condition indicates the relative change

of gene expression in the problem tube with respect to the control

tube, for each sample. According to this formula, values of 1 mean

no change; values .1 mean increase in gene expression; and values

comprised between 0 and 1 mean decrease in gene expression.

Sequence analysis
Prochlorococcus gene sequences were retrieved from the CYORF

(http://cyano.genome.ad.jp/) and Integrated Microbial Genomes

(http://imgweb.jgi-psf.org/cgi-bin/w/main.cgi) websites. Se-

quence similarities were analyzed by using BLAST [56] at the

Microbes Online website (http://www.microbesonline.org/).

Comparisons of the existing metabolic pathways in different

Prochlorococcus strains were carried out using the Kyoto Encyclo-

pedia of Genes and Genomes (KEGG, http://www.genome.ad.

jp/kegg/pathway.html).

Supporting Information

Figure S1 Typical side-scatter (SSC) vs red fluorescence plot of

an unstained, live culture of Prochlorococcus MIT9313 (FACSVan-

tage flow cytometer) utilized to draw the gating for cell sorting. R1

corresponds to the population of Prochlorococcus MIT9313; R2

corresponds to heterotrophic contaminant bacteria. Similar plots

were used for the rest of strains utilized in this work.

Found at: doi:10.1371/journal.pone.0003416.s001 (1.15 MB TIF)

Figure S2 A. Glucose uptake vs number of Prochlorococcus cells, in

different strains. Radiolabelled glucose, 1 mM final concentration,

was added to Prochlorococcus cultures and incubated for 60 min in

the light. Cells were sorted to obtain samples containing 5,000,

10,000 and 15,000 cells and glucose uptake was determined. B.

Time course of glucose uptake in Prochlorococcus strains. Radiola-

belled glucose, 1 mM final concentration, was added to Prochlor-

ococcus cultures and samples taken at the indicated times and

processed as described in Materials and Methods. Bars indicate

the average from three independent experiments, each of them

determined in triplicate, 6s.d.

Found at: doi:10.1371/journal.pone.0003416.s002 (0.08 MB EPS)
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9. López-Lozano A, Diez J, El Alaoui S, Moreno-Vivián C, Garcı́a-Fernández JM

(2002) Nitrate is reduced by heterotrophic bacteria but not transferred to

Prochlorococcus in non axenic cultures. FEMS Microbiology Ecology 41: 151–160.

10. Zubkov MV, Tarran GA, Fuchs BM (2004) Depth related amino acid uptake by

Prochlorococcus cyanobacteria in the Southern Athlantic tropica gyre. FEMS

Microbiology Ecology 50: 153–161.

11. Zubkov MV, Tarran GA (2005) Amino acid uptake of Prochlorococcus spp. in

surface waters across the South Atlantic Subtropical Front. Aquatic Microbial

Ecology 40: 241–249.

12. Zubkov MV, Fuchs BM, Tarran GA, Burkill PH, Amann R (2003) High rate of

uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key

to their dominance in oligotrophic oceanic waters. Applied and Environmental

Microbiology 69: 1299–1304.

13. Mary I, Tarran GA, Warwick PE, Terry MJ, Scanlan DJ, et al. (2008) Light

enhanced amino acid uptake by dominant bacterioplankton groups in surface

waters of the Atlantic Ocean. FEMS Microbiol Ecol 63: 36–45.

14. Vila-Costa M, Simo R, Harada H, Gasol JM, Slezak D, et al. (2006)

Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 314:

652–654.

15. Rich JH, Ducklow HW, Kirchman DL (1996) Concentrations and uptake of

neutral monosaccharides along 140uW in the equatorial Pacific: contribution of

glucose to heterotrophic bacterial activity and the DOM flux. Limnology and

Oceanography 41: 595–604.

16. Azam F, Hodson RE (1977) Size distribution and activity of marine

microheterotrophs. Limnology and Oceanography 22: 492–501.

17. Vaccaro RF, Hicks SE, Jannasch HW, Carey FG (1968) Occurrence and Role of

Glucose in Seawater. Limnology and Oceanography 13: 356–360.

18. Azam F, Hodson RE (1981) Multiphasic kinetics for D-glucose uptake by

assemblages of natural marine-bacteria. Marine Ecology-Progress Series 6:

213–222.

19. Jannasch HW (1974) Steady-State and Chemostat in Ecology. Limnology and

Oceanography 19: 716–720.

20. Parsons TR, Strickland JDH (1961) On the production of particulate organic

carbon by heterotrophic processes in sea water. Deep-Sea Research 8:

211–222.

21. Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbi-

ology Reviews 21: 179–211.

Glucose Uptake Prochlorococcus

PLoS ONE | www.plosone.org 10 October 2008 | Volume 3 | Issue 10 | e3416



22. Singh AK, Sherman LA (2005) Pleiotropic effect of a histidine kinase on

carbohydrate metabolism in Synechocystis sp. strain PCC 6803 and its requirement
for heterotrophic growth. Journal of Bacteriology 187: 2368–2376.

23. Garcı́a-Fernández JM, Hess WR, Houmard J, Partensky F (1998) Expression of

the psbA gene in the marine oxyphotobacteria Prochlorococcus spp. Archives of
Biochemistry and Biophysics 359: 17–23.

24. Privalle LS (1984) Effects of D-erythrose on nitrogenase activity in whole
filaments of Anabaena sp. strain 7120. Journal of Bacteriology 160: 794–796.
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