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Abstract: Current legislation in Spain indicates that table olives must be free of off-odors and off-
flavors and without symptoms of ongoing alteration or abnormal fermentations. In this regard,
the International Olive Council (IOC) has developed a protocol for the sensory classification of
table olives according to the intensity of the predominantly perceived defect (PPD). An electronic
nose (e-nose) was used to assess the abnormal fermentation defects of Spanish-style table olives
that were previously classified by a tasting panel according to the IOC protocol, namely zapateria,
butyric, putrid, and musty or humidity. When olives with different defects were mixed, the putrid
defect had the greatest sensory impact on the others, while the butyric defect had the least sensory
dominance. A total of 49 volatile compounds were identified by gas chromatography, and each defect
was characterized by a specific profile. The e-nose data were analyzed using principal component
analysis (PCA) and partial least square discriminant analysis (PLS-DA). The different defects were
clearly separated from each other and from the control treatment, independently of PPD intensity.
Moreover, the e-nose differentiated control olives from table olives with combined sensory defects
despite the dilution effect resulting from the combination. These results demonstrate that e-nose can
be used as an olfactory sensor for the organoleptic classification of table olives and can successfully
support the tasting panel.

Keywords: sensory analysis; volatile compounds; defects; e-nose; table olives

1. Introduction

Spain is the largest producer of table olives in the world, representing a market that
generates annual trade valued at 1.7 billion euros worldwide. Olives produced in Spain
are present in almost all countries. Moreover, the export of table olives to other countries,
such as Morocco, Egypt, Greece, Turkey, Argentina, Peru, and Portugal, has increased in
recent years [1].

To produce table olives, the “Spanish style” is the most common process. The fruits
of Olea europaea spp. are treated with caustic soda to remove their bitterness and then
fermented in a salt solution for several months. However, a number of critical points during
the elaboration process can facilitate abnormal fermentation, thereby leading to defective
olives. These alterations are among the main causes of economic loss for producers.
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The current legislation only considers the physical defects of extra or fancy, first choice
or selected olives, and second choice or standard olives [2]. However, the regulation
indicates that table olives must be free of strange odors and flavors and free of symptoms
of ongoing alteration or abnormal fermentation. Therefore, to classify table olive defects
according to sensory analysis, producers should analyze samples with a tasting panel
trained and validated by the IOC (2011) [3]. However, the protocol established by the IOC
is only a recommendation and is not yet in force. The sensory panel should classify table
olives according to olfactory defects, including putrid, zapateria, butyric, musty, rancid, or
vinegary sensations [4,5]. These defects perceived by tasters are normally present in table
olives, in particular the zapateria defect. According to the IOC regulation, the zapateria
defect is caused by a combination of volatile fatty acids formed by abnormal fermentation,
leading to the sensation of rotten leather. The butyric defect is the off-flavor of rancid butter
or cheese. The putrid defect is the odor of decaying organic matter. Finally, the musty
or humidity defect produces a smell of mold. These defects are probably caused by bad
industrial practices that facilitate uncontrolled development of the fermentation process.

Analysis of volatile compounds by chromatography may also help to identify com-
pounds responsible for abnormal fermentations [6–9]. However, sensory analyses based
on a trained expert panel and characterization of the volatile fraction of fermented olives
based on gas chromatography are expensive, laborious, and time-consuming procedures
requiring sophisticated equipment and/or skilled personnel. Thus, it is important to de-
velop a fast and reliable technique to discriminate table olives according to their sensory
characteristics. The same protocol should also be used to identify incipient defects in olives
to control the onset of anomalous fermentations.

The electronic nose (e-nose) is an electromechanical powerful sensory device that
enables the discrimination of aroma profiles of different matrices, such as wine [10], edible
mushrooms [11], cooked chicken [12], edible oils [13], or fresh vegetables [14]. This device
is also used to classify olives on olive trees [9] or even to differentiate table olives elaborated
according to the Spanish-style protocol [7]. In this respect, the e-nose may be a fast, cheap,
and effective alternative to identify different types of fermentation defects in large amounts
of olives on an industrial scale. The e-nose is a nondestructive device complementary to
the tasting panel. It can be routinely installed to identify early signs of off-flavors during
the fermentation of Spanish-style table olives with the aim of correcting them before the
olives become unacceptable and unmarketable.

The aim of the present study was to develop an analytical protocol based on an
e-nose device to differentiate Spanish-style defective olives according to their sensory
attributes. The data were compared with the profile of volatile compounds determined
by gas chromatography and with sensory characterization of the olives carried out by a
trained tasting panel.

2. Results and Discussion
2.1. Sensory Profile of Table Olives

The selected Spanish-style table olives were sensorially evaluated by a tasting panel
in order to classify them according to the predominantly perceived defect (PPD). It should
be noted that the quality standards [2] do not include sensory analysis as an evaluation
criterion for classifying table olives into different commercial categories. This regulation
only takes into account the physical defects in the fruit, such as softness, skin defects,
or broken fruits. Therefore, in this research, the sensory evaluation and classification of
the olives were obtained according to the IOC regulation based on the evaluation of PPD
intensity by the tasting panel.

Healthy table olives were selected for the control treatment (control). However, several
other olives presented various sensory defects related to abnormal fermentation. The main
defects found in different samples were zapateria (D1), butyric (D2), putrid (D3), and
musty or humidity (D4). Similarly, Marx et al. [15] evaluated several table olive samples
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using a tasting panel who obtained a similar classification of the samples according to the
sensory defect detected (i.e., butyric, putrid, zapateria, musty, and/or winey–vinegary).

The tasters indicated that defects in the olives were of high intensity. For this reason,
the olives were classified in the second or standard category because the PPD was higher
than 3.5 and less than or equal to 6.0 (Table 1). Thus, all these olives could be legally
marketed despite the significant defects [3].

Table 1. Predominantly perceived sensory defects of Spanish-style table olive and of combined samples.

Control D1 D2 D3 D4

Sensory
Evaluation n.d.

Zapateria Butyric Putrid Musty
6.0 ± 0.9 5.5 ± 0.7 5.8 ± 0.8 6.0 ± 0.9

Control D1 + D2 D2 + D3 D1 + D3 D1 + D2 +
D3

Sensory
Evaluation n.d.

Zapateria Putrid Putrid Putrid
3.5 ± 0.8 3.5 ± 0.9 3.5 ± 0.8 3.0 ± 0.7

n.d., not detected.

Failure to control the product during the fermentation of Spanish-style olives causes
an increase in pH, which can contribute to the development of microorganisms that cause
abnormal fermentation due to their ability to metabolize lactic acid.

Combinations of the different olive defects were made to verify what the PPD was
in the olives and to determine its intensity through the panel (Table 1). Thus, equally
combined mixtures of defective olives were made as follows: zapateria + butyric (D1 + D2),
butyric + putrid (D2 + D3), zapateria + putrid (D1 + D3), and zapateria + butyric + putrid
(D1 + D2 + D3). As can be seen in Table 1, the intensity of the defect was reduced by almost
half when the different combinations were made. Thus, a dilution effect was observed
as the intensity of the defect decreased. When the defective olives were mixed, their
commercial sensory category according to the IOC regulation improved as it went from
the second category (3.5 < PPD ≤ 6.0) to the first category (2 < PPD ≤ 3.5). Mixing olives
with different defects in the same package is a commercial strategy that allows companies
to reduce the waste of defective olives. This practice is fully legal and allowed as long as
the percentage of physical defects complies with the legislation.

When olives with different defects were mixed, one of the defects prevailed over the
others (dominance effect). In fact, the putrid defect had the greatest sensory impact on the
others, while the butyric defect had the least sensory dominance. Zapateria and musty
defects presented an intermediate dominance. This result has interesting consequences for
table olives producers. In the case of table olives with some defects developed in the fermen-
tation tanks, an appropriate mixing of the olives according to the dominance of their defect
can be useful to market olives of better quality that comply with the current legislation.

2.2. Volatile Compounds of the Pure Defects

Aroma is considered a quality index for olive products [16]. It is known that mi-
croorganisms play an important role in the formation of the volatile profile of fermented
foods [16] and therefore play a decisive role in the characterization of the flavor profile of
table olives.

The volatile compounds were analyzed in the five types of table olives (control,
zapateria, putrid, butyric, and musty). The identified volatile compounds listed according
to chemical group, odor attributes, and relative content in percentage of intact (control)
and defective olives are shown in Table 2.
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Table 2. Relative contents of volatile compounds (mean % (n = 3)) obtained from table olives with zapateria, butyric, putrid, and musty defect compared to healthy olives (control). RT,
retention time.

RT (min) Content (% of Total Area of Identified Compounds)

Attributes Control Zapateria Butyric Putrid Musty

Carboxylic Acids

Acetic acid 2.7 Pungent, sour 7.4 ± 0.7 2.9 ± 0.9 2.5 ± 0.7 n.d. n.d.
Propanoic acid 4.9 Rancid, cheesy n.d. 4.0 ± 0.5 4.9 ± 0.4 15.8 ± 2.5 0.5 ± 0.1
Butanoic acid 8.2 cheesy n.d. 37.9 ± 4.4 55.5 ± 4.4 n.d. 1.1 ± 0.1
Pentanoic acid 13.5 Pungent, rancid n.d. 5.4 ± 1.1 18.5 ± 1.7 n.d. n.d.
Hexanoic acid 18.5 Pungent, rancid n.d. 8.5 ± 0.9 n.d. n.d. n.d.

(E)-3-Hexenoic acid 20.7 Cheesy, green, dairy n.d. 17.8 ± 2.3 n.d. n.d. n.d.
Cyclohexanecarboxylic acid 26.5 Fruity, woody n.d. 3.7 ± 0.6 n.d. n.d. n.d.

Benzoic acid 28.2 Pungent, sour 7.4 ± 0.7 2.9 ± 0.9 2.5 ± 0.7 n.d. n.d.

Alcohols

Isopropyl alcohol 1.8 Pungent solvent n.d. n.d. n.d. 16.0 ± 2.8 n.d.
Butan-2-ol 2.4 Winey n.d. n.d. 7.6 ± 0.9 n.d. n.d.
Butan-1-ol 3.1 Fusel, oily n.d. n.d. n.d. n.d. 2.6 ± 1.0

3-methyl-butan-1-ol 4.7 Woody, whiskey, sweet n.d. n.d. n.d. 9.3 ± 2.1 1.1 ± 0.1
2-methyl-butan-1-ol 4.8 Winey, spicy n.d. n.d. n.d. 5.3 ± 1.6 0.8 ± 0.1

(Z)-3-Hexen-1-ol 9.7 Green, leaf, nuts 0.6 ± 0.1 n.d. n.d. n.d. n.d.
Cyclohexanol 11.3 Camphoreous n.d. n.d. n.d. 0.7 ± 0.1 n.d.
Benzyl alcohol 19.5 Floral, fruity 2.3 ± 0.1 n.d. n.d. 0.8 ± 0.1 1.0 ± 0.1

Octan-1-ol 21.1 Waxy, green 0.8 ± 0.1 n.d. n.d. n.d. 4.6 ± 1
Phenylethyl Alcohol 23.3 Mild rose 7.8 ± 1.0 n.d. 0.9 ± 0.1 15.9 ± 0.6 1.9 ± 0.2

Phenols

Phenol 17.7 Phenolic, plastic n.d. n.d. n.d. 1.7 ± 0.3 0.6 ± 0.1
2-methoxy-phenol 21.9 Smoky, woody, phenolic 3.2 ± 0.3 1.3 ± 0.1 n.d. 3.3 ± 0.4 46.2 ± 6.5

4-ethyl-phenol 26.7 Wet horse,
Phenolic 8.7 ± 1.3 n.d. n.d. n.d. n.d.

Creosol 27.0 Spicy 40.2 ± 4.1 4.9 ± 0.2 3.6 ± 0.1 5.8 ± 0.2 0.7 ± 0.1
2,6-Bis(1,1-dimethylethyl)-4-(1-

oxopropyl)
phenol

38.0 n.d. n.d. 3.6 ± 0.4 n.d. n.d. n.d.
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Table 2. Cont.

RT (min) Content (% of Total Area of Identified Compounds)

Attributes Control Zapateria Butyric Putrid Musty

Aldehydes

Octanal 17.3 Fatty, sharp 0.50 ± 0.02 n.d. n.d. 0.30 ± 0.01 0.40 ± 0.01

Esters

Propyl propionate 7.3 Fruity, berry 0.60 ± 0.01 n.d. n.d. n.d. n.d.
Methyl pentanoate 7.9 Fruity, sweet n.d. 1.5 ± 0.1 1.4 ± 0.1 n.d. n.d.

3-Methylbutyl acetate 10.6 Fruity, sweet 0.40 ± 0.01 n.d. n.d. 1.3 ± 0.1 n.d.
Ethyl pentanoate 11.8 Fruity, fresh n.d. 1.0 ± 0.1 0.1 ± 0.1 n.d. n.d.
Methyl hexanoate 13.1 Fruity, pineapple n.d. 1.3 ± 0.1 1.1 ± 0.1 n.d. n.d.

3-Methylbutyl propanoate 15.5 Fruity, apricot n.d. n.d. n.d. 0.50 ± 0.01 n.d.
Propyl pentanoate 17.0 Ethereal, fruity n.d. 0.7 ± 0.1 0.40 ± 0.01 n.d. n.d.

Ethyl hexanoate 17.1 Sweet, fruity n.d. 1.0 ± 0.1 0.10 ± 0.01 n.d. n.d.
4-Hexen-1-ol, acetate 17.4 Fruity 1.2 ± 0.1 n.d. n.d. n.d. n.d.

Propyl hexanoate 22.1 Berry, fruit n.d. n.d. 0.20 ± 0.01 n.d. n.d.
Methyl benzoate 22.2 Herb, lettuce n.d. 2.3 ± 0.3 n.d. n.d. n.d.

Ethyl cyclohexanecarboxilate 24.0 Aromatic, fruity n.d. n.d. n.d. 0.8 ± 0.1 n.d.
n-Propyl benzoate 30.7 Fruity n.d. n.d. n.d. 0.9 ± 0.2 n.d.

Ketones

6-methyl-5-hepten-2-one 16.3 Fruity, pungent, green 0.60 ± 0.01 n.d. n.d. n.d. n.d.
2-Buten-1-one, 1-(2,6,6-trimethyl-1,3-

cyclohexadien-1-yl)
(damascenone)

35.5 Floral 0.40 ± 0.01 n.d. n.d. n.d. n.d.



Molecules 2021, 26, 5353 6 of 14

Table 2. Cont.

RT (min) Content (% of Total Area of Identified Compounds)

Attributes Control Zapateria Butyric Putrid Musty

Other Compounds

2,4-dimethyl-heptane 6.7 Unpleasant odor of plastic 1.1 ± 0.1 n.d. n.d. 14.5 ± 2.6 23.6 ± 3.6
Styrene 11.2 Floral, sweet 0.6 ± 0.1 n.d. n.d. n.d. 8.7 ± 1.5

1-chlorooctane 20.3 n.d. n.d. n.d. n.d. n.d. 2.2 ± 0.1

3-ethyl-4-methyl-pyridine 21.6 Sharp, penetrating, strong
aromatic odor n.d. n.d. n.d. 2.1 ± 0.4 n.d.

2-Ethenyl-1,1-dimethyl-3-
methylene-cyclohexane 23.0 n.d. 15.3 ± 1.0 n.d. n.d. n.d. n.d.

1,2-dimethoxybenzene 24.8 Vanilla n.d. n.d. n.d. n.d. 2.0 ± 0.2
3,4-dimethoxytoluene 29.2 n.d. n.d. n.d. 0.3 ± 0.1 2.1 ± 0.2 n.d.

Copaene 35.2 Woody, spicy 1.1 ± 0.2 n.d. 0.5 ± 0.1 0.8 ± 0.1 0.4 ± 0.1
α-Muurolene 40.4 Woody n.d. n.d. 0.10 ± 0.01 0.10 ± 0.01 n.d.

α-Farnesene 40.7 Soft cooking of vegetables,
woody 0.1 ± 0.1 n.d. n.d. 1.7 ± 0.4 1.5 ± 0.2

sum 100.3 100.7 100.2 99.7 99.9

n.d., less than 0.1%.
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A total of 49 volatile compounds were identified. Among them, 20 compounds were
found in healthy olives, 17 in zapateria and butyric samples, 20 in putrid samples, and 18
in musty samples.

Figure 1 shows the composition of the five types of samples for each chemical class.

Figure 1. Distribution of chemical families of volatile compounds in healthy and defective olives.

The compounds isolated and identified in healthy control olives were mainly phenols
(52%), while those identified in zapateria and butyric samples were mainly carboxylic acids
(83% and 84%, respectively). On the other hand, putrid and musty samples showed a higher
content of alcohols and other compounds, respectively, with respect to the healthy olives.

Regarding the individual compounds (Table 2), the major constituents of the volatile
matrix in healthy samples were creosol (40.2%), a monoterpene derivative (15.3%), 2-ethyl-
phenol (8.7%), phenylethyl alcohol (7.8%), benzoic acid (7.4%), and acetic acid (7.4%).
Comparison with literature data on the volatile composition of olive fruits is difficult
because of the great variability among different studies. Volatile compounds are, in fact,
strongly influenced by many factors, such as variety, ripening state, or processing condi-
tions [16–18]. However, these compounds decrease considerably in olives with defects, and
other different compounds appear. In the present work, the main constituents of zapateria
samples were butanoic acid (37.9%), (E)-3-hexenoic acid (17.8%), hexanoic acid (8.5%), and
pentanoic acid (valeric acid) (5.4%). These results are in agreement with previous studies,
which associated these short chain fatty acids with zapateria spoilage [8,19,20]. Cyclohex-
anecarboxylic acid was found only in samples with this defect. It did not represent a large
proportion of the total identified volatile compounds (3.7%), but it has been identified as a
key compound of zapateria samples in previous studies [19]. In other studies, it has been
reported that cyclohexanecarboxylic acid, in combination with other volatile acids, appears
to be responsible for the unpleasant smell typical of zapateria olives [21].

The major volatile compounds responsible for the butyric defect were butanoic acid
(55.5%), pentanoic acid (18.5%), propanoic acid (4.9%), and butan-2-ol (7.6%). This result is
in agreement with previous studies [20].

On the other hand, the putrid defect has a completely different volatile profile from the
defects described above, as shown in Figure 1. In this case, the major volatile compounds
were isopropyl alcohol (16.0%), phenylethyl alcohol (15.9%), propanoic acid (15.8%), 2,4-
dimethyl-heptane (14.5%), and 3-methyl-butan-1-ol (9.3%). As far as we know, there are
only very few studies describing the volatile composition of the putrid defect.

Finally, the defect indicated as musty had a volatile profile similar to the putrid
defect. The major volatile compounds present in the olives affected by the musty defect
were 2-methoxy-phenol (46.2%), followed by 2,4-dimethyl-heptane (23.6%) and styrene
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(8.7%). This is the first time that the volatile compounds of the musty defect were isolated
and identified.

2.3. Discrimination of Table Olive Defects with the E-Nose

A multisensory system (e-nose) was used to classify table olives according to the
sensory defect. The volatile compounds emanated from the samples were put in contact
with the sensor array. The response of each sensor was a different instrumental signal with
an amplitude that depended on its interaction with the sample. A radial graph (Figure 2)
was drawn to show the different amplitude of the responses for the 11 sensors of the e-nose.

Figure 2. Radial plots for the responses of the sensor array to the control and defective table olives.

For the representation of the radial graph, the extracted features of each sensor were
normalized using the criteria established by [7] to have all the data on the same magnitude
scale. The radial profile for each sample was different depending on the type of alteration
of the olives. The set of sensors gave different signals for the five groups of samples,
suggesting that they all contributed to odor discrimination. The complexity of the output
data necessitated the use of multivariate analysis methods, such as PCA, as discussed in
the next sections.

2.4. Discrimination of Isolated Defects

The e-nose data of table olive samples with different defects were first analyzed
by principal component analysis (PCA) (Figure 3) to obtain a better visualization of the
interactions between the variables and grouping of the samples.

PCA is a well-known pattern-recognition technique, which returns results as a pro-
jection of the data into a reduced hyperspace defined by the principal components [22].
Principal components are linear combinations of the original variables, where the first prin-
cipal component represents the largest variance, the second principal component accounts
for the second largest variance, and so on.
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Figure 3. Score plot of the PCA analysis for healthy olives (control) and olives with off-odor of
zapateria, butyric, putrid, and musty.

The PCA results showed that 59.8% of the total variance of data was explained by
PC1 and 28.2% by PC2. The model based on the first two components showed a clear
differentiation of the samples according to their olfactory characteristics and was able to
separate healthy olives from those with defect in the fermentation process.

The PCA of the data showed that the e-nose response well fitted with the sensory
analysis performed by the trained panel.

After the good results obtained in the PCA, a classification analysis was performed
using PLS-DA and leave-one-out cross-validation. The results are shown in Table 3 as
a confusion matrix. The sum of the diagonal elements of the confusion matrix gives
the percentages of correct predictions. As can be seen, about 99% of correct predictions
was obtained.

Table 3. Confusion matrix obtained through PLS-DA for discrimination between control (healthy
olives) and isolated defects. Values are expressed in percentage.

Predicted Class

Real Class Control Zapateria Butyric Putrid Musty

Control 20 0 0 0 0
Zapateria 0 20 0 0 0

Butyric 0 0 20 0 0
Putrid 0 0 0 19 0
Musty 0 0 0 1 20

These results show the ability and accuracy of e-nose to discriminate between different
defects (zapateria, butyric, putrid, and musty) and compare them with the control treatment
(healthy olives). Thus, the e-nose is able to discriminate olives according to their quality at
an industrial level. This tool can be used to control the fermentation process of olives to
ensure their quality.

2.5. Discrimination of Combined Defects

The response of the e-nose to odor patterns resulting from combinations of different
fermentation defects was also studied. As in the previous case, the data were first analyzed
using PCA. The score plot of the two first principal components for the discrimination of
samples with combinations of defects is shown in Figure 4.
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Figure 4. Score plot of the PCA for healthy olives (control) and combinations of zapateria, butyric,
and putrid off-odors.

PCA based on e-nose data differentiated control olives from table olives with combined
sensory defects despite the dilution effect resulting from the combination. The first and
second principal components (PC1 and PC2) were sufficient to visualize the data structure
as they explained 76% of the total variance.

Subsequently, PLS-DA was applied to construct a classification model and the corre-
sponding confusion matrix (leave-one-out cross-validation), the results of which are shown
in Table 4.

Table 4. Confusion matrix obtained through PLS-DA for discrimination between control (healthy
olives) and combined defects. Values are expressed in percentage.

Predicted Class

Real Class Control Zapateria
+ Butyric

Butyric
+ Putrid

Zapateria
+ Putrid

Zapateria
+ Butyric + Putrid

Control 20 0 0 0 0
Zapateria
+ Butyric 0 20 0 0 0

Butyric
+ Putrid 0 0 20 1 0

Zapateria
+ Putrid 0 0 0 19 0

Zapateria
+ Butyric +

Putrid
0 0 0 0 20

The results obtained (99% of correct predictions) showed that the combination of
more than one defect and the dilution effect of the intensity of the odor pattern was not an
obstacle for the e-nose; in fact, a clear discrimination was always evidenced. Furthermore,
the e-nose also showed a clear differentiation between the control and combined defects,
whose values of PPD are shown in Table 1 (control: PPD = n.d. (extra category) and defect
samples that correspond to the first category (3 < PPD ≤ 4.5)). To the best of our knowledge,
there is not much literature on the discrimination of defective olives with electronic devices.
However, a study [23] described the prediction of the cooked defect produced by the
application of different sterilization treatments in oxidized black olives from two olive
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varieties using an electronic tongue. Therefore, these results highlight the feasibility of
these devices as rapid analytical tools to monitor the processing of table olives.

3. Materials and Methods
3.1. Table Olives Elaboration

Olives of the “Carrasqueña” variety were harvested at the green stage of ripeness
within the limits of the “Tierra de Barros” olive-growing area (Badajoz, Spain) during the
2019/2020 campaign and were processed according to the Spanish-style protocol [24] by a
company located in the southwest of Extremadura (Spain). The product was introduced
into fermenters with the capacity of 236 L in three replications. During the fermentation
process, aliquots of olives were sampled and a sensory analysis was carried out by a trained
tasting panel. After completion of the fermentation process, the olives were covered with
brine (4% w/v NaCl) and sealed in cans (150 g each can). Each week, the cans of olives were
taken and a sensory analysis was performed by the same tasting panel with the aim of
identifying Spanish-style table olives with abnormal fermentation defects (D1, D2, D3, and
D4). When the olives showed the desired defect, they were kept in a refrigerator (4 ◦C)
until the analysis was carried out. A control sample without fermentation defects was also
stored (control).

The experiments were carried out in a standard glass jar containing as many olives as
the bottom of the glass could hold and arranged in a single layer. Then, 10 mL of covering
liquid was added on top of the olives following the IOC rules. In addition, to obtain
the combinations of defects, samples were mixed proportionally. D1 + D2, D2 + D3, and
D1 + D3 were mixed in a 50:50 ratio by mixing 2 olives and 5 mL of saline solution from
each sample. For the combination of three defects, D1 + D2 + D3 were also mixed equally
by taking 1 olive and 3 mL of each sample.

3.2. Analyses

The table olives were subjected to sensory analysis, characterization of volatile com-
pounds, and e-nose measurements as detailed below.

3.2.1. Sensory Analysis

Table olives were evaluated by a sensory panel composed of eight experts from the
CICYTEX Research Center (Extremadura, Spain) who were trained according to the IOC
recommendations [3]. For this study, the intensity and type of the off-odor perceived by
the taster was assessed on a structured scale from 0 to 10. The results were expressed as
median values of defects; values were considered valid when the coefficient of variation
was less than 20. Finally, table olives were classified according to the quality categories
established by the IOC [3].

One-way ANOVA was performed followed by Tukey’s multiple range test to establish
statistically significant differences between the different samples. Significance was set at
p < 0.05. SPSS 18.0 software was used for statistical analysis (SPSS Inc., Chicago, IL, USA).
Data were expressed as mean and standard deviations (SD).

3.2.2. Analysis of Volatile Compounds

The volatile compounds were analyzed in triplicate with a Bruker Scion 456-GC triple
quadrupole gas chromatograph. Pitted olives were crushed and homogenized following
the procedure reported in [25]. A 2 g aliquot was mixed with 7 mL of a 30% NaCl solution
in a 15 mL glass vial. Volatile components were sampled from the headspace at 40 ◦C for
15 min using SPME with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) StableFlex
fiber (65 µm, Supelco). After SPME, desorption was carried out at the injection port of
the gas chromatograph at 250 ◦C for 15 min. The components were separated using a
VF-5MS capillary column (30 m × 0.25 mm; ID: 0.25 mm). The tentative identification of the
analytes was based on comparison of mass fragmentations with the NIST 2.0 MS library.



Molecules 2021, 26, 5353 12 of 14

3.2.3. E-Nose Analysis

The e-nose equipment was a portable miniaturized device designed by the University
of Extremadura (Spain) [26]. This prototype consisted of four digital gas sensor chips with
integrated metal oxide (MOX) sensors: BME680 from Bosch, SGP30 from Sensirion, and
CCS811 and iAQ-Core from ScioSense. The microprocessor read the values detected by
the sensors, formatted them, and sent them to an external smart device via Bluetooth. The
resulting data were then passed to a computer.

E-nose measurements were performed following IOC recommendations. Specifically,
10 mL of brine containing four olives was introduced into standard tasting glasses, covered
with a watch glass, and placed on a block thermostatted at 25 ◦C. Another standard tasting
glass was left without samples to serve as a baseline reference. Five measurements were
taken for each table olive sample, and each data acquisition cycle consisted of two parts.
First, the e-nose was placed on the sample glass for 60 s and the sensor signals were
recorded. Then, the e-nose was moved to the glass without sample to perform desorption
with free air for 30 s to bring the gas sensor signal back to the baseline.

Each sensor response curve consisted of N points corresponding to the sensor mea-
surements with time. The features used to characterize the sensor response curves were the
maximum signal value minus the minimum signal value multiplied by 100 and subtracted
by 1 ((MAX-MIN)×100 − 1). As a result, a data vector with 11 rows (sensors) for each
sample was obtained.

3.2.4. Multivariate Data Analysis

The e-nose data consisted of a matrix of 100 rows (10 measurements for each duplicate
sample) and 11 columns (sensors). The data were first subjected to principal component
analysis (PCA) to perform an exploratory analysis. Subsequently, PLS-DA was applied
to build the classification model. As the variables were measured in different units, the
original variables were autoscaled. Data analysis was performed using Matlab R2016b
version 9.1 (The Mathworks Inc., Natick, MA, USA) with PLS_Toolbox 8.2.1 (Eigenvector
Research Inc., Wenatchee, WA, USA).

4. Conclusions

The e-nose proved to be a useful tool for recognizing olfactory sensations derived
from abnormal fermentations occurring in table olives, such as zapateria, butyric, putrid,
and musty defects. The classification made with the e-nose coincided with the results
obtained by the tasting panel. When combined with chemometric tools (PCA and PLS-DA),
e-nose provides a rapid and inexpensive method to monitor the occurrence of abnormal
fermentations during the processing of table olives. Therefore, the e-nose can play a role
in the table olive industry in the future for the rapid in-house classification of commercial
table olives according to the criteria set by the IOC or when a tasting panel is not available.
In addition, the panel leader can use the e-nose as a support to discriminate samples with
different intensity of the predominant defect in order to produce table olives compositions
of better quality that comply with current market legislation.
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