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Abstract

Background—To determine optimal methods of Respiratory Inductance Plethysmography (RIP) 

flow calibration for application to pediatric post-extubation upper airway obstruction.

Methods—We measured RIP, spirometry, and esophageal manometry in spontaneously 

breathing, intubated Rhesus monkeys with increasing inspiratory resistance. RIP calibration was 

based on: ΔµVao ≈ M[ΔµVRC + K(ΔµVAB)] where K establishes the relationship between the 

uncalibrated rib cage (ΔµVRC) and abdominal (ΔµVAB) RIP signals. We calculated K during: (1) 

isovolume maneuvers during a negative inspiratory force (NIF) (2) Quantitative Diagnostic 

Calibration (QDC) during (a) tidal breathing, (b) continuous positive airway pressure (CPAP), and 

(c) increasing degrees of UAO. We compared the calibrated RIP flow waveform to spirometry 

quantitatively and qualitatively.

Results—Isovolume calibrated RIP flow tracings were more accurate (against spirometry) both 

quantitatively and qualitatively than those from QDC (p<0.0001), with bigger differences as UAO 

worsened. Isovolume calibration yielded nearly identical clinical interpretation of inspiratory flow 

limitation as spirometry.

Conclusions—In an animal model of pediatric UAO, Isovolume calibrated RIP flow tracings 

are accurate against spirometry. QDC during tidal breathing yields poor RIP flow calibration, 

particularly as UAO worsens. Routine use of a NIF maneuver before extubation affords the 

opportunity to use RIP to study post extubation UAO in children.
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Introduction

Upper airway obstruction (UAO) is common to a variety of pediatric diseases (1, 2), and is 

frequent after endotracheal extubation. Definitive data on risk factors and prevention of 

pediatric post-extubation UAO are lacking. This may relate to poor clinical acumen in 

distinguishing UAO from residual pulmonary or neuromuscular disease (3). More objective 

measures of post-extubation UAO severity in infants and children may help identify risk 

factors and elucidate optimal treatment or prevention strategies (1, 3–5).

Inspiratory flow limitation is relatively specific to extrathoracic UAO, characterized by 

disproportionately large inspiratory effort relative to flow. The most widely accepted 

method to measure flow is spirometry, which for non-cooperative spontaneously breathing 

children requires a tight fitting mask over the nose and mouth, which may require sedation 

and change flow dynamics (1, 4).

Respiratory inductance plethysmography (RIP) is a less invasive alternative to spirometry. 

With RIP, variations in the self-inductance of a coil (wires around the ribcage (RC) and 

abdomen (ABD)) are measured as a result of changes in the cross sectional area of the RC 

and ABD (6–8). However, RIP signals must be calibrated for accurate values of flow. Some 

RIP calibration techniques require specific respiratory maneuvers to generate isovolume 

conditions (a period of effort with no air flow), while others can be applied to tidal breathing 

(9, 10).

Some have demonstrated in adults that RIP calibration factors generated from isovolume 

maneuvers are similar to those obtained during 5 minutes of tidal breathing (using 

Quantitative Diagnostic Calibration (QDC)) (11) and that QDC calibrated RIP signals 

combined with esophageal manometry can detect flow-limitation for adults with obstructive 

sleep apnea (5). Others have found conflicting results (12–14). In children, QDC calibration 

may work with minimal respiratory disease (15, 16). However, given differences in the 

elastic properties of the chest wall in children compared to adults, it is unclear if the 

relationship between RC and ABD compartments is stable in children as inspiratory load 

increases. This may mean that QDC calibration of RIP signals in children is not accurate 

under increasing inspiratory load. The need for isovolume calibration limits the application 

of RIP in spontaneously breathing infants. However, it may be possible to perform an 

isovolume calibration on spontaneously breathing intubated children prior to extubation, 

affording its use to study post-extubation UAO.

We hypothesized that the combination of calibrated RIP and esophageal manometry will 

provide an objective measure of the severity of post-extubation UAO. However, several 

questions regarding RIP calibration limit its immediate application to pediatric post 

extubation UAO and are the focus of this investigation. 1) Which method of calibration 

(isovolume versus QDC) is more accurate to detect extrathoracic UAO in children? 2) Can 

we achieve isovolume conditions during a Negative Inspiratory Force (NIF) procedure, 

which is routinely done prior to extubation? 3) Do various levels of Continuous Positive 

Airway Pressure (CPAP) affect QDC calibration, which may preclude QDC calibration prior 
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to extubation? 4) Can QDC calibration of RIP flow occur during ongoing UAO, eliminating 

the need for measurements prior to extubation?

We sought to test these questions using an established Rhesus monkey model of pediatric 

UAO (17, 18).

Results

We used 10 Rhesus monkeys, all of which tolerated the experiment, with no complications, 

were extubated, and returned to their pre-experiment state of health.

Primary Objective: Accuracy of calibration (Isovolume versus QDC) during increasing 
UAO

We applied calibration factors from the Negative Inspiratory Force (NIF) maneuver at 

Functional Residual Capacity (FRC) (Isovolume) and Quantitative Diagnostic Calibration 

(QDC) during Continuous Positive Airway Pressure (CPAP) of 5 cmH2O, to conditions of 

increasing UAO from fixed calibrated inspiratory resistors. Using quantitative analysis, at 

every level of resistance, isovolume calibration resulted in a lower mean square error 

(judged against spirometry), to calibration using QDC on CPAP of 5 cmH2O (p<0.0001) 

(Figure 1). The same findings held using qualitative methods (p<0.0003). On average, with 

even mild increase in UAO, QDC yielded clinically inadequate calibration of flow tracings, 

with 76% of observations (127/168) falling into the terrible or poor category. In contrast, 

isovolume calibration resulted in good or excellent calibration for all levels of inspiratory 

resistance with only 2.4% (4/168) of observations being inadequate.

Reproducibility and accuracy of calibration generated from an isovolume maneuver

For all 10 monkeys at both Functional Residual Capacity (FRC or end- expiration) and end 

inspiration, we achieved an isovolume condition with no flow seen on spirometry, negative 

deflections in esophageal pressure, and Respiratory Inductance Plethysmography (RIP) 

tracings of Ribcage (RC) and Abdomen (ABD) which were nearly 180 degrees out of phase 

(opposite directions of each other) (Figure 2).

For the three cycles of obstruction maneuvers at both lung volumes, nine of the 10 monkeys 

had variation in calibration factors (K) between maneuvers of < 10% (range 0–9.5%, median 

4.5 and 5%). One monkey had a 52% difference in K values generated during the three 

maneuvers at FRC and 41% difference at end inspiration.

Table 1 compares K values at FRC and end inspiration and the accuracy of RIP flow signal 

calibration (compared to spirometry) using each of the K values during isovolume 

maneuvers. In general, the K values generated at FRC and end inspiration were similar (p 

=0.09). During the isovolume maneuver RIP flow (which should be close to zero) was a 

median of 25% of the flow seen during tidal breathing (IQR 12, 36) at FRC and 30% (IQR 

14.4,80) at IC (Figure 3). Qualitative analysis demonstrated at FRC, 7 monkeys had 

excellent calibration, two good, and 1 adequate. At end inspiration, 7 monkeys had excellent 

calibration, 1 good, 1 adequate, and 1 bad.
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Calibration factors using QDC during unobstructed tidal breathing, CPAP 5, 10, 15 cmH2O

K values generated using QDC on the three different levels of CPAP were not substantially 

different from each other, or than those generated during baseline conditions with no added 

CPAP (all p > 0.22, Table 1, Figure 4).

Calibration factors using QDC with inspiratory resistance

K values obtained from QDC calibration with an inspiratory resistance of 50 cmH2O/ml/sec 

were not different from baseline and CPAP. K values obtained from QDC calibration with 

an inspiratory resistance of 200 cmH2O/ml/sec were higher than those generated during 

baseline and CPAP (all p<0.02, Table 1, Figure 4).

Calibration factors and adequacy from Isovolume Maneuver versus QDC

K values generated during Isovolume maneuvers at FRC or end inspiration were 

significantly higher than those generated under any of the QDC conditions (all p <0.01) 

(Figure 4). We assessed the accuracy of the K values to calibrate the RIP flow tracings 

generated from isovolume maneuvers at FRC compared to QDC under all conditions 

(unobstructed, CPAP 5–15 cmH2O, obstructed breathing 50, 200 cmH2O/ml/sec). With the 

exception of CPAP of 15 cmH2O, calibration of flow tracings was more accurate with 

isovolume maneuvers, compared to QDC calibration performed during that condition 

(p<0.001) (Figure 5). When applying QDC derived K values (from CPAP of 5cmH2O) to 

RIP flow tracings during complete obstruction (NIF maneuver, when flow should be 0) flow 

was a median of 193% of the flow seen during tidal breathing (IQR 105,242) at FRC and 

206% (IQR 159,301) at IC (Figure 3).

Discussion

Using an animal model for pediatric UAO, we have demonstrated both quantitatively and 

qualitatively that calibration of RIP flow tracings using isovolume maneuvers during a NIF 

procedure yields nearly identical flow tracings as spirometry. This calibration remains 

accurate when applied to tidal breathing, and increasing degrees of UAO. There is minimal 

variability in the flow calibration when the NIF procedure is performed at end exhalation 

(FRC) compared to end inspiration, making it appropriate to use in a clinical environment, 

when the NIF procedure may be timed imprecisely in the respiratory cycle. In addition, we 

have demonstrated that the application of CPAP of 5 cmH2O (which would be typical for a 

child close to extubation) has minimal impact on the relative contribution of the RC and 

ABD during tidal breathing, as seen by similar proportionality constants (K values) during 

QDC Calibration. This allows RIP flow calibration performed on CPAP of 5 cmH2O to be 

applied to children after extubation. However, in this model, QDC calibration of the RIP 

flow signal was generally poor, and worsened as UAO increased. As such, an isovolume 

maneuver is needed for accurate RIP flow signal calibration to detect UAO in these 

primates.

When translating this model to infants and children, there are several considerations. 

Physiologic similarities between human infants and children and adult Rhesus monkeys 

allows this animal model to be appropriate for pediatric UAO. The body habitus and weight 
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(on average 8–11 kilograms), tracheal sizes (17, 19, 20), and lung volumes (standardized to 

body weight) (21–30) (31) are comparable between human infants and children and adult 

Rhesus monkeys (Table 2). Moreover they are alike in terms of respiratory system 

resistance, compliance, oxygen consumption, and minute ventilation (32, 33). The 

respiratory mechanics for human infants and children more closely parallel those of the adult 

Rhesus monkey than a human adult. Similar to human infants and children, adult Rhesus 

monkeys often have a significant contribution of their respiratory work from abdominal 

muscles, particularly as respiratory load increases. To this end, human infants are more 

similar to adult Rhesus monkeys, than adult humans. Measures of work of breathing are 

quite similar between human infants and children and adult Rhesus monkeys, (17, 20, 34, 

35), and both infants and monkeys have a characteristic rise in the degree of thoraco-

abdominal-asynchrony (TAA) using non-calibrated RIP with UAO (20, 34).

The need for accurate RIP flow calibration necessitates careful consideration of the 

compliance of the chest wall in these different populations. While some adult studies have 

demonstrated similar RIP calibration factors between isovolume maneuvers and tidal 

breathing, the more compliant chest wall of the infant limits direct translation of these 

findings to children (5, 11). Through our previous observations with the adult Rhesus 

monkeys, their chest wall is even more complaint than the human infant. In this study, we 

have demonstrated that isovolume maneuvers using a NIF results in excellent calibration of 

RIP flow tracings to detect worsening UAO. As such, we believe the same will hold for 

human infants, given their chest wall compliance lies between these monkeys and adults. 

What was unclear, however, is if QDC calibration under tidal conditions in infants and 

children can result in adequate interpretation of flow from RIP, as has been shown in some 

studies on adult humans. This study has demonstrated that QDC calibration is inadequate in 

these monkeys, particularly as UAO worsens. This will need to be tested in children to 

determine if they are more similar to the monkeys, or adult humans. It is likely that this 

difference is a function of age, as infants are quite different from adolescents.

There are some clear practical points that can be directly translated to children from this 

model. First, the NIF procedure either at FRC or end-inspiration yields isovolume 

maneuvers, and is an appropriate way to calibrate the RIP flow tracing, yielding near-

identical flow patterns as spirometry. There was stability in the K values generated across 10 

consecutive breaths, repeated 3 times, arguing that it can be done in children with fewer 

breaths (a standardized NIF in children is 3–5 breaths).

Second, if the patient has pre-existing UAO, QDC calibration under conditions of UAO 

yields quite different calibration factors than those seen under unobstructed breathing or 

complete obstruction. Therefore, it may not be possible to get accurate calibration of RIP 

flow in a child who has ongoing obstructed breathing, as would be helpful in a non-

intubated child with croup.

There are certainly some limitations with this technique, and our findings. First, one monkey 

had significant variability in K values during the different isovolume maneuvers. This 

monkey did breathe with a more rapid shallow breathing pattern, and was obese. While this 

may have contributed to the variability in these results, it represents the reality that these 
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specific maneuvers may be difficult to perform in a reproducible manner for all children (or 

monkeys). Second, RIP assumes a two-compartment model of the respiratory system, which 

may not hold as UAO worsens. While the mean squared error between spirometry and 

calibrated RIP increased with both techniques (QDC or Isovolume) as inspiratory load 

increased (perhaps reflecting inadequacies of the two compartment model or non-linearity of 

the relationship between RC and ABD), RIP calibration during isovolume maneuvers was 

clinically interpretable for almost all monkeys, with only 2% of observations demonstrating 

inadequate calibration on qualitative analysis. Hence, even if assumptions of the two 

compartment model do not fully hold, one can likely still gain enough information from RIP 

with esophageal manometry to determine flow limitation. Third, and most importantly, these 

findings would suggest that calibration of RIP must occur during isovolume maneuvers, 

which limit its applications for small infants and children who are not cooperative, or who 

are not mechanically ventilated through an endotracheal tube (where one can do a NIF). 

Future research is needed to determine whether QDC calibration of RIP flow is accurate in 

children, or for other applications. Our study was primarily interested in RIP flow 

calibration to detect UAO, where it is logical that isovolume conditions more closely reflect 

inspiratory airway obstruction. It may be that QDC works adequately for other applications, 

particularly when there may be more variability of spontaneous inspiratory effort. Finally, 

these monkeys with minimal pulmonary disease may not fully reflect the respiratory disease 

of children cared for in intensive care units. However, it is unlikely that this residual 

pulmonary disease prior to extubation would limit applications of RIP calibration related to 

post-extubation UAO, because the underlying respiratory disease is unlikely to change 

dramatically from CPAP of 5 cmH2O prior to extubation to unassisted breathing after 

extubation.

Despite the limitations, these findings afford the opportunity to use these techniques to study 

post extubation UAO objectively in children in the intensive care unit. Esophageal catheters, 

RIP bands, and spirometry through a pneumotach can all be connected to the patient while 

they are invasively mechanically ventilated through an endotracheal tube. RIP calibration 

can occur during a NIF procedure to simulate isovolume maneuvers, as well as during 5 

minutes of steady state breathing on CPAP of 5 cmH2O. Direct evaluation of calibrated RIP 

flow using both techniques can be compared to simultaneous measurements of spirometry 

both during complete obstruction during the NIF and during tidal breathing on CPAP prior 

to extubation as part of an extubation readiness test (36). If calibration is accurate, then the 

calibrated RIP signals, combined with the esophageal pressure tracings, can generate flow-

pressure loops to quantify objectively whether the patient has UAO after the endotracheal 

tube is removed. Using this objective outcome measure in a large clinical study should 

produce more definitive data regarding risk factors for post-extubation UAO, the utility of 

therapies targeted at post-extubation UAO, and afford the potential for definitive studies on 

prevention strategies, if a high-risk group of patients can clearly be identified.

Methods

We performed an interventional trial in adult Rhesus monkeys of similar weight and 

pulmonary development to human infants. We have previously developed and validated 

techniques for infant pulmonary function testing on similar primates, with many 
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investigations of RIP and respiratory mechanics (17, 20, 26, 31–33). All experiments were 

performed at the Novartis Animal Care Facility in Basel, Switzerland. The study was 

approved by the Cantonal Animal Protection Committee and the Institutional Animal Care 

and Use Committee (IACUC) at Children’s Hospital Los Angeles.

Anesthesia Protocol

We anesthetized monkeys with intramuscular ketamine and continuous intravenous 

propofol, titrated to achieve spontaneous breathing with minimal movement or response to 

noxious stimuli. All monkeys were endotracheally intubated with a 4.5 mm ID cuffed 

endotracheal tube (Rüsch, Teleflex Medical, Bad Liebenzell Germany), with the cuff 

inflated to occlude any audible air leak.

Monitoring

We placed an esophageal balloon catheter from the mouth into the lower third of the 

esophagus (Carefusion, Avea SmartCath 8Fr). We confirmed position through a series of 

complete and partial endotracheal tube occlusions, as previously described (37). We placed 

Respiratory Inductance Plethysmogrpahy (RIP) bands (Viasys Healthcare, Respiband Plus, 

Hoechberg, Germany) around the nipples and umbilicus (20). We connected a calibrated 

pneumotachometer (Viasys Variflex 51000-40094) to the endotracheal tube. Each monkey 

received continuous monitoring of electrocardiogram, pulse oximetry, end-tidal CO2, 

temperature, and intermittent non- invasive blood pressure.

Hardware and Software

We connected the esophageal manometer, pneumotachometer, and RIP Bands to the Bicore 

II (CareFusion, Houten, The Netherlands). We displayed and recorded data (at a frequency 

of 200Hz) on a laptop computer using Polybench (Applied Biosignals GmbH, Weener, 

Germany). We then post processed the obtained measurements using VivoSense software 

(Vivonetics, San Diego, CA).

Study Protocol

We used a variety of different conditions to evaluate the adequacy of calibrated RIP flow 

signals against spirometry. Specifically, we were interested in the similarity of the flow 

signals, rather than the absolute value of flow itself. To do RIP flow signal calibration, the 

basic principle is to determine what proportion of the flow comes from the Ribcage (RC) 

versus the abdomen (ABD). RIP flow is derived from the time based derivative of RIP 

volume. The following equation sets the changes in uncalibrated rib cage (ΔµVRC) and 

uncalibrated abdominal (ΔµVAB) volumes approximately equal to the change in volume at 

the airway opening (ΔµVao): ΔµVao ≈ M[ΔµVRC + K(ΔµVAB)]. The term K establishes the 

electrical proportional relationship between the uncalibrated rib cage (ΔµVRC) and 

uncalibrated abdominal (ΔµVAB) signals from RIP. The term M scales the quantity of 

[ΔµVRC + K(ΔµVAB)] to the volume measured with spirometry (ΔµVao). Since we were 

primarily interested in a signal which is proportional to flow (as opposed to actual flow), the 

M term was not important, and not calculated.
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Isovolume calibration-obstructed breaths (NIF procedure)

We performed an isovolume maneuver by occluding the endotracheal tube for 10 

consecutive attempted breaths, confirming zero flow with spirometry. We repeated the 

maneuver 3 times, with several minutes between maneuvers. We initiated the maneuvers at 

two different lung volumes: FRC (end expiration) and end inspiration during tidal breathing. 

We calculated K values for each individual breath attempt based on the following equation 

K = − (ΔµVRC/ ΔµVAB) where ΔµVRC is the change in volume of the Rib Cage 

compartment during a single breath attempt, and ΔµVRC is the change in volume of the 

Abdomen compartment during the same breath. We excluded breaths in which isovolume 

conditions could not be guaranteed (i.e. visible flow on spirometry tracings). We averaged 

the 10 K values for each maneuver. To evaluate the reproducibility of the technique, we 

describe the variation in average K values during each of these three maneuvers. For 

analysis of accuracy of RIP flow signal calibration against spirometry, we used the average 

of these three values to arrive at the final isovolume K value for each monkey, rounded to 

one decimal point.

QDC Calibration, tidal breathing

We performed Quantitative Diagnostic Calibration (QDC) using 5 minutes of steady state 

breathing. Because naturally breathing subjects do not breathe with a constant tidal volume 

(VT), QDC collects a large number of breaths and excludes those with large deviations (1 

Standard Deviation) from the mean sum of RIP (as a surrogate for VT). The QDC algorithm 

calculates K based on the following equation: KQDC = ΣSD(ΔµVRC)/SD(ΔµVAB). Here, SD 

refers to the standard deviation of the change in ABD and RC volumes over the entire 5 

minute period.

We performed a 5 minute QDC calibration under several different conditions: unobstructed 

tidal breathing, Continuous Positive End Expiratory Pressure (CPAP) of 5, 10 and 15 

cmH2O, and obstructed breathing. We obtained CPAP by providing a constant flow of fresh 

gas into a flow inflating anesthesia bag connected to the endotracheal tube and partially 

occluded to maintain the desired airway pressure. Inspiratory obstruction was achieved by 

placing 2 fixed calibrated resistors (50 and 200 cmH2O/ml/sec, Hans Rudolph, Kansas City, 

MO) at the inspiratory limb of a Y shaped (non-rebreathing) valve attached to the 

endotracheal tube. This allowed inspiratory resistance, with no added resistance to 

exhalation.

Simulated Upper Airway Obstruction

To evaluate the accuracy of the different RIP calibration techniques to detect UAO, we 

applied eleven fixed calibrated resistors (range none-1000 cmH2O/ml/sec) as described 

above. The order of resistors was random for each monkey, and each resistor was in place 

for two minutes. We have previously demonstrated that the endotracheal tube itself is not a 

source of flow limitation, and should therefore not influence the results (19). We gave 

monkeys three minutes of recovery with unobstructed breathing between resistors, with a 

longer time if vital signs had not returned to baseline.
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Comparison of flow tracings measured with spirometry and calibrated RIP

We compared the flow signal generated from calibrated RIP to the spirometry flow signal 

both quantitatively and qualitatively. The quantitative approach calculates the Mean Squared 

Error (MSE) between the calibrated RIP flow signal and the Spirometry signal partitioned as 

inspiratory or expiratory for each breath. Both spirometry and RIP flow tracings were 

normalized for each breath (min of zero and max of 1). We then subtracted normalized 

spirometry flow from normalized RIP flow for time points along the inspiratory and 

expiratory limb of the breath (at a frequency of 200Hz). Thus, for each breath the MSE 

during inspiration can be represented as Σ [NormFlowSpir − NormFlowRIP]2/(number of 

samples during inspiration).

During complete obstruction (when spirometry flow was confirmed zero), we compared the 

relative flow seen from different RIP calibration methods, to the flow seen during tidal 

breathing. We computed the percentage difference as the average peak-trough difference of 

RIP calibrated flow during the isovolume maneuver/the average peak to trough difference of 

RIP calibrated flow during tidal breathing. Perfect RIP calibration would result in values 

close to zero.

Qualitative methods were based on visual inspection of two plots: flow/time, and flow/

esophageal pressure (Figure 6). We determined the adequacy of calibration of RIP based 

upon the equivalence of the shape of RIP and Spirometry flow-time plots and the 

interpretation of flow-limitation from flow-pressure plots (5). Two investigators (RK, RF) 

independently graded each condition on a scale from 1 (terrible) –5 (excellent) (Figure 6). 

We adjudicated disagreements to arrive at a consensus interpretation. We felt it important to 

have both quantitative and qualitative analysis to enable objective mathematical comparison 

and understand whether clinical interpretation was different.

Outcome measures and analysis

The primary objective was to determine whether isovolume calibration of the RIP flow 

signal was needed to detect different degrees of inspiratory flow limitation. To simulate the 

potential application to post-extubation UAO in children, the conditions of interest were: a 

NIF at FRC (isovolume) versus 5 minutes of tidal breathing on CPAP of 5 cmH2O (QDC). 

Both conditions could be used in children before extubation. We compared a one minute 

trend of median MSE between calibrated RIP and spirometry flow on inspiration during 

steady state breathing, for each resistor level. We also compared the median values of the 

qualitative adequacy of calibration (scale 1–5) between the two techniques at each resistor 

level. Wilcoxon Sign Rank Test was used for nonparametric, paired analysis.

Additional outcomes included comparison of median K values generated from: 1. isovolume 

maneuvers at FRC and end inspiration to evaluate whether normal clinical variability in the 

NIF maneuver would still yield interpretable results (to examine reproducibility). 2. QDC 

calibration generated during unobstructed tidal breathing, CPAP of 5, 10, and 15 cmH2O to 

determine whether CPAP alters K values. 3. QDC calibration generated with unobstructed 

tidal breathing versus that on 50 and 200 cmH2O/ml/sec of inspiratory resistance, to 

determine whether QDC calibration could be performed in the setting of ongoing airway 
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obstruction. We compared median K values with Friedman’s ANOVA, to account for 

repeated measures per monkey, non parametric distribution, and multiple comparisons.
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Figure 1. Box plot of inspiratory Mean Squared Error between RIP and Spirometry per resistor 
by Calibration procedure
RIP flow pattern compared to gold standard of spirometry using two different RIP 

calibration techniques (Isovolume maneuver with a NIF (Isocal) versus QDC calibration on 

CPAP of 5cmH2O (QDCCPAP)) with increasing degrees of UAO. Note the improved 

accuracy (lower MSE) for RIP calibration using isovolume conditions compared to QDC 

calibration on CPAP, particularly as UAO increases (all p<0.0001). Bar is median, box is 

Inter Quartile Range (IQR), whisker is non-outlier range. Circle and unfilled box is 

Isovolume, Square and grey box is QDC on CPAP of 5cmH2O.
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Figure 2. Example of NIF to achieve isovolume maneuver (10 breaths)
The left panel represents the raw, uncalibrated signals. Notice isovolume conditions are 

achieved (RC and ABD opposite directions to each other, no flow on spirometry (PNT), and 

negative deflections in esophageal pressure (Pes)). The right panel represents the same 

maneuver after RIP calibration using the calibration factor determined from the NIF. Notice 

how the RIP flow and volume (Vt) tracings more closely represent the zero flow seen on 

spirometry after calibration.
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Figure 3. The percentage of flow (compared to tidal breathing) which would be seen during the 
NIF maneuver, based on RIP calibration technique
Zero flow was confirmed with spirometry, so the closer the values are to zero, the more 

accurate the RIP flow calibration. There was no difference in the percent of RIP flow seen at 

the two lung volumes (FRC and IC) when applying calibration factors generated from the 

isovolume maneuver (Iso_FRC and Iso_IC) (p>0.2). There was also no difference in the 

percent of RIP flow seen at the two lung volumes (FRC and IC) when applying calibration 

factors generated from the QDC calibration on CPAP (QDC_FRC and QDC_IC) (p>0.2). 

However, isovolume calibration was superior to QDC, at both lung volumes (p<0.002). Bar 

is median, box is Inter Quartile Range (IQR), whisker is non-outlier range. Triangles are raw 

data.
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Figure 4. Box Plot of Calibration Factors (K) by condition
K values generated during Isovolume conditions at FRC and End inspiration, as well as 

using QDC calibration under various degrees of CPAP (5,10,15 cmH2O), unobstructed 

breathing, and mild UAO (50 and 200 cmH2O/ml/sec). Inner box represents median value 

for 10 monkeys, outer Box Inter-Quartile Range (IQR), and bars Non-outlier range. K 

values from isovolume conditions are statistically significantly higher than those generated 

using QDC during CPAP, unobstructed breathing (baseline), or mild obstructed breaths 

(p<0.01). K values using QDC on all conditions of CPAP and unobstructed breathing are 

similar (p>0.22). K values generated on obstructed breaths of 200 cmH2O/ml/sec are 

significantly higher than those on CPAP (p<0.02), but not as high as those seen during an 

isovolume maneuver.
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Figure 5. Adequacy of RIP calibration Isovolume versus QDC on different conditions
RIP calibration compared to gold standard of spirometry using different RIP calibration 

techniques (Isovolume maneuver with a NIF (IsoCal) versus QDC calibration on the 

represented value of CPAP, unobstructed breathing, or mild UAO. A. CPAP 15 cmH2O B. 

CPAP 10 cmH2O C. CPAP 5 cmH2O D. Tidal Breathing E. Inspiratory Resistance 50 

cmH2O/ml/sec F. Inspiratory Resistance 200 cmH2O/ml/sec. Bar is median, outer box is 

interquartile range, and whisker is non-outlier range. Calibration using isovolume conditions 

resulted in a lower median mean square error than calibration using QDC for all conditions 

other than CPAP of 15cmH20 (p<0.0001). For CPAP of 15, QDC resulted in lower median 

mean square error than calibration using isovolume conditions (p<0.001).
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Figure 6. Qualitative assessment of accuracy of calibrated RIP (right) against spirometry (left)
The top plots are flow versus pressure, examining flow limitation. The bottom tracings are 

flow versus time, using both techniques.

Khemani et al. Page 18

Pediatr Res. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Khemani et al. Page 19

T
ab

le
 1

R
IP

 f
lo

w
 c

al
ib

ra
tio

n 
fa

ct
or

s 
(K

) 
ge

ne
ra

te
d 

du
ri

ng
 a

n 
is

ov
ol

um
e 

m
an

eu
ve

r 
at

 F
R

C
 a

nd
 E

nd
 in

sp
ir

at
io

n,
 a

s 
w

el
l a

s 
K

 v
al

ue
s 

ge
ne

ra
te

d 
us

in
g 

Q
D

C
 

ca
lib

ra
tio

n 
un

de
r 

a 
va

ri
et

y 
of

 c
on

di
tio

ns
. B

as
el

in
e 

(u
no

bs
tr

uc
te

d 
br

ea
th

in
g)

, C
PA

P 
co

nt
in

uo
us

 p
os

iti
ve

 a
ir

w
ay

 p
re

ss
ur

e,
 v

al
ue

s 
in

 c
m

H
2O

. U
A

O
 u

pp
er

 

ai
rw

ay
 o

bs
tr

uc
tio

n,
 c

al
ib

ra
te

d 
lin

ea
r 

re
si

st
or

 p
la

ce
d 

on
 th

e 
in

sp
ir

at
or

y 
lim

b 
of

 th
e 

br
ea

th
in

g 
ci

rc
ui

t, 
va

lu
es

 in
 c

m
H

2O
/L

/s
ec

.

M
on

ke
y

F
R

C
E

nd
 I

ns
p

B
as

el
in

e
C

P
A

P
 5

C
P

A
P

 1
0

C
P

A
P

 1
5

U
A

O
 5

0
U

A
O

 2
00

1
2.

6
2.

6
0.

7
0.

6
0.

6
0.

9
0.

9
1

2
4.

5
4.

5
0.

8
1.

2
0.

9
1.

1
0.

9
1.

8

3
2.

7
2.

7
0.

7
0.

7
0.

5
0.

7
0.

5
0.

8

4
4.

7
4.

3
1

0.
4

0.
5

1
1

1

5
5

4.
8

0.
9

0.
9

0.
7

1.
9

0.
7

1.
1

6
1.

5
1.

3
0.

3
0.

4
0.

5
0.

6
0.

4
0.

7

7
2.

7
2.

5
1

0.
6

0.
7

0.
9

0.
9

1.
8

8
22

17
1.

1
1.

1
0.

6
0.

8
0.

7
4.

6

9
7.

4
6.

3
0.

6
1

0.
7

0.
8

1.
1

3.
6

10
3.

3
1

0.
8

0.
8

0.
9

0.
8

0.
9

1.
5

Pediatr Res. Author manuscript; available in PMC 2015 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Khemani et al. Page 20

T
ab

le
 2

Su
m

m
ar

y 
of

 p
er

tin
en

t s
im

ila
ri

tie
s 

an
d 

di
ff

er
en

ce
s 

in
 p

ul
m

on
ar

y 
m

ec
ha

ni
cs

 a
nd

 lu
ng

 f
un

ct
io

n 
m

ea
su

re
m

en
ts

 in
 h

um
an

 in
fa

nt
s,

 R
he

su
s 

m
on

ke
ys

, a
nd

 

A
du

lt 
H

um
an

s

T
es

t
T

ra
ch

ea
l S

iz
e

(E
T

T
m

m
ID

)
V

it
al

 C
ap

ac
it

y
(m

l/k
g)

R
es

is
ta

nc
e 

(r
es

pi
ra

to
ry

 s
ys

te
m

)
(c

m
H

2O
/m

l/s
)

C
om

pl
ia

nc
e 

(r
es

pi
ra

to
ry

 s
ys

te
m

)
(m

l/c
m

H
2O

/k
g)

F
R

C
(m

l/k
g)

T
L

C
(m

l/k
g)

P
ha

se
 a

ng
le

(r
an

ge
 -

de
gr

ee
s)

Sp
ec

ie
s

H
um

an
 in

fa
nt

3.
0 

– 
4.

5
50

 –
 6

0
0.

04
–0

.0
8

0.
8 

– 
1.

1
22

 –
 2

5
70

 –
 8

0
10

 –
 1

80

R
he

su
s 

m
on

ke
y

3.
0 

– 
5.

0
60

 –
 7

0
0.

04
–0

.0
8

0.
8 

– 
1.

1
20

 –
 2

5
N

/A
60

–1
50

A
du

lt 
hu

m
an

6.
0 

– 
9.

0
55

 –
 6

0
0.

01
 –

 0
.0

3
1.

2 
– 

1.
5

30
 –

 3
5

80
 –

 9
0

5 
– 

70

Pediatr Res. Author manuscript; available in PMC 2015 July 01.


