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Abstract

Hepatocellular carcinoma (HCC) is currently still a major factor leading to death, lacking of

reliable biomarkers. Therefore, deep understanding the pathogenesis for HCC is of great

importance. The emergence of circular RNA (circRNA) provides a new way to study the

pathogenesis of human disease. Here, we employed the prediction tool to identify circRNAs

based on RNA-seq data. Then, to investigate the biological function of the circRNA, the can-

didate circRNAs were associated with the protein-coding genes (PCGs) by GREAT. We

found significant candidate circRNAs expression alterations between normal and tumor

samples. Additionally, the PCGs associated with these candidate circRNAs were also found

have discriminative expression patterns between normal and tumor samples. The enrich-

ment analysis illustrated that these PCGs were predominantly enriched for liver/cardiovas-

cular-related diseases such as atherosclerosis, myocardial ischemia and coronary heart

disease, and participated in various metabolic processes. Together, a further network analy-

sis indicated that these PCGs play important roles in the regulatory and the PPI network.

Finally, we built a classification model to distinguish normal and tumor samples by using

candidate circRNAs and their associated genes, respectively. Both of them obtained satis-

factory results (~ 0.99 of AUC for circRNA and PCG). Our findings suggested that the

circRNA could be a critical factor in HCC, providing a useful resource to explore the patho-

genesis of HCC.

Introduction

HCC is the most common type of liver cancer and the third most common causes of cancer

worldwide [1, 2]. The majority of HCC arise from chronic hepatocellular B virus infection and

subsequent cirrhosis [3]. Its characteristics of rapid development and early metastasis lead to a

poor prognosis, making the prevention of HCC remains a formidable task, a major problem is

lack of reliable biomarkers. It is therefore necessary to explore its regulatory processes for

understanding its pathogenesis.
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CircRNAs as a new type of non-coding RNA are distinct from traditional linear RNAs for

their closed loop structure. They are widely presented in the eukaryotic transcriptome [4]. Cir-

cRNAs are predominantly generated by back splicing of exons in eukaryotic genomes [5, 6].

These RNA have been reported abundant, conserved and stable in cytoplasm and could play

specific roles as microRNA sponges, regulation of transcription, protein binding and transla-

tion into protein and potential anti-cancer effects [4–9]. However, only a few such circRNAs

have been well interpreted [10, 11], and identification of circRNAs is still a challenging task

both in bioinformatics and experiments [12]. The biological function of the majority of the cir-

cRNAs and their regulatory mechanisms remain largely unknown.

Previous studies showed that circRNAs associate with disease occurrence [6]. CircRNAs

were found in hepatitis delta virus, which result in severe liver disease [13]. Particularly, cir-

cHIPK3 was reported significantly overexpression in liver cancer tissues compared with nor-

mal tissues [10]. The expression pattern of circRNAs in cancer serum from colorectal cancer

patients was significantly different from normal serum that some were missing or detected in

cancer patients [14]. These studies indicated that the aberrant circRNA expression may be a

critical factor for the pathogenesis of diseases. However, the circRNA expression profiling has

so far been poorly addressed relative to PCGs.

In this work, we investigated whether aberrant expression of circRNAs and their related

PCGs associated with HCC. The main work flow is as follows: firstly, two algorithms, cir-

cRNA_finder [15] and circExplorer [16], were used to annotate circRNAs for a more reliable

output due to pairing any two algorithms could greatly decrease false positive rates [17]. We

focused on the common outputs by the two algorithms as the candidate circRNAs. Further, to

examine the biological function of these candidate circRNAs, they were associated with PCGs

by using the Genomic Regions Enrichment of Annotations Tool (GREAT) [18]. The enrich-

ment analysis of these PCGs, the MSigDB perturbation [19] showed that the PCGs associated

with these circRNAs displayed aberrant expression in HCC. And a further disease ontology

[20] analysis illustrated they are significant enriched on the live/ cardiovascular-related disease.

The GO analysis [21] showed that they significantly participate in metabolic-related process.

The clustering analysis showed that both the candidate circRNAs and their associated PCGs

displayed different expression patterns between the normal and tumor samples. Additionally,

protein-protein interaction (PPI) network analysis suggested that these PCGs exhibit signifi-

cantly different topology properties than other genes in the PPI network. We then constructed

a circRNA-microRNA-gene regulatory network, in which, the genes predominantly enriched

on metabolic and regulation-related process and participate in cancer-related pathway. Finally,

classification models were built to classify normal and tumor samples by using circRNAs and

their associated PCGs, respectively. In both cases, the normal samples could be accurately dis-

tinguished from the tumor samples. These results showed that the formation of circRNAs may

relate to HCC occurrence.

Materials and methods

Data

RNA-seq data of 100 samples consisting of tumor tissues and para-carcinoma tissues from 50

HCC patients were downloaded from the Sequence Reads Archive (SRP068976) [22]. And the

corresponding expression data of all genes in each sample also was downloaded. All of these 50

paired normal and tumor samples were paired-end sequenced using standard Illumina proto-

cols and total RNA molecules were extracted. For the clinical information of patients see S1

Table. The human reference genome (hg19) was downloaded from UCSC Genome Browser
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(http://genome.ucsc.edu/). STAR (version 2.5.2a) and Bowtie (version 2.2.8.0/1.2.2.0) were

used to build index with default parameters for the human genome.

Identification and quantification of circRNAs

Recently, circRNA attracted widespread attention, and several tools were developed for anno-

tating circRNAs by exploiting RNA-sequencing reads spanning the back-splicing junction.

According to previous study [17], there exist dramatic differences between the circRNAs

annotation algorithms, but pairing up any two algorithms would greatly decrease the false pos-

itive rate and produce a more reliable output. Particularly, combining any two algorithms

could result in 8–12% false positive fraction, while ~6.6% by combining all the five algorithms.

As the tradeoff the computation time and false positives, two algorithms, circExplorer and

circRNA_finder algorithms were combined used for circRNA annotation. The circExplorer

requires gene annotation information which is more reliable and more time-consuming.

The circRNA_finder is a de novo prediction tool which is unbiased and faster. For each algo-

rithm, the prediction outputs of all the samples were dealt with the python scripts provided by

Thomas B. Hansen [17]. Then the circRNAs validated by both these two algorithms were kept

for the following analysis. The averaged read counts spanning the back splice junctions by the

two algorithms were used as a measure of the expression level.

Associating circRNAs with PCGs by GREAT

We adopted only the common candidate circRNAs by the two algorithms to decrease the false

positive rates based on previous reports by [17]. By this way we obtained 2091 circRNAs. Most

of the circRNAs were made up of exons that defined as exonic circRNA. According to previous

studies circularization through back-splicing could make the aberrant expression of its host

gene [4, 23]. To further estimate the function of these candidate circRNAs, the GREAT (ver-

sion 3.0.0) [18] was employed to associate circRNAs with their nearby PCGs. The gene regula-

tory domains were defined by using default basal plus extension (Proximal: 5kb upstream, 1kb

downstream, plus Distal: up to 1000 kb).

The random forest classification model

Machine learning algorithms are well accepted for classification [24, 25]. To investigate

whether the expression of circRNAs relate to HCC occurrence, we applied random forest to

distinguish tumor samples from normal samples [26] by using the transcriptional profile of

circRNAs/genes as input. The total 2091 common circRNAs by both algorithms were reserved

as the candidates for model features. In addition, we also built a classification model by using

the PCGs associated with the circRNAs which were also required had significant expression

alterations between normal and tumor samples (t-test, p value< 0.01).

In practice, the random forest was applied to make our prediction with default 500 trees. 80

samples were randomly selected as the training data and the remaining 20 samples as the test-

ing data. This process was repeated 100 times. Five-fold Cross-validation was used to model

training. To avoid a biased inflation of predictability, we performed feature selection against

the training data by using the LASSO [27] According to the ten-fold cross-validation MSE, the

optimized lambda was got by minimizing the MSE. The value of alpha is always kept at the

default value of 1. Lasso could set a coefficient of 0 to the less informative features and the

remains with non-zero coefficients were then used as the input to a random forest classifier.

Circular RNAs and hepatocellular carcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0174436 March 27, 2017 3 / 13

http://genome.ucsc.edu/
https://doi.org/10.1371/journal.pone.0174436


Results

PCGs associated with circRNAs play critical role in HCC

CircRNA is a new type of non-coding RNA, attracting widespread attention in recent years.

Previous studies showed that circRNA displayed the anomalism in disease, could regard as a

promising biomarker for disease diagnosis and targeted therapy. However, only a few cir-

cRNAs are well interpreted, and the biological function of the majority of circRNAs remains

unclear. A systematically investigation for circRNAs expression is therefore important to

explore its function and regulatory mechanisms.

Here, the 2091 common candidate circRNAs (S2 Table) identified by these two algorithms

were kept for the following analysis. The workflow was shown in Fig 1. To validate our predic-

tions we searched against the available public circRNA database. Among them, 47% has been

reported by previous studies recorded in the circNet database [28]. For example, circHIPK3

(chr11:33307958–33309057) from HIPK3 exon2 was found display aberrant expression in

liver compared with matched normal tissues, and its silence could inhabit human cell prolifer-

ation [10].

To examine the potential biological functions of the candidate circRNAs, these 2091 candi-

date circRNAs were associated with their nearby PCGs by GREAT (details see Methods).

Interestingly, we found that these PCGs not only enriched on liver/hepatobiliary disease but

also enriched on cardiovascular-related disease, such as atherosclerosis, myocardial ischemia

and coronary heart disease etc. (Fig 2A). According to the previous studies, it may be due to

the strong correlation of liver disease and cardiovascular disease [29–31]. And a further GO

enrichment analysis [21] (Fig 2B.) suggested that these PCGs significantly participate in meta-

bolic-related process such as oxidation-reduction metabolic process and organic acid meta-

bolic process, which in line with previous reports that tumor tissue exhibit a remarkably

different metabolism [32]. In the case of HCC, the abnormal organic acid metabolism has

reported by [33]. Additionally, MSigDB Perturbation ontology analysis [19] (Table 1), with

well-defined gene signatures of genetic and chemical perturbations, suggested that these PCGs

closely related to HCC. Expectively, these PCGs are characterized by the increased prolifera-

tion, high levels of serum AFP, which is an important mark for HCC diagnosis [34]. All these

results suggested that the formation of circRNAs likely related with HCC occurrence.

CircRNAs and their associated PCGs are significantly altered between

tumor and normal samples

To further investigate the expression pattern of candidate circRNAs in HCC, a clustering anal-

ysis was performed. By a feature selection of LASSO [27], 45 circRNAs were extracted with sig-

nificant contribution for discriminating tumor samples from normal samples. The normal and

tumor samples could be accurately separated by these circRNAs (only one sample was wrongly

assigned) (Fig 3A). There are 34 PCGs associated with them. We used these PCGs to perform

clustering analysis, found they also display significantly different expression between normal

and tumor samples.

Secondly, we focused on the 2622 PCGs associated with the 2091 candidate circRNAs

(details see Methods). T-test analysis was performed on these PCGs, 1450 (~55%) PCGs were

detected differentially expressed between normal and tumor samples (p value < 0.01) and kept

for subsequent analysis. Similarly, a feature selection by LASSO was carried on this gene set.

23 PCGs were identified exhibiting significant contribution for discriminate normal and

tumor samples. We found the expression profile of these 23 PCGs could accurately distinguish

normal and tumor samples by clustering analysis (Fig 3B).
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Fig 1. Flow chart of the key stages in our analysis pipeline.

https://doi.org/10.1371/journal.pone.0174436.g001
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Network analysis of critical circRNAs and PCGs in protein-protein

network and circRNA-microRNA-gene regulatory network

In order to further understand the characteristic of the circRNAs, we made an analysis on

their topological characteristics in the network. First, we analyzed the topological properties of

genes associated with circRNAs in protein-protein network (PPI) downloaded from BIOGRID

database [35]. Interestingly, the topological properties were significantly different between the

PCGs associated with circRNAs and others. The PCGs associated with circRNAs displayed

higher degree and closeness centrality and lower average shortest path length and clustering

coefficient (Fig 4, t-test), suggesting important roles of these circRNAs-related PCGs in the

PPI.

To further examine the biological function of circRNAs, we focused on the targets of above

mentioned 45 critical circRNAs in clustering analysis based on the circRNA-microRNA-gene

regulatory network by [28], in which the potential miRNA binding sites on circRNAs were

determined by iteratively searching well defined microRNA binding motif against the circRNA

sequences. Among them, there were 22 circRNAs were also reported in the circNet. Then, we

Fig 2. Enrichment analysis of PCGs associated with aberrantly expressed circRNAs by using GREAT. (A) Top 20 disease terms were found

significantly enriched on liver and cardiovascular-related diseases (B) top 20 GO terms with predominantly involved in metabolic-related process.

https://doi.org/10.1371/journal.pone.0174436.g002

Table 1. The MSigDB perturbation enrichment result for PCGs associated with aberrantly expressed circRNAs.

MSigDB Perturbation Term Name Binom Raw

P-Value

Binom FDR

Q-Val

Binom Fold

Enrichment

Liver selective genes 1.30E-165 4.38E-162 7.617453

Genes from ’subtype S3’ signature of hepatocellular carcinoma (HCC): hepatocyte

differentiation.

8.61E-117 1.45E-113 5.527136

Genes down-regulated at early fetal liver stage (embryonic days E11.5—E12.5) compared

to the late fetal liver stage (embryonic days E14.5—E16.5).

3.90E-75 4.37E-72 5.37416

Genes down-regulated in hepatocellular carcinoma (HCC) compared to normal liver

samples.

1.30E-63 1.10E-60 3.241819

Genes negatively correlated with recurrence free survival in patients with hepatitis B-

related (HBV) hepatocellular carcinoma (HCC).

3.25E-56 2.19E-53 8.102399

Top 200 marker genes down-regulated in the ’proliferation’ subclass of hepatocellular

carcinoma (HCC); characterized by increased proliferation, high levels of serum AFP

[Gene ID = 174], and chromosomal instability.

1.70E-48 9.55E-46 4.658689

https://doi.org/10.1371/journal.pone.0174436.t001
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extracted their microRNA targets and also the gene targets for both these microRNAs and cir-

cRNAs. Finally, a circRNA-microRNA-gene regulatory network was constructed consisting of

22 circRNAs, 17 microRNAs and 130 PCGs (Fig 5, S3 Table). Among these microRNAs, sev-

eral microRNAs were found related to cancers, such as has-miR-34a-5p has been reported

related to several types of cancers, for example, colorectal cancer [36]; has-miR-107 exhibit

aberrant expression in a variety of cancers, including hepatocellular [37], gastric cancer [38],

and Glioma [39] etc. The GO analysis suggested that these PCGs mainly involved in metabolic

and regulation-related process (Fig 6A). The KEGG pathway analysis showed that these PCGs

predominantly participate in cancer-related process (Fig 6B), including Hepatitis B. Further-

more, t-test analysis suggested that the majority of these PCGs are differentially expressed

between tumor and normal samples (~63%, p value < 0.01). This result implies that the cir-

cRNAs could function in diversity ways to influence the gene expression.

CircRNAs and their associated PCGs could accurately distinguish

normal from tumor samples

According to above clustering analysis, circRNAs and their associated PCGs were significantly

altered between normal and tumor samples. In order to further examine their expression pat-

terns, we built a classification model to investigate whether the circRNAs or their associated

PCGs has the ability to distinguish normal and tumor samples, respectively.

Fig 3. Comparison analysis of circRNAs/PCGs expression profiles. (A) 45 critical circRNAs displayed

expression difference between normal and tumor samples. (B) 23 PCGs displayed expression difference

between normal and tumor samples. The clustering analyses were performed in MATLAB using clustergram

function (columnPDist: correlation).

https://doi.org/10.1371/journal.pone.0174436.g003
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Firstly, the expression levels of the candidate circRNAs across all the samples were applied

as the feature vectors inputting to random forest classifier. Specifically, we randomly selected

80 samples used as the training data, and the remaining samples were used as the testing data.

Feature selection only used in training data to avoid biased inflation of predictability. This pro-

cess was repeated 100 times, and the average values of predictive results were listed in Table 2.

Our result suggested that circRNA could successfully distinguish tumor and normal samples,

and the resulting AUC was 0.988 for the training data and 0.976 for the testing data (Table 2).

The result suggests that circRNA is strongly correlated with HCC. In addition, the 34 PCGs

(PCG set 1) directly associated with the 45 circRNAs used in clustering analysis were also

applied to distinguish normal and tumor samples, and obtained a high accuracy (Table 2).

Fig 4. Cumulative distributions of topology properties in the PPI network. (A) Average shortest path length (B) Closeness centrality

(C) Between coefficient (D) Degree. Purple represents the PCGs associated with circRNAs, and green represents other PCGs in the

network.

https://doi.org/10.1371/journal.pone.0174436.g004

Circular RNAs and hepatocellular carcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0174436 March 27, 2017 8 / 13

https://doi.org/10.1371/journal.pone.0174436.g004
https://doi.org/10.1371/journal.pone.0174436


We also built a classification model by using aforementioned 1450 differentially expressed

PCGs that associated with 2091 circRNAs. Expectedly, the prediction accuracy is satisfactory

(PCG set 2, Table 2), suggesting that employing circRNA to select critical genes is indeed an

efficient method, and the changes of circRNAs may be closely related to hepatocarcinogenesis.

Discussion

A large number of publicly available RNA-seq data with high sequencing depth in normal and

tumor tissues allow us to investigate the genetic state of a tissue. The circRNAs prediction tool

contributed to explore the pathogenesis of HCC from the perspective of circRNAs. To our

knowledge, many of circRNAs don’t encode for proteins, but rather a fast-growing set of tran-

scripts were discovered [4]. The new class of non-coding RNA is increasingly being proposed

Fig 5. Network analyses of critical circRNAs and PCGs. The regulatory network of circRNA-microRNA-gene extracted from CircNet. The

circRNAs were above used in clustering analysis (green), the microRNAs were directly interact with these circRNAs (red), and the PCGs were

directly interact with these circRNAs or microRNAs (purple).

https://doi.org/10.1371/journal.pone.0174436.g005
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to play critical roles in a variety of diseases and become a promising potential biomarker for

cancer diagnosis [18]. Although, a few circRNAs has been shown to be shared microRNA

binding sites as the competitive endogenous RNA (ceRNA), acting as microRNA sponges [40,

41]. However, the regulation of circRNA expression has so far been poorly addressed relative

to PCGs. It is remains unclear for most of the circRNAs biological functions.

In this work, circRNAs were identified based on 50 paired normal and tumor HCC RNA-

seq data. 2091 circRNAs were identified by both algorithms. The PCGs relevant to them dis-

play important regulatory roles in liver/ cardiovascular-related disease, such as atherosclerosis,

myocardial ischemia and coronary heart disease. GO and MsigDB perturbation analysis also

showed that these PCGs were closely to liver occurrences. Additionally, network analysis sug-

gested that these PCGs were critical factors in the regulatory and PPI network. In addition,

there exist significant expression differences of some circRNAs their associated PCGs between

normal and tumor tissue in HCC. Both of them could accurately distinguish tumor and nor-

mal samples, likely correlated with HCC occurrence. These findings provide a new resource to

investigate the HCC pathogenesis, contributing to improve the HCC diagnosis and therapy.

To this study, we found there are individual differences of the circRNAs expression. Here

some of circRNAs were detected at only several patients. Aberrant expression analysis and net-

work inference based on a group of samples with similar phenotype, which prevents disease

diagnosis on one sample from one individual. So, it may be valuable to study the post-tran-

scriptional regulation process of circRNA from the perspective of personalization. Due to the

Fig 6. Enrichment analysis of PCGs in the regulatory network. (A) GO enrichment analysis. (B) KEGG pathway analysis. PRNCMP (positive

regulation of nitrogen compound metabolic process).

https://doi.org/10.1371/journal.pone.0174436.g006

Table 2. The prediction performance of circRNAs or PCGs.

Acc Sen Spe Pre Mcc AUC AUPR

CircRNA Training Data 0.940 0.936 0.943 0.944 0.880 0.988 0.989

Testing Data 0.903 0.900 0.914 0.912 0.811 0.976 0.977

PCG set 1 Training Data 0.945 0.948 0.941 0.942 0.890 0.988 0.989

Testing Data 0.936 0.949 0.928 0.930 0.876 0.986 0.987

PCG set 2 Training Data 0.992 0.984 1.000 1.000 0.984 1.000 1.000

Testing Data 0.983 0.967 1.000 1.000 0.967 0.997 0.998

https://doi.org/10.1371/journal.pone.0174436.t002
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insufficient of clinical information, we couldn’t perform more specific analysis combined with

phenotype of patients. We would develop deep-depth analysis in future work.

Conclusions

In this study, 50 paired normal and tumor HCC RNA-seq data were employed to investigate

the roles of circRNAs in HCC. The PCGs associated with the 2091 circRNAs were found

enriched on liver/cardiovascular-related diseases. Furthermore, 45 circRNAs and 23 PCGs

were identified, displaying significant expression differences between normal and tumor tis-

sues, respectively. The classification model suggested that expression profiles of the both two

gene types could accurately distinguish normal and tumor samples. These results contribute to

our understanding of the underling pathologic mechanism.
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