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Encephalopathy
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and Guobin Wu*

Guangxi Medical University Cancer Hospital, Nanning, China

Hepatic encephalopathy (HE) is a neurological disorder that occurs in patients with liver
insufficiency. However, its pathogenesis has not been fully elucidated. Pharmacotherapy
is the main therapeutic option for HE. It targets the pathogenesis of HE by reducing
ammonia levels, improving neurotransmitter signal transduction, and modulating intestinal
microbiota. Compared to healthy individuals, the intestinal microbiota of patients with liver
disease is significantly different and is associated with the occurrence of HE. Moreover,
intestinal microbiota is closely associated with multiple links in the pathogenesis of HE,
including the theory of ammonia intoxication, bile acid circulation, GABA-ergic tone
hypothesis, and neuroinflammation, which contribute to cognitive and motor disorders
in patients. Restoring the homeostasis of intestinal bacteria or providing specific probiotics
has significant effects on neurological disorders in HE. Therefore, this review aims at
elucidating the potential microbial mechanisms and metabolic effects in the progression of
HE through the gut–brain axis and its potential role as a therapeutic target in HE.

Keywords: bile acid, ammonia, neurotransmitter, blood–brain barrier, neuroinflammation, gut microbiota,
hepatic encephalopathy
INTRODUCTION

Hepatic encephalopathy (HE), typically divided into three types [type A resulting from acute
hepatic failure (ALF), type B resulting from portosystemic bypass or shunting, and type C resulting
from cirrhosis], is a neurological complication that occurs in individuals with chronic liver diseases
(Montagnese et al., 2018). In this condition, the body’s metabolic processes are interrupted by
hepatic dysfunction, ammonia, bile acids, and other substances that cross the blood–brain barrier
(BBB) with increased permeability, accumulate in the brain, eventually causing neurological
disorders. The impaired lymphatic system cannot, however, eliminate harmful substances, which
may eventually aid the entire process (Ochoa-Sanchez and Rose, 2018; Hadjihambi et al., 2019).
Mild HE (MHE) is a subclinical HE (SHE) that lacks the clinical manifestations associated with HE.
Routine mental and neurological tests are normal in SHE. The diagnosis of MHE depends on
psychometric and neurophysiological tests. It is very challenging to give accurate clinical diagnosis
before overt symptoms set in, thus, leading to a decrease in the quality of life and survival time
(Bajaj, 2008; Wijdicks, 2016). Learning ability of HE is not completely reversible and new cognitive
decline occurs after treatment in some patients (Riggio et al., 2011; Hopp et al., 2019).
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Intestinal microbiota are associated with human digestion
and exhibit direct or indirect links to human health (Premkumar
and Dhiman, 2018). New treatment modalities aim at regulating
the balance of gut microbiota for relieving or curing related
diseases. Studies have documented that intestinal bacteria are
closely associated with emotional and cognitive–behavioral
functions. The gut–liver–brain axis comprehensive treatment
concept can be used to manage cognitive–behavioral disorders
in HE (Oliphant and Allen-Vercoe, 2019). Intestinal microbiota
significantly contribute to the pathogenesis of autism,
Alzheimer’s diseases, Parkinson’s disease and other central
nervous system (CNS) diseases (Zhu et al., 2020). The gut–
brain axis is also involved in the progression of nervous system
dysfunction. This review elucidates on the various mechanisms
involved, and how intestinal microbiota and its metabolites
facilitate the progression of liver diseases to HE through the
gut–brain axis, and the potential therapeutic options for HE by
regulating intestinal microbial community composition.
LIVER DISEASE IMPACTS INTESTINAL
HOMEOSTASIS THROUGH THE
GUT–LIVER AXIS

Maintenance of intestinal homeostasis is dependent on an intact
intestinal mucosal barrier, a healthy intestinal microenvironment,
and a delicate balance between nutrition and metabolites.
Intestinal dysfunction in patients with HE occurs as liver
function deteriorates. Small intestinal bacterial overgrowth and
bacterial translocation are the essential features for intestinal
homeostatic imbalance in patients with severe liver disease.
Gut–liver axis is a pathway for bi-directional communication
between the intestine and the liver. Regular operation of the gut–
liver axis requires an intestinal mucosa barrier and a healthy liver
function. The intestinal barrier is the first barrier against bacteria
and their metabolites entering the blood. In some patients with
liver disease, the intestinal barrier is destroyed, depending on
disease severity (Simbrunner et al., 2019; Albillos et al., 2020;
Gerova et al., 2020).

The liver is the body’s largest immune organ. It eliminates
toxic substances and bacterial metabolites from the intestines.
Enterohepatic circulation of bile acids and urea plays a vital role
in the gut–liver axis. The liver and gallbladder secrete primary
bile acids into the gut. Various microbial species, including
Lactobacillus, Bifidobacterium and Enterococcus, secrete bile
salt hydrolase (BSH) and bile acid dehydratase enzymes that
catalyze primary bile acids into secondary bile acids. Most
circulating bile acids (about 95%) are taken up by the
enterocytes and are recycled into the liver through the portal
vein. Bile acids are then discharged into the intestines through
the biliary tract after liver metabolism (Long et al., 2017; Mertens
et al., 2017).

Elevated blood ammonia (hyperammonemia) levels cause
mitochondrial dysfunction, oxidative or nitrative stress and
cause apparent damage to the nervous systems such as brain
permeability disorders, nerve conduction abnormalities, and the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
alteration of glucose metabolism in the human brain (Fan et al.,
1990; Jayakumar and Norenberg, 2018). The intestinal tract is the
primary source of ammonia. Intestinal bacteria decompose
protein into ammonia by producing urease. Intestinal
ammonia can be absorbed into the bloodstream. After
ammonia is transported into the portal vein, it enters the liver
and is re-synthesized to urea. This process is called enterohepatic
circulation of urea. Urea enterohepatic circulation maintains a
low concentration of ammonia in human blood (Wright et al.,
2011). When enterohepatic circulation is cut off, the levels of
ammonia and bile acids in the blood increase.

If intestinal metabolites in the blood are difficult to be broken
down in the liver, or circulate directly through the collateral
systems, hence, bypassing the liver, it leads to an increase in the
concentration of toxic substances or neurotransmitters in the
CNS. Gut bacteria release their components, including
lipopolysaccharides (LPSs), peptidoglycan (PGN), bacterial
lipoproteins (BLPs), mannans, and bacterial DNA into the
blood. Lipopolysaccharide is the main component of gram-
negative bacteria that triggers systemic inflammation.
Moreover, high amounts of LPS increase BBB permeability and
neuroinflammation, causing a large number of bacterial
metabolites to get into the brain quickly, thus promoting the
occurrence of HE (Hemmi and Akira, 2002; de Jong et al., 2016).
INTESTINAL MICROBIOTA
COMMUNICATE WITH CENTRAL
NERVOUS SYSTEM THROUGH
GUT–BRAIN AXIS

Intestinal bacteria start to colonize the human body after birth.
Maternal bacteria colonize the fetus’s intestinal tract during
delivery. As the infants mature, their gut microbiota
composition improves and resembles that of healthy adults
(Perez-Mu Oz et al., 2017). However, some studies have
documented that the fetus obtains its gut microbiome or is
exposed to microbial products and metabolites from maternal
microbiota, which plays a vital role in the fetus’s immune system
or metabolism. (Gomez et al., 2016; Younge et al., 2019).
Therefore, to maintain a healthy brain function, it is important
to understand the relationships between CNS and intestinal
microbiome. Germ-free (GF) mice are standard animal models
used to study how intestinal microbiota affect the nervous
system. Apparent differences in neurological development and
neurotransmitter concentration exist between mice with typical
microbiota and GF mice, which, however, show that commensal
bacteria regulate and control the cognitive and motor functions
of the nervous system (Mitsuharu et al., 2013; Principi and
Esposito, 2016).

The enteric nervous system (ENS) connects intestinal
microbiota with the CNS and is an essential communication
pathway for the gut–brain axis. Intestinal microbiota also
regulate the development and function of the ENS. Colonizing
the intestinal microbiota of conventionally raised mice in GF
mice can change the anatomical structure of the ENS and
January 2021 | Volume 10 | Article 595759
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improve the intestinal transport function, which is associated
with the intestinal microbial metabolite 5-HT and
microorganism activation 5-HT4 receptors in the ENS.
Therefore, gut microbiota affects the CNS through the ENS
(De Vadder et al., 2018).

Commensal gut microbiota and their metabolic products
communicate with the CNS by mediating the activity of the
vagus nerve and by regulating endocrine and immune pathways,
which in turn exert an impact on cognitive, motor, and nervous
system development. Intestinal bacteria affect the structure and
function of the CNS. The affected structure and functions involve
neurogenesis, myelination, glial cell function, synaptic pruning
and BBB permeability of the CNS (Mika and Fleshner, 2015;
Bonaz et al., 2018; Heiss and Olofsson, 2019; Nabhani and Eberl,
2020). Beneficial bacteria have been developed as intestinal
microecological agents for clinical treatment because they play
a significant role in CNS function.
CHANGES AND INFLUENCE OF
GUT MICROBIOTA IN HEPATIC
ENCEPHALOPATHY

Intestinal microbiota disorder is characterized by low intestinal
microbiota diversity, overgrowth of harmful microbiota, and
disruption of beneficial microbiota in HE. Compared to healthy
controls, intestinal microbiota of cirrhosis patients has an
abundance of 75,245 genes according to quantitative
metagenomics (Qin et al., 2014). The genus Bacteroidetes
decreases with a decrease in liver function (Haraguchi et al.,
2019). Some intestinal microbiota have been correlated with the
pathological mechanisms, processes and outcomes of HE
(Bajaj, 2014; Iebba et al., 2018; Sung et al., 2019). For
instance, the translocation of Stenotrophomonas pavanii and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Methylobacterium extorquens into the peripheral blood system
enhances the risk of HE (Iebba et al., 2018).

Cognitive and motor disorders originate from different
structures of an impaired CNS. Psychometric HE score and
diffusion kurtosis imaging (DKI) have been used to evaluate
cognition and brain microstructure changes of patients with liver
cirrhosis, respectively. Compared to healthy individuals, DKI
parameters of gray matter and white matter have been found to
be significantly decreased in cirrhosis. Psychometric HE score was
found to be low and positively correlated with DKI parameters in
cirrhosis, indicating that decreased brain microstructural
complexity and cognitive impairment in patients with liver
cirrhosis may have a potential correlation. (Chen et al., 2017).
Thus, the link between microbiota changes and structural brain
lesions enhances the understanding of HE. Ahluwalia et al. used
magnetic resonance spectroscopy (MRS) and diffusion tensor
imaging (DTI) to determine the association between the changes
seen in the CNS and microbiota in HE. Enterobacteriaceae and
Autochthonoustaxa were found to be positively and negatively
correlated with astrocyte swelling, respectively. Based on the
analysis of DTI images, Porphyromonadaceae is associated with
neuronal damage (Ahluwalia et al., 2016). Moreover, stool
Alcaligenaceae has been correlated with poor cognition in OHE
(Bajaj, 2014). Identifying specific gut microbiota provides new
strategies for clinical diagnosis, treatment, and eventually weighing
the prognosis of HE. A summary of the above studies is presented
in Table 1. The table shows the progression, outcomes, and specific
microbiome in HE. And microbiota-associated mech-anisms
involved in the pathogenesis of HE are showed in Figure 1.
BLOOD–BRAIN BARRIER PERMEABILITY

Brain edema is a common characteristic in HE that promotes
neurological deterioration (Cudalbu and Taylor-Robinson, 2019).
TABLE 1 | The connection between gut microbiome and HE (positive relation ↑ and negative relation ↓).

Author HE Specimen Method Bacterial species

(Iebba et al., 2018) Risk Fecal 16S sequencing
and NMR metabolism

Bacteroides coprocola↑
Bifdobacterium longum↑
Bacteroides faecis ↓
Bacteroides coprophilus ↓

Blood Stenotrophomonas pavanii↑
Methylobacterium extorquens↑
Clostridium indolis↓

(Sung et al., 2019) Mortality Fecal 16S sequencing Lactobacillus↑
Bacteroides ↓
Clostridium incertae sedis↓
Clostridium XI ↓

Recurrence Fecal 16S sequencing Veilonella↑
Phascolarctobacterium ↓
Fusobacterium ↓

(Zhang et al., 2013)
(Ahluwalia et al., 2016)

Astrocyte swelling Fecal 16s sequencing,
MTPS

Autochthonous taxa↓
Enterobacteriaceaeand↑
S. salivarius↑

(Ahluwalia et al., 2016) Neuronal damage Fecal MTPS Prevotellaceae↑
Veillonellaceae↑
Porphyromonadaceae↑/↓
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Permeability of the BBB increases in patients and animal models
of HE (Dhanda and Sandhir, 2018; Weiss et al., 2019). The BBB,
which is a crucial regulatory interface in the gut–brain axis,
modulates the transportation of immune cells, inflammatory
molecules, and intestinal bacterial metabolites, thereby,
stabilizing the CNS microenvironment (Banks, 2006). Occludin
and claudin-5 are key tight junction proteins that play an
important role in regulating BBB permeability. Compared to
mice with healthy gut microbiota, BBB permeability was found
to be increased in GF mice, which relates to the expression of
occludin, and claudin-5. Transplantation of healthy gut
microbiota from pathogen-free mice was shown to ameliorate
the changes in GF mice (Braniste et al., 2014).

BBB damage in HE patients is associated with the swelling of
astrocytes, endothelial cell damage, and the opening of tight
junctions. Ammonia and inflammation are responsible for BBB
dysfunction in HE (Erickson et al., 2012; Marta and Jan, 2012).
Hyperammonemia triggers brain edema by disrupting the
glutamate or glutamine cycle in astrocyte (Norenberg and
Martinez-Hernandez, 1979). Key connexins form a gap
junction between astrocytes. In rats with bile duct ligation
(BDL) or hyperammonemia, elevated blood ammonia levels
are associated with gap junction dysfunction, which is
significantly improved after ammonia-lowering treatment.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
However, the treatment effect is not mediated by increasing the
expression of key connexins (Hadjihambi et al., 2017). Moreover,
ammonium chloride was shown to down-regulate claudin-12
gene expression in a brain capillary endothelial cell culture model
(Bélanger et al., 2007). Specific membrane transporters form the
structural basis for BBB functions and the transportation of
specific substances in and out of the brain. P-glycoprotein and
Mrp2 are the ATP-binding cassette (ABC) transporters
expressed in the brain endothelial cells (ECs) (Ebinger and
Uhr, 2006). Expression and function of the ABC transporter
affect drug distribution in the brain and prevents the
accumulation of endotoxins in the nervous system. Moreover,
hyperammonemia increases the expression of P-glycoprotein
and Mrp2 by activating the NF-kB pathway in the BBB (Zhang
et al., 2014). In ALF, the expression and function of ABC
transporters in the BBB are also altered (Fan and Liu, 2018).

A high concentration of LPS results in robust inflammatory
responses. Lipopolysaccharides bind brain endothelial cell
membrane receptors, including TLR-2, TLR-4, and CD14,
causing the release of cytokines and inflammatory mediators.
However, a lower concentration of LPS enhances innate immune
functions (Singh and Jiang, 2004; Dauphinee and Karsan, 2006).
After injection of LPS, ALF mice were found to further aggravate
hepatic injury and develop symptoms of liver coma. Moreover,
FIGURE 1 | The gut-brain axis in HE. The homeostasis of intestinal microbiota is affected in severe hepatic disease and portal shunt disease. Gut-origin substances
are delivered to the brain through the immune, humoral and vagus nerve pathway (D’Mello et al., 2009; Cawthon and de La Serre, 2018). Chronic intestinal
inflammation and “leaky gut” promote gut microbiota metabolite and bacterial translocation into the circulatory system leading to systemic inflammation and body
metabolic disorders (Seo and Shah, 2012). The brain microenvironment loses stability, followed by BBB dysfunction. Moreover, multiple factors disturb the CNS
function, including changes in brain structure, neurotransmitters, and other substance concentrations, leading to cognitive impairments in HE (Jones, 2003; Banks,
2006; Dhanda and Sandhir, 2015; Jayakumar and Norenberg, 2018; DeMorrow, 2019).
January 2021 | Volume 10 | Article 595759
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BBB is permeable to immunoglobulin G (IgG), which may be
modulated by the up-regulation of MMP9 (Chastre et al., 2014).
MMPs are proteases that degrade extracellular matrix (ECM),
which can easily lead to an increase in vascular permeability. In
BDL rats, MMP9 levels were found to be enhanced in the cortex,
hippocampus, and striatum (Dhanda and Sandhir, 2018).
Moreover, in LPS-induced systemic inflammatory responses,
MMP9 activity was shown to be regulated by Cyclooxygenases-
1 and -2 (COX1/COX2), which are critical regulators of innate
immune responses (Aid et al., 2010). Banks and colleagues, using
in vitro BBB models and animal inflammatory models,
postulated that LPS-induced disruption of the BBB may be
dependent on COX (Banks et al., 2015).

Gut microbial metabolites affect the physiological state of the
BBB by producing SCFAs. GF mice exhibited decreased BBB
permeability after Clostridium tyrobutyricum transplantation that
mainly produces butyrate and after oral gavage of sodium butyrate
(Braniste et al., 2014). In addition, propionate can protect the BBB
by binding the receptor FFAR3 expressed in the human brain
endothelium against oxidative stress (Hoyles et al., 2018).
NEUROINFLAMMATION AND IMMUNE
REGULATION

Neuroinflammation regulates mood and behavior in patients by
regulating the basal ganglia, cortical reward, and motor circuits.
Anxiety-related areas of the brain are also affected (Felger, 2018;
Cabrera-Pastor et al., 2019a). Neuroinflammation of the
hippocampus and cerebellum is a key pathological feature of
HE that leads to cognitive impairment. Hippocampal volume is
decreased in cirrhosis patients. Neuroinflammation affects the
expression of hippocampal glutamate receptors and GABAergic
tone in the cerebellum, inducing spatial memory or movement
disorder (Hassan et al., 2019; Lin et al., 2019).

Peripheral inflammation and chronic hyperammonemia
collectively promote neuroinflammation in liver disease. Liver
and intestinal function disorders promote the release of
peripheral inflammatory factors, which can pass the BBB and
directly affect brain functions (Banks, 2005; Rodrigo et al., 2010;
Luo et al., 2015). Microglia are the primary immune cells in CNS,
and excessive activation of microglia is the primary source of
inflammatory factors that cause neuronal damages (Jaeger et al.,
2019). The mechanisms of microglial activation include: i. brain
infiltration of peripheral immune cells (D’Mello et al., 2009); and
ii. activation of blood cytokine receptors in endothelial cells
(Dantzer et al., 2008). Chronic hyperammonemia can also cause
neuroinflammatory reactions (Rodrigo et al., 2010; Hernández-
Rabaza et al., 2016; Balzano et al., 2020) Injecting extracellular
vesicles of hyperammonemic rats into the control group causes
neuroinflammatory reactions and dyskinesia (Izquierdo-
Altarejos et al., 2020) The use of anti-TNFa therapy, which
does not pass the BBB, prevents the neuroinflammatory
responses induced by hyperammonemia (Balzano et al., 2020).
Therefore, the pro-inflammatory effect of hyperammonemia
may be mediated by peripheral inflammation.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Intestinal microorganisms are essential factors that cause
systemic inflammation and immune activation of liver diseases.
Apart from activating microglia in the brain, intestinal bacteria
regulate microglia maturation and homeostasis, which
corresponds to microglial defects in mice lacking short-chain
fatty acids (SCFAs) receptor FFAR2 (Erny et al., 2015).
Lipopolysaccharide is a commonly used in vitro inflammatory
model of glial cells and animal neuroinflammatory modeling
agent. Lipopolysaccharides administration transiently elevates
blood levels of interleukin6 (IL6) and tumor necrosis factor-
alpha (TNFa) (Labrenz et al., 2019). Pro-inflammatory factors
combine with the receptors expressed in Cerebral Endothelial
Cells (CECs) to produce a secondary messenger, which induces
oxidative stress and neuroinflammation (Azhari and Swain,
2018). Compared to mice with healthy microbiota, there is a
significant expression of inflammatory factors in the cortex of GF
mice. Moreover, GF mice showed robust neuroinflammation and
glial cell activation after receiving intestinal microbiota from
cirrhotic mice when compared to mice receiving healthy
microbiota. These changes were, however, not caused by liver
diseases. These experimental results suggest that an imbalance of
intestinal bacterial microbiota drives the development of
neuroinflammation in cirrhosis mice and may contribute to
the occurrence of HE (Liu et al., 2020).

Microbiota stimulates the vagus nerve to affect brain function
in a situation where the intestinal barrier is injured by
inflammation. Vagal afferent terminals that are located below
the intestinal barrier directly receive the signal produced by
microbiota to influence host behavior (Cawthon and de La Serre,
2018). Beneficial microorganisms and probiotic species produce
bioactive compounds that regulate host mucosal immune or
inflammatory responses. The process is, however, advantageous
in improving the inflammation signals received from the
peripheral system to the CNS. Lactobacillus inhibits TNF
production by converting the L-histidine in food into histamine,
which improves anti-inflammatory or immunoregulatory
functions through the H2 receptor (Hemarajata et al., 2013).
Furthermore, inhibition of TNFa formation may also protect
against acute ammonia intoxication (Pozdeev et al., 2017).

Gut microbes are involved in immune regulation in HE
patients (Martıń et al., 2014). Probiotic supplementation plays a
beneficial role in the immune function of HE individuals by
increasing serum neopterin levels and producing reactive
oxygen species (Horvath et al., 2016). Single microbial strains
play specific modulatory roles in the body’s immune system
(Surana and Kasper, 2014; Geva-Zatorsky et al., 2017). The BBB
prevents immune cells from freely entering the nervous system,
where immune cells are more likely to enter the nervous system,
as seen in the brain of dead cirrhosis patients after autopsy. In
an animal model of liver inflammation, microglia activated by
TNFa signals were shown to produce MCP1 and CCL2,
and recruited monocytes expressing CCR2 into the brain,
resulting in a significant infiltration of activated monocytes
into the brain (D’Mello et al., 2009). However, there are specific
immune system changes observed with MHE, such as
increased activation of B lymphocytes and all subtypes of
January 2021 | Volume 10 | Article 595759
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CD4+ T lymphocytes (Mangas-Losada et al., 2017). These
changes contribute to neuroinflammation and nervous
system disorders.

Suppression/regulation of neuroinflammation is crucial for
restoring memory and motor ability in patients with liver
cirrhosis or HE. Patients with chronic liver disease, such as
steatohepatitis, may have neuropsychological symptoms and
cognitive impairment before reaching liver cirrhosis (Felipo
et al., 2012; Grover et al., 2012; Mondal et al., 2020). Thus,
neuroinflammation in patients with chronic liver disease may
have occurred in the early stages of the disease. Balzano et al.
analyzed brain tissue samples from patients with different
degrees of steatohepatitis and cirrhosis. As disease severity
progressed, microglia and astrocytes in the brain were
gradually activated and mild steatohepatitis was found to be a
pathological feature of neuroinflammation (Balzano et al., 2018).
Prompt detection of symptoms and timely treatment may reduce
HE cases as well as hospitalization rates.
INTESTINAL BACTERIA METABOLITES
IN THE GUT–BRAIN AXIS

Ammonia
Hyperammonemia patients with or without cirrhosis have a
motor and cognitive dysfunction, suggesting that ammonia
affects the brain function through underlying mechanisms
(Balzano et al., 2020). Ammonia-induced central nervous
system toxicity is the main mechanism of HE. Excessive
production of ammonia by gut bacteria such as S. salivarius
contributes to increased ammonia levels in the blood and
astrocyte edema (Zhang et al., 2013).

The primary therapeutic approaches of hyperammonemia
include reducing ammonia production and promoting
ammonia metabolism (Rose, 2012). Some studies have
reported that hyperammonemia can be reduced by modifying
intestinal microbiota. Bacillus Lactis consumes intestinal
ammonia and increases overall survival in chronic and ALF
mice (Nicaise et al., 2008). Fecal microbiota transplantation
(FMT) was shown to attenuate hyperammonemia in HE
animal models, which is an accessible and useful treatment
option for patients (Kang et al., 2015). Shen et al. modified
intestinal microbes to reduce urease activity, and transplanted
them into the intestines of mice with liver injury. There was a
significant reduction in mice morbidity and mortality (Shen
et al., 2015). Moreover, Kurtz et al. modified the oral probiotic
Escherichia coli nissle 1917 in order to create a strain (SYNB1020)
that produces l-arginine and consumes NH3 in the vitro system.
SYNB1020 was shown to decrease systemic hyperammonemia in
a mouse model of thioacetamide (TAA)-induced liver injury.
Phase I clinical trial showed a significant clinical effect, indicating
the further clinical application of SYNB1020 for hyperammonemia-
related diseases (Kurtz et al., 2019).

Ammonia induces peripheral inflammation leading to
cognitive disorders. Decreasing blood ammonia levels is
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
beneficial for recovering cognitive impairment (Balzano et al.,
2020). Karababa et al. reported that ammonia attenuates
inflammatory responses in an astrocyte-dependent manner in
co-cultured astrocytes and microglia treated with LPS.
Neurosteroids secreted from astrocytes may contribute to the
anti-inflammatory effects of ammonia, which may be one of the
potential mechanisms for the absence of microglia reactivity in
cerebral cortex of patients with liver cirrhosis and HE (Karababa
et al., 2017).
Bile Acids
Bile acids promote lipid digestion as well as absorption and
modulate cellular metabolic activities by binding nuclear
receptor, including Farnesoid X Receptor (FXR), Pregnane X
Receptor (PXR), Vitamin D Receptor (VDR), and the
Glucocorticoid Recptor (GR) (Vıt́ek and Haluzıḱ, 2016). Serum
bile acids are elevated during cirrhosis. In an HE animal model,
activated apical sodium-dependent BA transporter (ASBT) was
shown to promote intestinal bile acid reabsorption, which
contributed to increased serum bile acid levels (Xie et al.,
2018). However, the homeostasis of the bile acid pool has an
intricate connection with intestinal bacteria. Fecal bile acid
profile is modulated by gut microbiota in cirrhosis.
Chenodeoxycholic (CDCA) and Enterobacteriaceae show a
strong positive correlation. Meanwhile, Ruminococcaceae and
Deoxycholic acid (DCA) had a positive correlation. After
treatment with rifaximin, Veillonellaceae, the ratio of primary
and secondary BA levels decreased in six early cirrhotics
(Kakiyama et al., 2013).

Bile acids directly or indirectly affect BBB permeability. In
BDL rat or rat brain microvessel endothelial cell treated with bile
acids, the BBB tight junction was damaged by the activation of
Rac1 and the downstream phosphorylation of the tight junction
protein occludin (Quinn et al., 2014). Sphingosine-1-Phosphate
Receptor 2 Signaling regulated by brain bile acids promotes
neuroinflammatory responses in HE, leading to microglial
activation and elevated CCL2 expression, thus indirectly and
ultimately affecting BBB permeability (McMillin et al., 2017). As
BBB permeability increases, unconjugated bile acids may
passively diffuse into the brain. Serum bile acid levels have no
apparent distinction in cirrhosis with or without HE. However,
bile acid levels were found to be increased in the cerebrospinal
fluid, while toxic bile acids accumulated in the brains of the BDL
mouse models. Therefore, nervous system disorders are
associated with the toxic effects of bile acids in HE (Weiss
et al., 2016; DeMorrow, 2019).

FXR, activated by bile acids and mainly expressed in the
neurons, causes HE-related CNS disturbances. Regulation of
bile acids may be a potential strategy for the treatment of HE.
FXR knockout mice had a high level of hepatitis development,
causing a lower concentration of butyrate in the colon. Butyrate
supplements can reverse dysfunctional bile acid synthesis and
hepatitis (McMillin et al., 2016; Xie et al., 2018). Bile acids act
on the nervous system through nuclear receptors, and can
also activate the TGR5 membrane receptor to alleviate
January 2021 | Volume 10 | Article 595759
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neuroinflammation in AOM-induced type A HE mice. The
TGR5 receptor is generally expressed in human and rodent
tissues and is also up-regulated in multiple animal models with
liver injury. TGR5 receptors play an active role in regulating liver
inflammation, cholestasis, and fibrosis. The TGR5 receptor was
found to be up-regulated in the cortex, thus, improving
neurological decline in HE mice after activation by TGR5
(Duboc et al., 2014; Keitel et al., 2019). These findings imply
the dual role bile acids play in the progression of HE.

Short-Chain Fatty Acids
Short chain fatty acids produced by intestinal microorganisms,
including butyrate, propionate and acetate, protect the integrity
of the intestines and reduce intestinal inflammation. Butyrate, as
the main component of SCFAs modulates protein tight junctions
to enhance gut barrier function. Its abnormal levels are
associated with liver disease severity (Brahe et al., 2013; Stilling
et al., 2016; Jin et al., 2019).

SCFAs can cross the BBB; therefore, they play a regulatory
role in the gut–brain axis (Joseph et al., 2017). In healthy
individuals, Ruminococcaceae and Faecalicatena fissicatena are
positively correlated with SCFAs, which are both, however,
decreased in cirrhosis patients. SCFAs provide energy for
colonic epithelial cell metabolism. However, the ability to
convert carbohydrates into SCFAs is diminished in cirrhosis
patients (Brahe et al., 2013; Jin et al., 2019). There is a further
reduction of SCFAs in cirrhosis with HE. Butyrate has a negative
correlation with inflammatory markers and serum endotoxin
(Juanola et al., 2019). SCFAs bind the G-protein-coupled
receptor 43 (GPR43) to promote the regression of
inflammation (Maslowski et al., 2009). Furthermore, SCFAs
downregulate system inflammation and regulate neutrophils,
macrophages, and other immune cells (Millard et al., 2002;
Vinolo et al., 2011). They also have a strong anti-inflammatory
effect on microglial and astrocyte models in vitro; therefore,
SCFAs may have some po t en t i a l f o r r e gu l a t i ng
neuroinflammatory processes (Huuskonen et al., 2004; Stilling
et al., 2016).

Neurotransmitter
Gamma-Aminobutyric Acid
GABA is an important bioactive compound and a crucial
inhibitory neurotransmitter in the nervous system. It is mainly
produced in the gut by Bifidobacterium and Lactobacillus,
although the GABAergic neurons also produce a small amount
of GABA (Yunes et al., 2016; Strandwitz et al., 2019).
Lactobacillus can regulate GABA concentrations and the
expression of GABA receptors in the CNS through the gut–
brain axis (Barros-Santos et al., 2020; Chen et al., 2020). In feces,
the increased abundance of Bifidobacterium longum enhances
the risk of HE (Iebba et al., 2018). Elevated GABA levels are
associated with physiological and psychological processes in HE
(Jones, 2003). When liver failure occurs, serum and brain GABA
levels are elevated. GABA can exert pre- and post-synaptic
inhibition, leading to motor and consciousness disorders
(Kaupmann et al., 1997; Kullmann et al., 2005). Antagonists of
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the GABA receptor complex can improve the clinical symptoms
of HE animals and electroencephalographic abnormalities
(Bosman et al., 1991).

Gut ammonia is considered as an essential factor in elevated
GABAergic tone. A study by Cauli et al. found out that
hyperammonemia selectively increased the GABAergic tone of
the cerebellum, ventral thalamus, and the ventromedial thalamus
in hyperammonemic rats (Cauli et al., 2009a). The underlying
mechanism by which ammonia increases GABA concentration is
associated with GABA transaminase activity or neuronal
tricarboxylic acid cycle (Palomero-Gallagher and Zilles, 2013).
Moreover, Fried et al. reported that ammonia enhances the
release of GABA from enteric glia, subsequently altering
intestinal neurotransmission, resulting in intestinal motility
disorders and an increase in gut ammonia levels (Fried et al.,
2017). Studies have also established that changes in GABAA
receptor density are up-regulated in hyperammonemia models.
In hyperammonemia, elevated GABA concentration and
GABAA receptor density correlate to promote CNS disorders,
although the expression of the GABAA receptor subunit is not
consistent. For instance, GABAA receptor subunit a1 was found
to be increased while the alpha-5 subunit was reduced in the
hyperammonemia rat model (Palomero-Gallagher and Zilles,
2013; Hernández-Rabaza et al., 2016).

The benzodiazepine receptor (BZR) is part of the GABAA
receptor complex; hence exogenous and endogenous
benzodiazepine substances bind to GABAA receptor, causing
an allosteric regulation of the receptor, thus increasing GABA
transport. Ammonia has also been shown to associate with BZR
ligands, causing CNS function disorders. Therefore, decreasing
ammonia concentration can improve enhanced GABA-ergic
(Helewski et al . , 2003; Jones, 2003). Clinically, the
benzodiazepine receptor is used as the target for improving
GABA-ergic. Flumazenil is a benzodiazepine receptor blocker
for the treatment of HE. Increased benzodiazepine receptor
ligand significantly enhances GABA inhibition in HE brain
(Ahboucha and Butterworth, 2005). In HE rat models, BZR
levels were not altered in normal rat plasma upon antibiotic
intervention. It, however, increased BZR precursors, which may
either arise from gut bacteria, increased BZR synthesis in the
brain, or enhanced GABA-ergic neurotransmission to promote
HE (Yurdaydin et al., 1995).

Glutamate
Glutamate is an excitatory neurotransmitter that regulates
nervous system development through NMDA and AMPA
receptors (Martinez-Lozada and Ortega, 2015). When
ammonia levels increase in the brain, glutamate binds
ammonia, forming glutamine under the catalytic activity of
glutamine synthetase. Accumulation of glutamine and
ammonia is associated with brain edema. Studies have found
that the extracellular concentration of glutamate increases due to
abnormal uptake, transport and release of glutamate. Learning
and memory impairment is associated with the abnormal
glutamate-NO-cGMP metabolic pathway in the brain
(Dabrowska et al., 2018; Cabrera-Pastor et al., 2019b). Even
though different concentrations and duration of ammonia have
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different effects on the expression of glutamate receptors, acute
hyperammonemia associated mortalities are mediated by
activated NMDAR (Monfort et al., 2002; Kosenkov et al.,
2018). NMDAR antagonists were shown to effectively reduce
hyperammonemia or ALF induced mortalities in rats
(Cauli et al., 2009b; Cauli et al., 2014). Glutamate produced by
diet or bacteria cannot be used by the CNS because of BBB.
Studies have shown that glutamate and glutamate receptors affect
the gut-brain axis in other diseases, such as inflammatory bowel
disease (IBD) (Baj et al., 2019). In addition, probiotics and
prebiotics can adjust the NMDA/AMPA ratio to affect
cognitive functions in middle-aged rats (Romo-Araiza et al.,
2018). However, it has not been established whether specific
intestinal bacteria alterations affect glutamatergic transmission in
HE patients.

5-Hydroxytryptamine
Gut tract is the leading site for 5-HT synthesis. High colonic and
blood 5-HT levels are associated with specific gut microbiota
metabolites (Roshchina, 2010), although the mechanism of 5-HT
synthesis that is regulated by microbiota has not been
established. Indigenous spore-forming bacteria (Sp) from
mouse and human microbiota act on colonic enterochromaffin
cells (ECs) to produce 5-HT (Yano et al., 2015). Moreover,
probiotics can stimulate the gut–brain axis and increase 5-HT
and serotonin transporter (5-HTT) expression, which may
promote brain development and function (Ranuh et al., 2019).

Dysfunction of 5-HT receptor and excess serotonergic brain
activity is involved in HE development (Apelqvist et al., 1998;
Dhanda and Sandhir , 2015; Khiat et al . , 2019). In
hyperammonemia mice, the 5-HT2B receptor was found to be
up-regulated in the brain and had no response to 5-HT.Moreover,
the dysfunction of the 5-HT2B receptor was also observed in
ammonia treated astrocytes in vitro (Yue et al., 2019). 5-HT(1A) is
also involved in cognitive–behavioral disorders in HE, while its
activation can, reverse nervous system dysfunctions (Magen et al.,
2010). However, there was no difference in 5-HT of GF mice
before and after FMT (Maslowski et al., 2009). Decreasing
peripheral 5-HT absorption can help improve CNS disease. Oral
Selective serotonin reuptake inhibitors (SSRIs) improve
depression and decreases mortality rates in patients with chronic
liver disease. This therapeutic effect is achieved by activating the
vagus nerve dependent gut-brain signaling (Mullish et al., 2014;
Neufeld et al., 2019).

5-HT concentration depends on the level of tryptophan in the
brain (Maslowski et al., 2009). Free tryptophan (TRP), which is the
precursor of the neurotransmitter 5-HT, increases only in HE,
with no changes in hepatitis and cirrhosis. However, tryptophan is
an essential amino acid that competes with other amino acids to
cross the BBB. Thus, elevated serum free tryptophan levels
invariably increases its availability to the brain and to the
activity of serotonergic neurons (Herneth et al., 1998; Lozeva-
Thomas, 2004; Saleem et al., 2008). Dietary tryptophan restriction
improves neuroinflammation by impairing encephalitogenic T cell
responses (Sonner et al., 2019). Probiotic treatment of
hyperammonemia rats was shown to significantly decrease 5-HT
metabolism (Luo et al., 2014).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
EFFECTS OF CLINICAL TREATMENT ON
THE INTESTINAL METABOLOME IN
HEPATIC ENCEPHALOPATHY

Treatments for HE target disease causing agents, control infections,
reduce absorption of intestinal ammonia, and correct the metabolic
dysfunction caused by liver diseases. Several drugs, including
antibiotics and laxatives, are used to treat HE. Probiotics and
other drugs are also used in clinical practice. Clinical therapeutic
drugs may or may not alter the intestinal metabolome to achieve
therapeutic effect. We discuss the effects of several commonly used
drugs on the intestinal microbiota of HE patients.

Antibiotics
Rifaximin is a common antibiotic used to treat patients with HE. It
improves hyperammonemia, endotoxemia, and cognitive dysfunction
(Kaji et al., 2017). Other antibiotics such as neomycin are not
recommended because of their side effects (Patidar and Bajaj, 2013).
Although rifaximin has bactericidal and bacteriostatic effects, it does
not change the abundance of dominant intestinal bacteria in HE
patients. In addition, it does not control the abundance of Gram-
negative bacteria. It decreases blood endotoxin levels through
unknown mechanisms. It is postulated that it can regulate the
metabolism of intestinal bacteria or stabilize intestinal barrier
functions (Kaji et al., 2017; Montagnese et al., 2018).Other studies
have shown that it has immunomodulatory effects as it reduces
inflammation by regulating bacteria. Rifaxmin was shown to
improve the immune system in 59% of MHE patients (Mangas-
Losada et al., 2019).

Lactulose
Various drugs are used to reduce blood ammonia levels. Lactulose
is the most commonly used ammonia-reducing drug. It is an
unabsorbable disaccharide that is used as a laxative because it
triggers the production of large amounts of ammonia in stool
(Montagnese et al., 2018). Lactulose alone or in combination with
rifaximin is widely used in the treatment of HE. Clinical studies
have shown that lactulose improves patients’ cognitive functions
and quality of life (Wang et al., 2019). In rats with CCL4-induced
ALF, lactulose improved the plasticity of the nervous system (Yang
et al., 2015). It also inhibits intestinal bacterial overgrowth,
translocation and intestinal resistance. This decreases systemic
inflammatory responses and hyperammonemia in HE rats. In
patients with liver cirrhosis, clinical doses of lactulose promote the
growth of beneficial bacteria, such as Bifidobacterium and
Lactobacillus (Montagnese et al., 2018).

Probiotic
Probiotic treatment is a new adjuvant therapy for HE. Clinical
studies have shown that probiotics can prevent the occurrence
and recurrence of HE in patients with cirrhosis (Lunia et al.,
2014; Venigalla et al., 2015). Probiotics comprise various bacteria
which directly improve the composition of intestinal microbiota,
thereby, conferring therapeutic effects. Probiotics reduce
bacterial ammonia production and the absorption of intestinal
ammonia and other toxins (Solga, 2003). In patients with
January 2021 | Volume 10 | Article 595759

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Chen et al. Gut Microbiota in Hepatic Encephalopathy
compensatory cirrhosis taking multiple probiotic strains for 6
months, their stool was found to be rich in probiotic strains,
including Lactobacillus brevis, Lactobacillus salivarius and
Lactococcus lactis. In addition, probiotics may boost the
production of short-chain acids by increasing the abundance of
multiple bacteria, including Calibacterium prausnitzii,
Syntrophococcus sucromutans and Alistipes shahii (Horvath
et al., 2020).

Fecal Microbiota Transplant
FMT is an emerging treatment approach that is aimed at
rebuilding intestinal microbiota to treat diseases, and is
gradually being generalized for the treatment of various
intestinal dysfunction diseases, such as inflammatory bowel
disease (IBD) (Monfort et al., 2002; Bibbo et al., 2017). A few
animal experiments have shown that FMT has obvious
protective effects on CCL4-induced ALF rats (Wang et al.,
2017). This beneficial effect is not only observed in the
improvement of cognitive function, but can also improve the
markers of disease activity associated with the gut-liver-brain
axis disorder. FMT was shown to significantly reduce
neuroinflammatory responses in CCL4-induced cirrhotic mice.
It also provided effective protection in HE by restoring normal
intestinal permeability and improving liver damage indicators.
TOLL-like receptors are important mediators of inflammatory
responses. Hepatic TLRs and serum ammonia levels were found
to be significantly down-regulated in cirrhosis rats after FMT
(Wang et al., 2017; Liu et al., 2020). Although clinical trials of
FMT are ongoing, we discussed its effectiveness and safety in
clinical treatment based on the published results.

Recurrent HE leads to hospitalization. In an open and
randomized clinical trial, it was determined whether the
therapeutic effect of FMT enema in cirrhosis patients with
recurrent HE after pretreatment with antibiotics is better than
standard of care (SOC). Compared to SOC, a reasonable choice of
donor FMT can significantly improve cognitive functions in
patients and reduce incidences of serious adverse events. In a
randomized, single-blind, placebo-controlled phase 1 clinical trial,
compared to placebo, oral FMT capsules showed significant safety
in cirrhosis patients with recurrent HE (Bajaj et al., 2017; Fuchs
and Puri, 2020). Fecal transplantation improves liver functions in
a number of liver diseases (Lechner et al., 2020). Restoring liver
functions reduces the impact of various factors on the nervous
system, prevents or defers neurological disorders in patients with
liver diseases, and improves the quality of life for patients.
Although clinical trials involving different liver diseases have just
begun, FMT is an effective treatment method for liver diseases and
their complications.
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SUMMARY

Intestinal microbes have been implicated in shaping the nerves and
immune systems or other fundamental process during growth. The
occurrence of numerous diseases is accompanied by significant
changes in microbial communities. As cirrhosis progresses, the
composition of intestinal microbiome is altered. Harmful intestinal
bacteria promote the occurrence of complications related to liver
cirrhosis, including endotoxemia, infection, organ failure, and
death. Gut bacteria regulate numerous metabolic processes and
physiological functions by secreting different metabolites. Many
intestinal metabolites (such as bile acids) are necessary for the
human body and undergo enterohepatic recycling, while intestinal
metabolic wastes (such as ammonia) are excreted from the body
after hepatic metabolism. When these substances exceed
physiological concentrations, they produce clinical manifestations
of toxicity. They pass the BBB with increased permeability, destroy
the nervous system microenvironment, nerve conduction, and
even directly lead to coma and death. Intestinal intervention may
be a treatment option for all stages of liver disease as it reduces the
exposure of the liver and nervous system to intestinal toxins.

Intestinal microbiota is closely associated with CNS function,
including brain structure, gene expression, and substance
metabolism. Understanding the function of intestinal microbiota
in host behavior will promote the management of mental and
psychological diseases. Therapies that balance intestinal
microbiota are critical for correcting central nervous activity and
function in patients with CNS dysfunction due to abnormal
intestinal microbiota composition. Such therapies can be
designed to target species associated with disease progression.
Probiotics or fecal transplantation can be used to manipulate the
intestinal microbiome to improve hyperammonemia and
endotoxemia. Proper selection of donor FMT reduces
hospitalization rates, improves cognition and malnutrition in
patients with cirrhosis. It also improves the prognosis of HE
patients. Consequently, the underlying mechanisms through
which microbes modulate CNS via the gut–brain axis should be
studied. Liver function alterations in patients with cirrhosis are
difficult to reverse. Maintaining intestinal homeostasis to treat liver
disease-related nervous system damage is a new potential
treatment method. Reasonable intestinal intervention combined
with drug treatment may achieve mutually beneficial effects.
AUTHOR CONTRIBUTIONS

All authors contributed to the article and approved the
submitted version.
REFERENCES
Ahboucha, S., and Butterworth, R. F. (2005). Role of endogenous benzodiazepine

ligands and their GABA-A–associated receptors in hepatic encephalopathy.
Metab. Brain Dis. 20, 425–437. doi: 10.1007/s11011-005-7928-y

Ahluwalia, V., Betrapally, N. S., Hylemon, P. B., White, M. B., Gillevet, P. M., et al.
(2016). Impaired Gut-Liver-Brain axis in patients with cirrhosis. Sci. Rep. 6,
26800. doi: 10.1038/srep26800
Aid, S., Silva, A. C., Candelario-Jalil, E., Choi, S., Rosenberg, G. A., and Bosetti, F.
(2010). Cyclooxygenase-1 and -2 differentially modulate lipopolysaccharide-
induced blood-brain barrier disruption through matrix metalloproteinase
activity. J. Cereb. Blood Flow Metab. 30, 370–380. doi: 10.1038/jcbfm.2009.223

Albillos, A., de Gottardi, A., and Rescigno, M. (2020). The gut-liver axis in liver
disease: Pathophysiological basis for therapy. J. Hepatol. 72, 558–577.
doi: 10.1016/j.jhep.2019.10.003
January 2021 | Volume 10 | Article 595759

https://doi.org/10.1007/s11011-005-7928-y
https://doi.org/10.1038/srep26800
https://doi.org/10.1038/jcbfm.2009.223
https://doi.org/10.1016/j.jhep.2019.10.003
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Chen et al. Gut Microbiota in Hepatic Encephalopathy
Apelqvist, G., Bergqvist, P. B., Larsson, B., Bugge, M., and Bengtsson, F. (1998).
Regional brain serotonin receptor changes in portacaval shunted rats. Acta
Physiol. Scand. 162, 509–516. doi: 10.1046/j.1365-201X.1998.0310f.x

Azhari, H., and Swain, M. G. (2018). Role of peripheral inflammation in hepatic
encephalopathy. J. Clin. Exp. Hepatol. 8, 281–285. doi: 10.1016/
j.jceh.2018.06.008

Baj, A., Moro, E., Bistoletti, M., Orlandi, V., Crema, F., and Giaroni, C. (2019).
Glutamatergic signaling along the Microbiota-Gut-Brain axis. Int. J. Mol. Sci.
20, 1482. doi: 10.3390/ijms20061482

Bajaj, J. S., Kassam, Z., Fagan, A., Gavis, E. A., Gavis, E. A., Jane, C. I., et al. (2017).
Fecal microbiota transplant from a rational stool donor improves hepatic
encephalopathy: A randomized clinical trial. Hepatol. (Baltimore Md.) 66,
1727–1738. doi: 10.1002/hep.29306

Bajaj, J. S. (2008). Management options for minimal hepatic encephalopathy.
Expert Rev. Gastroenterol. Hepatol. 2, 785–790. doi: 10.1586/17474124.2.6.785

Bajaj, J. S. (2014). The role of microbiota in hepatic encephalopathy. Gut Microbes
5, 397–403. doi: 10.4161/gmic.28684

Balzano, T., Forteza, J., Molina, P., Giner, J., Monzo, A., Sancho-Jimenez, J., et al.
(2018). The cerebellum of patients with steatohepatitis shows lymphocyte
infiltration, microglial activation and loss of purkinje and granular neurons.
Sci. Rep. 8, 3004. doi: 10.1038/s41598-018-21399-6

Balzano, T., Dadsetan, S., Forteza, J., Cabrera-Pastor, A., Taoro-Gonzalez, L.,
Malaguarnera, M., et al. (2020). Chronic hyperammonemia induces peripheral
inflammation that leads to cognitive impairment in rats: Reversed by anti-
TNF-alpha treatment. J. Hepatol. 73, 582–592. doi: 10.1016/j.jhep.2019.01.008

Banks, W. A., Gray, A. M., Erickson, M. A., Salameh, T. S., Damodarasamy, M.,
Sheibani, N., et al. (2015). Lipopolysaccharide-induced blood-brain barrier
disruption: Roles of cyclooxygenase, oxidative stress, neuroinflammation, and
elements of the neurovascular unit. J. Neuroinflammation 12, 223.
doi: 10.1186/s12974-015-0434-1

Banks, W. A. (2005). Blood-brain barrier transport of cytokines: A mechanism for
neuropathology. Curr. Pharm. Des. 11, 973–984. doi: 10.2174/13816120
53381684

Banks, W. A. (2006). The blood-brain barrier as a regulatory interface in the gut-
brain axes. Physiol. Behav. 89, 472–476. doi: 10.1016/j.physbeh.2006.07.004

Barros-Santos, T., Oliveira Silva, K. S., Libarino-Santos, M., Cata-Preta, E. G., Reis,
H. S., Tamura, E. K., et al. (2020). Effects of chronic treatment with new strains
of Lactobacillus plantarumon cognitive, anxiety- and depressive-like behaviors
in male mice. PloS One 15, e234037. doi: 10.1371/journal.pone.0234037

Bélanger, M., Asashima, T., Ohtsuki, S., Yamaguchi, H., Ito, S., Terasaki, T., et al.
(2007). Hyperammonemia induces transport of taurine and creatine and
suppresses claudin-12 gene expression in brain capillary endothelial cells in
vitro. Neurochem. Int. 50, 95–101. doi: 10.1016/j.neuint.2006.07.005

Bibbo, S., Ianiro, G., Gasbarrini, A., and Cammarota, G. (2017). Fecal microbiota
transplantation: Past, present and future perspectives. Minerva Gastroenterol.
Dietol. 63, 420–430. doi: 10.23736/S1121-421X.17.02374-1

Bonaz, B., Bazin, T., and Pellissier, S. (2018). The vagus nerve at the interface of the
Microbiota-Gut-Brain axis. Front. Neurosci. 12, 49. doi: 10.3389/
fnins.2018.00049

Bosman, D. K., Buijs, C. A. V. D., Haan, J. G. D., Maas, M. A. W., and Chamuleau,
R. A. F. M. (1991). The effects of benzodiazepine-receptor antagonists and
partial inverse agonists on acute hepatic encephalopathy in the rat.
Gastroenterology 101, 772–781. doi: 10.1016/0016-5085(91)90538-V

Brahe, L. K., Astrup, A., and Larsen, L. H. (2013). Is butyrate the link between diet,
intestinal microbiota and obesity-related metabolic diseases? Obes. Rev. 14,
950–959. doi: 10.1111/obr.12068

Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., et al.
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de Jong, P. R., González-Navajas, J. M., and Jansen, N. J. G. (2016). The digestive
tract as the origin of systemic inflammation. Crit. Care 20, 279. doi: 10.1186/
s13054-016-1458-3

De Vadder, F., Grasset, E., Holm, L. M., Karsenty, G., Macpherson, A. J., Olofsson,
L. E., et al. (2018). Gut microbiota regulates maturation of the adult enteric
nervous system via enteric serotonin networks. Proc. Natl. Acad. Sci. U.S.A.
115, 6458–6463. doi: 10.1073/pnas.1720017115

DeMorrow, S. (2019). Bile acids in hepatic encephalopathy. J. Clin. Exp. Hepatol. 9,
117–124. doi: 10.1016/j.jceh.2018.04.011

Dhanda, S., and Sandhir, R. (2015). Role of dopaminergic and serotonergic
neurotransmitters in behavioral alterations observed in rodent model of
hepatic encephalopathy. Elsevier 286, 222–235. doi: 10.1016/j.bbr.2015.01.042

Dhanda, S., and Sandhir, R. (2018). Blood-Brain barrier permeability is
exacerbated in experimental model of hepatic encephalopathy via MMP-9
activation and downregulation of tight junction proteins. Mol. Neurobiol. 55,
3642–3659. doi: 10.1007/s12035-017-0521-7

D’Mello, C., Le, T., and Swain, M. G. (2009). Cerebral microglia recruit monocytes
into the brain in response to tumor necrosis factoralpha signaling during
peripheral organ inflammation. J. Neurosci. 29, 2089–2102. doi: 10.1523/
JNEUROSCI.3567-08.2009
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Mangas-Losada, A., Garcıá-Garcıá, R., Leone, P., Ballester, M. P., Cabrera-Pastor, A.,
et al. (2019). Selective improvement by rifaximin of changes in the
immunophenotype in patients who improve minimal hepatic encephalopathy.
J. Trans. Med. 17, 293. doi: 10.1186/s12967-019-2046-5

Marta, S., and Jan, A. (2012). Alterations of blood brain barrier function in
hyperammonemia: An overview. Neurotox. Res. 21, 236–244. doi: 10.1007/
s12640-011-9269-4
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