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Abstract

We derive a noncentral F power approximation for the Kenward and Roger test. We use a

method of moments approach to form an approximate distribution for the Kenward and

Roger scaled Wald statistic, under the alternative. The result depends on the approximate

moments of the unscaled Wald statistic. Via Monte Carlo simulation, we demonstrate that

the new power approximation is accurate for cluster randomized trials and longitudinal study

designs. The method retains accuracy for small sample sizes, even in the presence of miss-

ing data. We illustrate the method with a power calculation for an unbalanced group-ran-

domized trial in oral cancer prevention.

1 Introduction

1.1 Motivation

Linear mixed models are widely used in biomedical research for inference in analyses with

missing data. Kenward and Roger [1] described a scaled Wald statistic and null case reference

distribution for tests of fixed effects in the linear mixed model. Despite the widespread use of

the Kenward and Roger [1] method for data analysis, no general methods are available to cal-

culate power for the Kenward and Roger [1] test.

Several authors have described power approximations for related tests and models. Helms

[2] described a noncentral F power approximation for a Wald test. Helms used a different

null case reference distribution than the one derived by Kenward and Roger. Stroup [3] sug-

gested an “exemplary data” approach for calculating power for mixed models with missing

data. Tu et al. [4, 5] developed an asymptotic power approximation based on generalized esti-

mating equations. Shieh [6] provided non-central F power approximations for multivariate

models with random covariates and no missing data. Chi, Glueck, and Muller [7] demon-

strated that power methods for the general linear multivariate model may be used in complete,

balanced, homoscedastic mixed models.
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We derive a noncentral F power approximation for the Kenward and Roger [1] test for a

broad range of models. We use a method of moments approach [8] to form an approximate

distribution of the Kenward and Roger [1] scaled Wald statistic, FR, under the alternative. The

reference distribution of FR under the alternative depends on the approximate moments of the

unscaled Wald statistic.

The remainder of the manuscript is organized as follows. In Section 2, we introduce nota-

tion for the general linear mixed model and briefly review the methods of Kenward and Roger

[1]. In Section 3, we describe a noncentral F power approximation for the Kenward and

Roger [1] test. In Section 4, we summarize the Monte Carlo simulation study used to evaluate

the power approximation. In Section 5, we demonstrate a power calculation for a longitudinal

trial in oral cancer prevention. In Section 6, we provide concluding remarks.

2 Notation, models, and hypothesis testing

2.1 Notation

For i 2 {1, . . ., n}, let a = {ai} denote an n × 1 column vector. Furthermore, for i 2 {1, . . ., n}

and j 2 {1, . . .,m}, let A = {aij} indicate an n ×mmatrix with transpose A0 = {aji}. Let Id be a

(d × d) identity matrix. For a matrix A = [a1 a2 . . . an], let vec Að Þ ¼ a0
1

a0
2

. . . a0n �
0

�
.

Define the Kronecker product of two matrices A and B as A� B = {aij B} [9, Section 1.3].

Extend the direct sum operator [9, Section 1.3] to sets of arbitrarily sized matrices as fol-

lows. Let {A1, . . ., AJ} be a set of matrices such that Aj has dimension (rj × cj). Let 0ri ;cj be an

(ri × cj) matrix of zeros. Define the direct sum of {A1, . . ., AJ} as

�
J

j¼1

Aj ¼

A1 0r1 ;c2 � � � 0r1 ;cJ

0r2 ;c1 A2
..
.

..

. . .
.

0rJ� 1 ;cJ

0rJ ;c1 � � � 0rJ ;cJ� 1
AJ

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

: ð1Þ

For δ 2 {1, . . ., (2p − 1)} and d 2 {1, . . ., δ}, define the set Rd where Rd� {1, . . ., p} of cardi-

nality 1� pd� p. For every Rd, let Dp,d, a deletion matrix, be the (pd × p) submatrix of Ip
formed by keeping each row i of Ip such that i 2 Rd. For example, given a (p × p) matrix A and

Rd = {1, 3},

D3;d ¼
1 0 0

0 0 1

" #

ð2Þ

and

D3;dAD
0

3;d ¼
a11 a13

a31 a33

" #

: ð3Þ

Let E0(u) and EA(u) be the expectations of the random variable u under the null and alter-

native hypotheses, respectively. Similarly, let V0ðuÞ and VAðuÞ indicate the variance under the

null and alternative hypotheses. For random matrix variates, denote the covariance under the

null and alternative hypotheses as V0ðAÞ and VAðAÞ, respectively.
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Let X � D indicate that random variable X follows a distribution D exactly, while X _�D
indicates that distribution is followed approximately. Let F � Fðnn; nd; gÞ indicate that the ran-

dom variable F follows a noncentral F distribution [10] with numerator degrees of freedom

νn, denominator degrees of freedom νd, and noncentrality parameter γ. For γ = 0, F is said to

follow a central F distribution, written F � Fðnn; ndÞ. Define F � 1
ðb; nn; nd; gÞ such that for 0

� b� 1

Fðf ; nn; nd; gÞ ¼ b, F � 1ðb; nn; nd; gÞ ¼ f : ð4Þ

Use Y � N N;pðM;Ξ;ΣÞ to indicate that the (N × p) matrix Y follows a matrix Gaussian dis-

tribution, with M an (N × p) matrix of means, X an (N × N) symmetric, positive definite col-

umn covariance matrix, and S a (p × p) symmetric, positive definite row covariance matrix

[9, Chapter 8]. Write W �WpðN;ΣÞ to indicate that the (p × p) matrix W follows a central

Wishart distribution of dimension p, degrees of freedom N, on covariance S. For C = S−1,

write W � 1 � IWpfðN þ pþ 1Þ;Ψg to indicate that W−1 follows a central inverse Wishart

distribution of dimension p, degrees of freedom N+ p+ 1, and precision matrix C [11, p. 111,

Theorem 3.4.1].

2.2 The general linear mixed model

We describe the general linear mixed model for Gaussian outcomes using the notation of

Muller and Stewart [9, Chapter 5]. Let i 2 {1, . . ., N} indicate the ith independent sampling unit
[9, Chapter 5]. An independent sampling unit may be a single participant, as in a clinical trial,

or a group of participants, as in a cluster-randomized study. Observations from two different

independent sampling units are statistically independent. Observations within an independent

sampling unit may be correlated. For example, for a particpant in a longitudinal trial, repeated

measurements over time will be correlated.

Let pi be the number of observations for the ith independent sampling unit, with p =

maxi(pi). For the ith independent sampling unit, let yi be the (pi × 1) vector of observed out-

comes, Xi be the (pi × r) fixed effects design matrix of rank r, and ei be the (pi × 1) vector of ran-

dom errors. Assume that for i 6¼ j, ei? ej and yi? yj. Let Si be a (pi × pi) symmetric, positive

definite matrix, with

ei � N pi
ð0;ΣiÞ: ð5Þ

Let β be the (r × 1) vector of regression parameters. The linear mixed model for the ith inde-

pendent sampling unit is

yi ¼ Xiβþ ei: ð6Þ

Let n ¼
PN
i¼1
pi. Define the (n × 1) vectors ys ¼ y0

1
y0

2
::: y0N �

0
�

and

es ¼ e0
1

e0
2

. . . e0N �
0

�
. Stack the fixed effect design matrices into the (n × r) matrix

Xs ¼ X0
1

X0
2

. . . X0N½ �
0
: ð7Þ

Throughout, we assume that predictor values are not allowed to change within an independent

sampling unit, i.e., that there are no repeated covariates. In addition, we assume that all predic-

tor values are fixed as part of the study design. The population-averaged form of the linear

mixed model is

ys ¼ Xsβþ es: ð8Þ
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Define

Σs ¼ �
N

i¼1
Σi: ð9Þ

The distribution of ys is

ys � N nðXsβ;ΣsÞ: ð10Þ

2.3 Tests for fixed effects in mixed models

Let α be the Type I error rate. Let C be the (a × r) matrix of fixed effects contrasts. Define the

(a × 1) matrix θ = Cβ, and let θ0 be the (a × 1) matrix of null values. The general linear hypoth-

esis may be stated as

H0 : θ ¼ θ0: ð11Þ

In order to conduct power analysis for the general linear hypothesis in the mixed model, we

must consider the target estimation method. Several estimation methods have been described

for mixed models [12, Chapter 5]. Common estimation methods include restricted maximum

likelihood and maximum likelihood.

Letm indicate the estimation method. Let Σ̂s;m and β̂m be the estimates of Ss and β obtained

from methodm. Define θ̂m ¼ Cβ̂m. The Wald statistic for the linear mixed model is

wm ¼ ðθ̂m � θ0Þ
0
½CðX0sΣ̂

� 1
s;mXsÞ

� 1C0�� 1
ðθ̂m � θ0Þ=a: ð12Þ

The distribution of the Wald statistic is not known exactly for anym. Various reference dis-

tributions have been suggested for each estimation methodm. In general, the distributions

share a common form, with

wm _� Fðnn;m; nd;m; gmÞ: ð13Þ

Under the null hypothesis, γm = 0 and wm _� Fðnn;m; nd;mÞ.

2.4 The Kenward-Roger test for fixed effects

Kenward and Roger [1] suggested using restricted maximum likelihood estimation (m = R)

and a scaled Wald statistic.

FR ¼ lðθ̂R � θ0Þ
0
½CðX0sΣ̂

� 1
s;RXsÞ

� 1C0�� 1
ðθ̂R � θ0Þ=a:

¼ lwR
ð14Þ

Kenward and Roger [1] used Taylor expansion to estimate E0(wR) and V0ðwRÞ from observed

data. Kenward and Roger [1] substituted E0(wR) and V0ðwRÞ into method of moments approxi-

mations for λ and the reference distribution of FR under the null. With FR _� Fða; nÞ,

r ¼
V0ðwRÞ

2E0ðwRÞ
2
; ð15Þ

n ¼ 4þ
aþ 2

ar � 1
; ð16Þ
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and

l ¼
n

ðn � 2ÞE0ðwRÞ
: ð17Þ

3 Power approximation for the Kenward-Roger test in the linear

mixed model

3.1 The approximate moments of the Wald statistic

We derive a noncentral F power approximation for the Kenward and Roger [1] test. The

method of moments approach [8] is used to form an approximate distribution of the Kenward

and Roger [1] scaled Wald statistic, FR, under the alternative. The reference distribution of FR
under the alternative depends on the approximate moments of the unscaled Wald statistic.

We demonstrate that the Wald statistic has an approximately noncentral F reference distri-

bution under the alternative and a central F reference distribution under the null. The result

depends on approximate distributional results for both ðθ̂R � θ0Þ and CðX0sΣ̂
� 1
s;RXsÞ

� 1C0.
Because distributional results are, in general, not available for restricted maximum likelihood

estimation, we instead use distributional results based on other techniques.

Letm =W indicate weighted least squares, andm =M denote multivariate methods.

Approximate ðθ̂R � θ0Þ by ðθ̂W � θ0Þ, which is Gaussian, conditional on Ss. The term

CðX0sΣ̂
� 1
s;RXsÞ

� 1C0 can be approximated by CðX0sΣ̂
� 1
s;MXsÞ

� 1C0. We show that CðX0sΣ̂
� 1
s;MXsÞ

� 1C0 is

approximately Wishart. Finally, under the assumption of independence, we combine the

terms to obtain an approximate F distribution.

3.1.1 The conditional distribution of ðŷW � y0Þ. The weighted least squares estimate

[12] of β is

β̂W ¼ ðX
0

sΣ
� 1

s XsÞ
� 1
ðX0sΣ

� 1

s ysÞ: ð18Þ

With θ̂W ¼ Cβ̂W ,

ðθ̂W � θ0ÞjΣs � N afðθ � θ0Þ;CðX
0

sΣ
� 1

s XsÞ
� 1C0g: ð19Þ

3.1.2 The approximate distribution of CðX0sŜ
� 1
s;MXsÞ

� 1C0. We approximate the distribu-

tion of

CðX0sΣ̂
� 1
s;MXsÞ

� 1C0 ð20Þ

with a single central Wishart. The result follows from Theorems 1, 2 and 3 in A. The theorems

provide an approximate distribution for a positive definite sum of potentially singular qua-

dratic forms in independent inverse central Wishart matrices.

The accuracy of the approximation depends on the degrees of freedom of the component

quadratic forms. To ensure sufficient degrees of freedom, we make the following homoscedas-

ticity assumptions. Recall p = maxi(pi). With Smax a symmetric, positive definite matrix,

assume Si� Smax for all i 2 {1, . . ., N} such that pi = p. Let Nd indicate the number of indepen-

dent sampling units with observation pattern Rd. Note N ¼
Pd

d¼1
Nd. For independent sam-

pling units with observation pattern Rd, assume

Σd ¼ Dp;dΣmaxD
0

p;d: ð21Þ
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Without loss of generality, permute the independent sampling units in Eq 8 so that

Σs ¼ �
d

d¼1
�
Nd

i¼1
Σd: ð22Þ

Estimate Ss with

Σ̂s ¼ �
d

d¼1
�
Nd

i¼1

Σ̂d ð23Þ

The following thought experiment gives reasonable approximations for the distribution of

each Σ̂d. All independent sampling units with observed data pattern Rd have pd observations.

For each Rd, suppose we form a complete, balanced mixed model containing only the indepen-

dent sampling units with observed data pattern Rd. For each balanced mixed model, assume

that Xs includes the full time by treatment interaction. This permits recasting each balanced

mixed model as an equivalent general linear multivariate model [9, Chapter 14]. For cluster

randomized designs, we assume that the mixed model is recast as a two-stage model of cluster

means [13, Chapter 4], a special case of the multivariate model.

For the dth multivariate model, let q be the rank of the multivariate design matrix and Êd be

the (Nd × pd) matrix of residuals. Assume Nd> (q + pd + 1). Then an unbiased, consistent esti-

mate of Sd, Σ̂d;M , can be formed using known results for the multivariate model. Thus,

Σ̂d;M ¼ Ê 0dÊd=ðNd � qÞ; ð24Þ

with distribution

Σ̂d;M �Wpd
fNd � q;Σd=ðNd � qÞg: ð25Þ

Recall that in the Wald statistic (Eq 12),

X0sΣ̂
� 1
s;MXs ¼

Xd

d¼1

XNd

i¼1

X0iΣ̂
� 1

d;MXi: ð26Þ

Using Eq 25 and Theorem 3 in Appendix, approximate the distribution of X0sΣ̂
� 1
s;MXs with a sin-

gle inverse central Wishart,

X0sΣ̂
� 1
s;MXs _� IWrðN�;Σ

� 1

�
Þ: ð27Þ

From the linear properties of Wishart matrices [11, p. 111, Theorem 3.4.1],

CðX0sΣ̂
� 1
s;MXsÞ

� 1C0 _�WafðN� � r � 1Þ;CΣ�C
0g: ð28Þ

3.1.3 Combining ðŷW � y0Þ and CðX0sŜ
� 1
s;MXsÞ

� 1C0 to form an approximate F . We now

combine ðθ̂W � θ0Þ and CðX0sΣ̂
� 1
s;MXsÞ

� 1C0 as described in Sections 3.1.1 and 3.1.2 to form a

Wald statistic,

w ¼ ðθ̂W � θ0Þ
0
½CðX0sΣ̂

� 1
s;MXsÞ

� 1C0�� 1
ðθ̂W � θ0Þ=a: ð29Þ

We assume that w� wR. From Eq 19, ðθ̂W � θ0Þ is approximately Gaussian. From Eq 28,

CðX0sΣ̂
� 1
s;MXsÞ

� 1C0 is approximately Wishart.

PLOS ONE A power approximation for the Kenward and Roger Wald test in the linear mixed model

PLOS ONE | https://doi.org/10.1371/journal.pone.0254811 July 21, 2021 6 / 19

https://doi.org/10.1371/journal.pone.0254811


For conciseness of notation, write μ = (θ − θ0), with estimate μ̂ ¼ ðθ̂W � θ0Þ,

W ¼ CðX0sΣ
� 1

s XsÞ
� 1C0 and Ŵ ¼ CðX0sΣ̂

� 1
s;MXsÞ

� 1C0. Define Q ¼ ½VðŴÞ�� 1Vðμ̂Þ and

h ¼ μ0½VðŴÞ�� 1μ. Assume that θ̂W ? Σ̂s;M. The assumption rests on the following logic. If we

had estimated both Ss and β using multivariate techniques, independence would follow [14,

p. 291, Theorem 8.2.2]. Applying Theorem 4 in Appendix,

w _� faðN� � r þ a � 2Þg
� 1trðQÞFfnu; ðN� � r þ a � 2Þ; dug; ð30Þ

where

du ¼
htrðQÞ þ 2h2

trðQQ0Þ þ 2μ0fQ½VðŴÞ�� 1
gμ

ð31Þ

and

nu ¼ duh� 1trðQÞ: ð32Þ

From Eq 30, we calculate E0(w), EA(w), and VAðwÞ, using standard results for central and

noncentral F distributions [10].

3.2 A three-moment approximation for the distribution of the Kenward

and Roger scaled Wald statistic under the alternative hypothesis

We use a method of moments approach [8] to form the approximate distribution of Kenward

and Roger [1] scaled Wald statistic, FR, under the alternative. The parameters of the distribu-

tion depend on the approximate Wald moments derived in Section 3.1. We approximate the

distribution of the Kenward and Roger [1] statistic, FR = λwR, by the distribution of F = λw,

where F _� Fða; n; gÞ. Thus

FR _� Fða; n; gÞ: ð33Þ

To obtain values for λ, ν, and γ under the alternative, we match three moments, setting

EAðFÞ ¼ EAðlwÞ; ð34Þ

VAðFÞ ¼ VAðlwÞ; ð35Þ

and

E0ðFÞ ¼ E0ðlwÞ: ð36Þ

With

r ¼
VAðwÞ

2fE0ðwÞg
2
; ð37Þ

we obtain

l ¼
n

ðn � 2ÞE0ðwÞ
; ð38Þ

n ¼ 4þ
2ðaþ 2gÞ þ ðaþ gÞ2

ra2 � a � 2g
; ð39Þ
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and

g ¼ a
EAðwÞ
E0ðwÞ

� 1

� �

: ð40Þ

When γ = 0, Eq 39 reduces to

n ¼ 4þ
aþ 2

ar � 1
; ð41Þ

which shares the same form as the result obtained by Kenward and Roger (Eq 16). The exact

values of ρ, and hence ν, will differ due to the disparate techniques used to obtain moments for

the Wald statistics, w and wR.

3.3 Power calculation for the Kenward and Roger test

We calculate power for the Kenward and Roger test as follows. Define α, Smax, β, C and θ0. For

i 2 {1, . . ., N}, specify Xi and Rd. Calculate a, ν, and γ as described in Section 3.2. Form the ref-

erence distribution of FR _� Fða; n; gÞ. Using the approximate reference distribution of FR
under the null, FR _� Fða; n; 0Þ, find the critical value

fcrit � F � 1
ð1 � a; a; n; 0Þ: ð42Þ

Finally, using the approximate reference distribution of FR under the alternative,

FR _� Fða; n; gÞ, calculate power as

Power � 1 � Fðfcrit; a; n; gÞ: ð43Þ

4 Simulation study

4.1 Methods

We compared approximate power values, calculated as in Section 3.3, with empirical power

for two types of study designs: unbalanced, cluster randomized trials and longitudinal studies

with known dropout patterns. Approximate power was calculated using ourmixedPower pack-

age for R version 4.0.2 [15].

Empirical power was calculated by Monte Carlo simulation in SAS [16, version 9.4]. We

defined α, Smax, β, C and θ0. For i 2 {1, . . ., N}, we specified Xi and Rd. We generated 10, 000

replicates of es and computed ys as in Eq 8. For each replicate, we tested the linear contrast C
using SAS PROC MIXED with the DDFM = KenwardRoger flag to request Kenward and

Roger [1] denominator degrees of freedom. Empirical power was estimated as the proportion

of replicates for which the null hypothesis was rejected. Source code is available at http://

github.com/SampleSizeShop/mixedPower.

4.1.1 Cluster randomized designs. We compared approximate and empirical power for

36 cluster randomized designs. We assumed that each design had a single Gaussian outcome.

Half of the clusters were assumed to have complete data, with the remaining clusters assumed

to have some amount of missing data. We varied the number of treatment groups, t 2 {2, 4},

the number of clusters randomized to each treatment, Ntreatment 2 {10, 40}, the total number of

participants in a complete cluster, p 2 {5, 50} and the ratio of the incomplete cluster size to the

complete cluster size s 2 {0.6, 0.8, 1}. We only included designs which met the assumption that

Nd> (q + pd + 1) for all Rd.
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For each design, we repeated the simulations for several intraclass correlation values ρ 2
{0.04, 0.1, 0.2, 0.5}, with

Σmax ¼ 2� f1p1
0

prþ Ipð1 � rÞg: ð44Þ

The β matrix had the form

b ¼ b� 1 0½ �
0

ð45Þ

for designs with 2 treatments and

b ¼ b� 1 0 0 0½ �
0

ð46Þ

for designs with 4 treatments. The scale factor b was selected so that the approximate power

was roughly 0.2, 0.5 or 0.8. In each scenario, we calculated power for the null hypothesis of no

difference among treatment groups at α = 0.05. We used the Wald test with denominator

degrees of freedom as described by Kenward and Roger [1].

4.1.2 Longitudinal designs. We calculated approximate and empirical power for 36 longi-

tudinal study designs. Each design had 5 repeated measures and 50 participants per treatment

group. We varied the number of treatment groups, t 2 {2, 4}, the pattern of missing data, either

monotone (missing the 4th and 5th observations), or non-monotone (missing the 2nd and 4th

observations), and the number of participants in each treatment group with some amount of

missing data, Nincomplete 2 {0, 10, 20}. For observations within a given participant, we assumed

a first-order auto-regressive correlation structure [12, p. 99], with ρ = 0.4 and σ2 = 1. The β
matrix had the form

β ¼ b� 1 00
9½ �
0

ð47Þ

for designs with 2 treatments and

β ¼ b� 1 00
19½ �
0

ð48Þ

for designs with 4 treatments. The scale factor and hypothesis testing were as described for the

cluster randomized designs with one exception: we calculated power for the null hypothesis of

no time by treatment interaction.

4.1.3 Performance criteria. For each design, we computed the deviation as approximate

power minus empirical power. We produced box plots summarizing the deviations overall,

within all cluster randomized trials, and within all longitudinal designs. For the cluster ran-

domized trials, we produced box plots stratified by the number of treatment groups, the cluster

size, and the ratio of the incomplete cluster size to the complete cluster size. For the longitudi-

nal designs, we produced box plots summarizing the deviations stratified by the number of

treatment groups, the pattern of missing observations, and the number of incomplete indepen-

dent sampling units per treatment.

Positive deviations indicated that the approximate power values were larger than the empir-

ical power values. Negative deviations indicated that the approximate power values were

smaller than the empirical power values.

4.2 Results

Fig 1 summarizes the deviations between the approximate and the empirical power values.

The three box plots show results for all designs, for cluster randomized trials, and for longitu-

dinal studies. Overall, the median deviation between the approximate and the empirical power
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values was 0.010 (min: −0.010, 1st quartile: 0.005, 3rd quartile: 0.015, max: 0.064). For cluster

randomized trials, the median deviation was 0.011, (min: −0.001, 1st quartile: 0.006, 3rd quar-

tile: 0.017, max: 0.064). For longitudinal designs, the median deviation was 0.003, (min:

−0.010, 1st quartile: 0.000, 3rd quartile: 0.009, max: 0.016).

Further details for cluster-randomized designs are shown in Fig 2. The accuracy of the

power approximation improved with larger cluster sizes. The approximation retained accuracy

regardless of the ratio of incomplete to complete cluster sizes. As shown in Table 1, accuracy

was similar across ICC values, with slight improvements with increasing correlation.

Results for longitudinal designs are shown in Fig 3. The power approximation was highly

accurate for all longitudinal designs tested.

Fig 1. Power deviations for all designs, cluster randomized designs only, and longitudinal designs only. (center line, median; box limits, 1st and

3rd quartiles; whiskers, minimum and maximum).

https://doi.org/10.1371/journal.pone.0254811.g001

PLOS ONE A power approximation for the Kenward and Roger Wald test in the linear mixed model

PLOS ONE | https://doi.org/10.1371/journal.pone.0254811 July 21, 2021 10 / 19

https://doi.org/10.1371/journal.pone.0254811.g001
https://doi.org/10.1371/journal.pone.0254811


5 Applied example

We demonstrate a power calculation for an unbalanced cluster-randomized trial of an inter-

vention to reduce oral cancer risk behaviors. The example is based on a hypothetical study

examining the impact of workplace smoking cessation programs on tobacco use. We used a

synthetic, rather than a real example, so that the power calculation is easy to follow. In a real

power calculation, values of differences in means, standard deviations and intra-class correla-

tion coefficients could be drawn from the literature, as described in Guo et al. [17].

For our demonstration, we assume that 80 worksites will be randomized to 2 smoking ces-

sation programs, with 40 sites per treatment condition. Of the 40 sites randomized to each

smoking cessation program, 25 worksites will have 30 participants, and the remaining 15 will

have 20 participants. The outcome for the analysis will be urinary cotinine. We wish to detect a

difference of 25 ng/ml. We assume a standard deviation of 125 ng/ml, and an intraclass corre-

lation of 0.04. We will calculate power for the Kenward and Roger [1] test of the smoking ces-

sation program effect. We set α = 0.05.

To begin the calculation, we first identify the patterns of observations in the study, includ-

ing complete clusters with 30 participants, and incomplete clusters with 20 participants.

Fig 2. Power deviations for cluster randomized designs. (center line, median; box limits, 1st and 3rd quartiles; whiskers,

minimum and maximum).

https://doi.org/10.1371/journal.pone.0254811.g002

Table 1. Deviations between approximate and empirical power in cluster randomized designs by ICC.

ICC Minimum 1st Quartile Median 3rd Quartile Maximum

0.04 -0.001 0.006 0.012 0.019 0.064

0.1 0.002 0.009 0.012 0.017 0.054

0.2 0.001 0.005 0.010 0.016 0.059

0.5 0.001 0.006 0.010 0.014 0.038

https://doi.org/10.1371/journal.pone.0254811.t001
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Table 2 summarizes the design matrices and patterns of observations by cluster size and treat-

ment assignment.

In addition, we define

Σmax ¼ 1252 � f1301
0

30
� 0:04þ I30ð1 � 0:04Þg; ð49Þ

C ¼ 1 � 1½ �; ð50Þ

θ0 ¼ 0½ � ð51Þ

and

β ¼ 25 0½ �
0
: ð52Þ

At an α level of 0.05, the approximate power to detect a treatment difference of 25 ng/ml was

0.87 for the Wald test with Kenward and Roger [1] denominator degrees of freedom.

Fig 3. Power deviations in longitudinal designs. (center line, median; box limits, 1st and 3rd quartiles; whiskers, minimum

and maximum).

https://doi.org/10.1371/journal.pone.0254811.g003

Table 2. Design matrices and patterns of observations for proposed study of smoking cessation programs.

pi = 30 pi = 20

Program 1 Xi = 130 � [1 0] Xi = 120 � [0]

Rd = {1, . . ., 30} Rd = {1, . . ., 20}

Program 2 Xi = 130 � [1 1] Xi = 120 � [0 1]

Rd = {1, . . ., 30} Rd = {1, . . ., 20}

https://doi.org/10.1371/journal.pone.0254811.t002

PLOS ONE A power approximation for the Kenward and Roger Wald test in the linear mixed model

PLOS ONE | https://doi.org/10.1371/journal.pone.0254811 July 21, 2021 12 / 19

https://doi.org/10.1371/journal.pone.0254811.g003
https://doi.org/10.1371/journal.pone.0254811.t002
https://doi.org/10.1371/journal.pone.0254811


6 Discussion

We describe a power approximation for the Kenward and Roger (1997) test of fixed effects in

the linear mixed model. The method was accurate to within about ±0.06 for all designs, with

the best accuracy observed for longitudinal designs. We note that Kenward and Roger (2009)

have since described a refinement which improves estimation of the non-linear covariance

structures in small samples. We have restricted our discussion to the Kenward and Roger

(1997) approach, since it is most commonly used in statistical practice.

The method has several limitations. The assumption ofNd> (q + pd + 1) may be too restric-

tive for multilevel designs with large cluster sizes. In addition, we assume that the pattern of

missing data is known. The method does not apply to repeated covariates, which often appear

in biomedical studies. However, the method does apply to baseline covariates, a common

study design. We make a strong homoscedasticity assumption of equal variance for each inde-

pendent sampling unit. This assumption means that the power computations are not appropri-

ate for random regression, for models with group differences in variance, or for certain

spatial-temporal applications. Nevertheless, the assumption of homoscedasticity is widely

made for randomized controlled clinical trials, laboratory studies, and observational studies,

which makes the method useful for a variety of cases. Lastly, the method has not been evalu-

ated for binary or Poisson data.

The analytic results from this manuscript suggest several future extensions. We may be able

to calculate power for linear mixed models with random missing data patterns by invoking

conditional distribution theory and calculating expected power across patterns of missingness.

In addition, the approach used to form the distribution of Σ̂s;M provides the first step towards a

non-iterative alternative to restricted maximum likelihood estimation for some mixed models.

For big data applications, such a non-iterative approach may facilitate highly parallel computa-

tion of parameter estimates in mixed models.

Our power approximation provides a general, flexible, accurate and rapid method to calcu-

late power for the Kenward and Roger (1997) test. For studies in which the Kenward and

Roger (1997) test is the planned method of data analysis, our power approximation should be

used. By aligning power analysis with the planned data analysis, researchers can more accu-

rately assess power for biomedical studies. Accurate power analysis is an ethical imperative for

research with human participants.

7 Appendix

A Appendix: Theorems and proofs

Theorem 1. For m 2 {1, . . ., k}, let pm 2 {1, 2, . . ., p}, Nm> (pm + 3) and defineCm = {ψmij} to
be a (pm × pm) symmetric, positive definite matrix. Define a set of k� 2, independent, non-iden-
tically distributed inverse central Wishart random matrices, such that for m 2 {1, . . ., k},
S� 1

m � IWpm
ðNm;CmÞ. For i 2 {1, . . ., q} and Rm� {1, 2, . . ., p} of cardinality pm, define Xm to

be a (pm × qp)matrix of rank pm< qp with the form

Xm ¼ IqðfigÞ � IpðRmÞ: ð53Þ

If for each i 2 {1, . . ., q}, there exists at least one m such that Xm = Iq({i})� Ip, then

Q� 1 ¼
Xk

m¼1

X0mS
� 1

m Xm ð54Þ

is positive definite.
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Proof. Let Qi = {Xm: Xm = Iq({i})� Ip(Rm)}. Then

Xk

m¼1

X0mS
� 1

m Xm

¼
Xq

i¼1

X

Qi

X0mS
� 1

m Xm

¼
Xq

i¼1

X

Qi

½IqðfigÞ � IpðRmÞ�
0S� 1

m ½IqðfigÞ � IpðRmÞ�

¼
Xq

i¼1

X

Qi

½IqðfigÞ
0
� IpðRmÞ

0
�ðI1 � S� 1

m Þ½IqðfigÞ � IpðRmÞ�

¼
Xq

i¼1

X

Qi

½IqðfigÞ
0
� IpðRmÞ

0S� 1

m �½IqðfigÞ � IpðRmÞ�

¼
Xq

i¼1

X

Qi

½IqðfigÞ
0IqðfigÞ � IpðRmÞ

0S� 1

m IpðRmÞ�

¼
Xq

i¼1

IqðfigÞ
0IqðfigÞ �

X

Qi

½IpðRmÞ
0S� 1

m IpðRmÞ�

( )

:

ð55Þ

Note that for i 2 {1, 2, ‥, q}, Iq({i})0 Iq({i}) is a (q × q) matrix for which the ith diagonal element

is 1 and all remaining elements are 0. Therefore, Eq 55 can be equivalently expressed as a direct

sum.

Xk

m¼1

X0mS
� 1

m Xm ¼ �
q

i¼1

X

Qi

½IpðRmÞ
0S� 1

m IpðRmÞ�

( )

: ð56Þ

From Mathai and Provost [18, p.18, Theorem 2.2b.1], it follows that each IpðRmÞ
0S� 1

m IpðRmÞ
is positive semi-definite. By assumption, for each Qi, there exists a ci such that Xci 2 Qi such

that Xci ¼ IqðfigÞ � Ip. Then

Xk

m¼1

X0mS
� 1

m Xm ¼ �
q

i¼1
IpS

� 1

ci
Ip þ

X

Qi=Xci

½IpðRmÞ
0S� 1

m IpðRmÞ�

8
<

:

9
=

;

¼ �
q

i¼1

S� 1

ci
þ
X

Qi=Xci

½IpðRmÞ
0S� 1

m IpðRmÞ�

8
<

:

9
=

;
:

ð57Þ

Because S� 1

ci
is positive definite and the remaining IpðRmÞ

0S� 1

m IpðRmÞ are positive semi-definite

for i 2 {1, . . ., q}, then

S� 1

ci
þ
X

Qi=Xci

½IpðRmÞ
0S� 1

m IpðRmÞ� ð58Þ

is positive definite.

Since
Pk
m¼1

X0mS
� 1

m Xm is a block matrix, the eigenvalues of
Pk
m¼1

X0mS
� 1

m Xm are the eigenval-

ues of all of the blocks. Since each block (Eq 58) is positive definite and hence has positive

eigenvalues, it follows that
Pk
m¼1

X0mS
� 1

m Xm must also be positive definite.
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Theorem 2. For m 2 {1, . . ., k}, i 2 {1, . . ., q}, Rm� {1, 2, . . ., p} of cardinality pm, Xm =

Iq({i})� Ip(Rm) a (pm × qp)matrix of rank pm< qp, Nm> (pm + 3),Cm a (pm × pm) symmetric,
positive definite matrix, and S� 1

m � IWpm
ðNm;ΨmÞ,

trðS� 1

m Þ ¼ trðX0mS
� 1

m XmÞ: ð59Þ

Proof. Let Dg(x) indicate a square matrix with the elements of the vector x on the diagonal.

Since S� 1

m is positive definite and has full rank, then by Lemma 1.24 (a) of Muller and Stew-

art [9], it has the spectral decomposition

S� 1

m ¼ VDgðλÞV 0; ð60Þ

where λ is the (pm × 1) vector of eigenvalues and V is the (pm × pm) orthogonal matrix of eigen-

vectors of S� 1

m . Then

X0mS
� 1

m Xm ¼ X0mVDgðλÞV 0Xm: ð61Þ

Since Xm has deficient rank pm< qp, then by Lemma 1.25 of of Muller and Stewart [9] it

must have qp − pm zero eigenvalues. Let λ0 be the (qp − pm × 1) vector of zero eigenvalues and

V0 the [qp × (qp − pm)] matrix of corresponding eigenvectors. Then

X0mS
� 1

m Xm ¼ X0mVDgðλÞV
0Xm

¼ X0mVDgðλÞV
0Xm þ V0Dgðλ0ÞV

0

0

¼ X0mV V0½ �
DgðλÞ 0

0 Dgðλ0Þ

" # V 0Xm

V 0
0

" #

:

ð62Þ

Selecting V0 such that V 0
0
V0 ¼ Iqp� pm , V0V

0

0
¼ I � X0mXm and Xm V0 = 0, ensures that

X0mV V0 �½ is orthogonal. Then Eq 62 is the spectral decomposition of X0mS
� 1

m Xm, with eigen-

values λ0 λ0
0
�
0

�
.

Since λ0 contains only zero eigenvalues and using the definition of the trace,

trðX0mS
� 1

m XmÞ ¼
Xpm

i¼1

λi þ
Xqp� pm

j¼1

λ0j

¼
Xpm

i¼1

λi

¼ trðS� 1

m Þ:

ð63Þ

Theorem 3. For m 2 {1, . . ., k}, let pm 2 {1, . . ., p}, Nm> (pm+ 3) and letCm = {ψmij} be
a (pm × pm) symmetric, positive definite matrix. Define a set of k� 2, independent, non-
identically distributed inverse central Wishart randommatrices, such that for m 2 {1, . . ., k},
S� 1

m � IWpm
ðNm;ΨmÞ. For i 2 {1, . . ., q} and Rm� {1, . . ., p} of cardinality pm, define Xm to be

a (pm × qp)matrix of rank pm< qp with the form

Xm ¼ IqðfigÞ � IpðRmÞ: ð64Þ

Under the assumption that for each i 2 {1, . . ., q}, there exists at least one m such that
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Xm = Iq({i})� Ip, it can be shown that

Q� 1 ¼
Xk

m¼1

X0mS
� 1

m Xm ð65Þ

is approximately distributed as S� 1

�
� IWqpðN�;Ψ�Þ.

Proof. Theorem 1 in Appendix demonstrates that Q−1 is positive definite under the restric-

tion that for each i 2 {1, . . ., q}, there exists at least onem such that Xm = Iq({i})� Ip.
To derive an approximate distribution for Q−1, we match the expectation of the sum of the

Wishart matrices and the variance of the trace of the sum of the Wishart matrices. Set

EðS� 1

�
Þ ¼ E

Xk

m¼1

X0mS
� 1

m Xm

 !

ð66Þ

and

V½trðS� 1

�
Þ� ¼ V tr

Xk

m¼1

X0mS
� 1

m Xm

 !" #

: ð67Þ

From Theorem 2 in Appendix and the independence of the S� 1

m ,

V tr
Xk

m¼1

X0mS
� 1

m Xm

 !" #

¼
Xk

m¼1

V½trðX0mS
� 1

m XmÞ�

¼
Xk

m¼1

V½trðS� 1

m Þ�:

ð68Þ

Then the approximate parameters for S� 1

�
� IWqðN�;Ψ�Þ are

Ψ� ¼ N� � q � 1ð Þ
Xk

m¼1

1

Nm � pm � 1
X0mΨmXm ð69Þ

and

N� ¼
bh þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
h � 4h4ch

p

2h4

; ð70Þ

where

h1 ¼
Xqp

i¼1

Xk

m¼1

1

Nm � pm � 1
ðX0mΨmXmÞii

" #2

; ð71Þ

h2 ¼
X

1<i<j<qp

(
Xk

m¼1

1

Nm � pm � 1
ðX0mΨmXmÞii

" #

�
Xk

m¼1

1

Nm � pm � 1
X0mΨmXmÞjj
� i

" )

;

ð72Þ

h3 ¼
X

1<i<j<qp

Xk

m¼1

1

Nm � pm � 1
ðX0mΨmXmÞij

" #2

; ð73Þ
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h4 ¼
Xk

m¼1

Xpm

i¼1

2c
2

mii

ðNm � pm � 1Þ
2
ðNm � pm � 3Þ

þ4
Xk

m¼1

X

1<i<j<pm

cmiicmjj þ ðNm � pm � 1Þc
2

mij

ðNm � pmÞðNm � pm � 1Þ
2
ðNm � pm � 3Þ

;

ð74Þ

bh ¼ ð2h1 þ 4h3 þ 2h4pþ 3h4Þ; ð75Þ

and

ch ¼ ð2h1p � 4h2 þ 4h3pþ 4h3 þ h4p2 þ 3h4pÞ: ð76Þ

The method of moments approximation yields an asymptotic approximation for the sum, as

desired.

Theorem 4. Let n and p be positive integers, μ be a (p × 1) vector of means, and Sx 6¼ SW be
symmetric and positive definite (p × p)matrices. Suppose x � N pðμ;ΣxÞ independently of
W �Wpðn;ΣWÞ. Then

x0W � 1x _�
lunu

ðnþ p � 1Þ
Ffnu; nþ p � 1ð Þ; dug; ð77Þ

with

lu ¼ d
� 1

u ðμ
0Σ� 1

W μÞ; ð78Þ

nu ¼ duðμ
0Σ� 1

W μÞ
� 1trðΣ� 1

W ΣxÞ; ð79Þ

and

du ¼
ðμ0Σ� 1

W μÞtrðΣ
� 1

W ΣxÞ þ 2ðμ0Σ� 1

W μÞ
2

trðΣ� 1

W ΣxΣ
� 1

W ΣxÞ þ 2μ0Σ� 1

W ΣxΣ
� 1

W μ
: ð80Þ

Proof. Define V ¼ x0Σ� 1

W x=x0W � 1x. Define U ¼ x0Σ� 1

W x. Using Lemma 17.10 in Arnold [19,

p. 319], it follows that Vjx � w2
nþp� 1

. Hence, V? x, which implies V? U.

The expression U is a weighted sum of noncentral χ2 random variables [9, Theorem 9.5,

p. 176]. Approximate the distribution of U with a single noncentral χ2, so that U _� luw
2
nu
ðduÞ.

Using the approach described by Kim et al. [8], obtain values for λu, nu and δu by matching the

following three moments:

E0fluw
2

nu
ðduÞg ¼ E0ðUÞ; ð81Þ

EAfluw
2

nu
ðduÞg ¼ EAðUÞ; ð82Þ

and

VAfluw2
nu
ðduÞg ¼ VAðUÞ: ð83Þ
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The moments of U are [9, Corollary 9.6.3, p. 179],

E0ðUÞ ¼ trðΣ� 1

W ΣxÞ; ð84Þ

EAðUÞ ¼ trðΣ� 1

W ΣxÞ þ μ0Σ� 1

W μ; ð85Þ

and

VAðUÞ ¼ 2trðΣ� 1

W ΣxΣ
� 1

W ΣxÞ þ 4μ0Σ� 1

W Σ
� 1

x Σ
� 1

W μ: ð86Þ

Then the approximate parameters of U are

lu ¼ d
� 1

u ðμ
0Σ� 1

W μÞ; ð87Þ

nu ¼ duðμ
0Σ� 1

W μÞ
� 1trðΣ� 1

W ΣxÞ; ð88Þ

and

du ¼
ðμ0Σ� 1

W μÞtrðΣ
� 1

W ΣxÞ þ 2ðμ0Σ� 1

W μÞ
2

trðΣ� 1

W ΣxΣ
� 1

W ΣxÞ þ 2μ0Σ� 1

W Σ
� 1

x Σ
� 1

W μ
: ð89Þ

Since ðU=luÞ _� w2
nu
ðduÞ, V � w2

nþp� 1
, and V? U,

U=ðlunuÞ
V=ðnþ p � 1Þ

_� Ffnu; nþ p � 1ð Þ; dug:

Because U/V = x0W−1 x,

x0W � 1xð Þ
ðnþ p � 1Þ

lunu
_� Ffnu; nþ p � 1ð Þ; dug;

and the result follows.
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