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Abstract

Robust optimization has been shown to be effective for stabilizing treatment plan-

ning in intensity modulated proton therapy (IMPT), but existing algorithms for the

optimization process is time‐consuming. This paper describes a fast robust optimiza-

tion tool that takes advantage of the GPU parallel computing technologies. The new

robust optimization model is based on nine boundary dose distributions — two for

±range uncertainties, six for ±set‐up uncertainties along anteroposterior (A‐P), lateral
(R‐L) and superior‐inferior (S‐I) directions, and one for nominal situation. The nine

boundary influence matrices were calculated using an in‐house finite size pencil

beam dose engine, while the conjugate gradient method was applied to minimize the

objective function. The proton dose calculation algorithm and the conjugate gradient

method were tuned for heterogeneous platforms involving the CPU host and GPU

device. Three clinical cases — one head and neck cancer case, one lung cancer case,

and one prostate cancer case — were investigated to demonstrate the clinical feasi-

bility of the proposed robust optimizer. Compared with results from Varian Eclipse

(version 13.3), the proposed method is found to be conducive to robust treatment

planning that is less sensitive to range and setup uncertainties. The three tested

cases show that targets can achieve high dose uniformity while organs at risks

(OARs) are in better protection against setup and range errors. Based on the CPU +

GPU heterogeneous platform, the execution times of the head and neck cancer case

and the prostate cancer case are much less than half of Eclipse, while the run time of

the lung cancer case is similar to that of Eclipse. The fast robust optimizer developed

in this study can improve the reliability of traditional proton treatment planning in a

much faster speed, thus making it possible for clinical utility.
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1 | INTRODUCTION

Owing to the steep distal dose gradient of proton beams, intensity

modulated proton therapy (IMPT) is known to deliver more confor-

mal dose distributions compared with those of photon therapy.1 For

IMPT treatment planning, the target volumes are divided into sepa-

rate energy slices according to the Bragg peak positions correspond-

ing to different incident proton beam energies.2 There are many

procedures that could cause uncertainties in IMPT, such as
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conversions from computed tomography (CT) numbers to stopping

power values, inhomogeneity, setup errors, anatomical changes, and

so on.3–8 As a result, the actual delivered dose distribution of IMPT

plan will be affected by these uncertainties. Scanning spots or scan-

ning lines are preset and optimized to meet the dose objectives and

constraints in the inverse treatment plan. However, due to the steep

falloff of Bragg peaks, IMPT is extremely sensitive to proton range

and patient setup uncertainties. For photon therapy, clinical target

volume (CTV) is expanded to the planning target volume (PTV) by a

given margin to compensate for plan uncertainties, but the PTV

expanding technique is not as effective in IMPT.9

The solution of the above problems is to consider these uncer-

tainties during the inverse treatment plan optimization — a process

known as the robust optimization.10 Several related reports for

robust optimization of IMPT have shown better results than com-

mon PTV‐based IMPT optimization techniques. Unkelbach et al.6

proposed a robust linear programing method that was found to yield

treatment plans less sensitive to range variations. A worst case opti-

mization method was developed by Pflugfelder et al.10 to account

for uncertainties based on several possible realizations of the uncer-

tainties A minimax robust optimization method was utilized by Fre-

driksson et al.11 to minimize the penalty of the worst scenario which

yielded better results for the tested clinical cases. Generally, in

worst‐case‐based robust algorithms, the nominal dose distribution

and perturbed dose distributions are calculated. When computing

the target function, upper bound constraints are applied to the maxi-

mum dose while lower bound constraints are applied to the mini-

mum dose.12–17 A selective robust optimization method was derived

by Li et al.18 from worst case optimization methods and its objective

function was selectively computed from either the worst‐case dose

or the nominal dose. Li et al.19 reported that robust optimization in

IMPT of lung cancer can reduce the dose variation caused by setup

uncertainty and anatomical changes during treatment compared with

PTV‐based planning. Although three worst‐case‐based robust meth-

ods (composite worst case, voxelwise worst case and objectivewise

worst case) have different behaviors, and no particular method was

superior to the others under all circumstances.20 Compared with

minmax robust optimization approaches, worst‐case dose approaches

were less sensitive to uncertainties for the prostate and skull base

cancer patients, whereas the minmax approach was superior for the

head and neck cancer patients.21 A 4D robust optimization was

developed by Liu et al.22 and it produced more robust plans for tar-

gets and normal tissues, compared to 3D robust optimization. In

order to accelerate the robust optimization, a constraint generation

solution method was developed by Mahmoudzadeh et al,23 which

reduced the optimization time to about 12 min. A chance‐con-
strained optimization method was proposed in IMPT planning to

hedge against the influence of uncertainties,24 but several hours

were needed to finish the optimization. The chance‐constrained opti-

mization method explicitly controlled the tradeoff between plan

quality and plan robustness, and it used linear programing without

parallelization, making the method very slow. Jiasen Ma et al

developed an all scenario and MC‐based IMPT optimizer and

employed GPU to reduce the computational time.25

In this research, we propose the uncertainty model which con-

tains nine boundary dose distributions corresponding to different

setups and range perturbations, two for ±range uncertainty, six for

±set‐up uncertainties along anteroposterior (A‐P), lateral (R‐L) and

superior‐inferior (S‐I) directions, and one for the nominal situation.

All the nine dose distributions consider the target function and opti-

mized using the same optimization objective in each optimization

iteration until all the nine dose distributions approach the dose con-

straints as much as possible. In order to reduce the optimization

time, the proposed method is implemented in a CPU‐GPU parallel

platform. Three clinical cases are used to test the robust optimiza-

tion effectiveness.

2 | MATERIALS AND METHODS

The proposed uncertainty model contains mathematical descriptions

of range uncertainties and patient setup errors based on the stan-

dard optimization function [Eq. (1)]. The pencil beam algorithm is

used to calculate the proton dose contribution matrices, and the

conjugate gradient (CG) method is used to optimize the uncertainty

model. This paper evaluates the effectiveness of the proposed

robust optimizer for IMPT by comparing against the robust optimiza-

tion results of Varian Eclipse (version 13.3).

2.1 | The uncertainty optimization model

For the traditional PTV‐based IMPT optimization model, the standard

quadratic objective function can be used to represent optimization

objectives and constraints similar to IMRT.26 Mathematically speak-

ing, treatment plan optimization is the minimization of the objective

function and is given below by:

min F ωð Þ ¼ ∑
i ∈ PTV

ρPTVH Di � DPTVð Þ Di � DPTVð Þ2

þ ∑
i ∈ OARs

ρOARsH Di � DOARsð Þ Di � DOARsð Þ2
(1)

Di ¼ ∑m
j¼1φi;j � ωj (2)

ωj ≥0; 8j∈m; (3)

where i is the index of voxel i, j is the proton beamlet j and m is the

total number of the proton beams. The weights of PTV and OARs

were represented by ρPTV, and ρOARs, respectively. Di is the dose of

the ith voxel, and φi;j is the dose contribution of the jth beam to the

ith voxel computed by the pencil beam dose calculation algorithm. ωj

is MU (Monitor Unit) of the jth proton beam. DPTV and DOARs repre-

sent the dose objectives or constraints of the PTV and OARs, and

H Di � DPTVð Þ is a selection function. When Di satisfies the dose

objective or constrain of the PTV, the H Di � DPTVð Þ value is equal to

0; otherwise it equals 1. H Di � DOARsð Þ is the same as H Di � DPTVð Þ.
For dose volume constraints, H is determined by sorting the doses,
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finding violating voxels. For example, Dq<pcGy means no more than

q% of the ROI may receive a dose greater than p. The voxels of the

ROI are sorted in ascending order of dose received and only those

voxels which cause q to be exceeded are included in the objective

function (H = 1).27 As mentioned earlier, φi;j is perturbed by range

and setup uncertainties impacting on the finally dose contributions

of the PTV and OARs. For the IMPT plan delivery, the final dose dis-

tribution is affected by many factors including complex inhomogene-

ity, setup errors, anatomical changes, and so on.3–8 All these

interference factors will result finally in two kinds of deviations rela-

tive to the primary plan, proton range uncertainties, and patient set‐
up uncertainties. Compared to the traditional plan optimization,

robust plan optimization takes the two kinds of deviations into con-

sideration beforehand. The challenge is that, for IMPT robust opti-

mization, the computational complexity increases proportionally to

the number of potential of considered uncertainties. In theory, more

uncertainties can lead to better robust plan during robust optimiza-

tion. Considering the large computation cost even for one possible

situation, however, we have to balance between the uncertainties

taken into consideration and the actual performance of robust opti-

mization. As reported previously12,13, the simplification for IMPT

robust optimization is usually handled in two processes. The first

simplification process is discretizing the proton range uncertainties

and patient set‐up uncertainties before selecting the extreme uncer-

tainties as a boundary. In this study, we use the same discretizing

method to simplify the robust optimization task, as to be shown

next. The second simplification is that only the worst dose distribu-

tions are included in the target function. Thus, we can only get a rel-

atively conservative result due to the robust optimization

simplification. In this research, we improved the target function by

considering all distributions in the total target function so that not

merely the worst distribution but all the dose distributions

approached the dose constrains. The CPU‐GPU parallel platform was

further adopted to increase computational efficiency, as to be illus-

trated next.

The proposed robust optimization model adopted in this research

is shown in Eq. (4) in which nine boundary dose distributions are

considered, two for ±range uncertainties, six for ±set‐up uncertain-

ties along anteroposterior (A‐P), lateral (R‐L) and superior‐inferior (S‐
I) directions, and one for nominal situation.

min Frobust ωj

� � ¼ ∑
k ∈ R

∑
i ∈ CTV

ρkCTVH Dk
i � DCTV

� �
Dk
i � DCTV

� �2
þ ∑

k ∈ R
∑

i ∈ OARs
ρkOARsH Dk

i � DOARs

� �
Dk
i � DOARs

� �2
(4)

Dk
i ¼ ∑

m

j¼1
φk
i;j � ωj (5)

ωj ≥0;8j∈m; (6)

where R is the total nine boundary dose distributions considering

the range and setup uncertainties, and k represents one possible

boundary dose distributions of R. ρkCTV and ρkOARs are the weights of

CTV and OARs in the kth uncertainty situation, usually equal to 1.

Dk
i is the dose of voxel i in the kth uncertainty, and φk

i;j is the dose

contribution of beamlet j to voxel i in the kth uncertainty situation.

The objective function is minimized by optimizing ωj. It is impossible

to forecast which uncertainty will occur in the treatment, so it is

necessary to ensure that the treatment planning is optimal on the

premise of the existence of the nine boundary conditions.

As the same with the reported researches,12 we made the assump-

tions: (1) all the beamlets were affected by the range uncertainties and

changed synchronously; (2) the max range uncertainties and setup

uncertainties value kept the same during the treatment course.

2.2 | The robust optimization method

The CG method is one of the most popular techniques for solving

large scale unconstrained optimization problems owing to small

memory footprint and simplicity. Figure 1 demonstrates the flow

chart of the CG method. x0 is the initial solution, and k is the current

iteration number. gk is the gradient of xk, ɛ is the tolerance to stop

the iterative process and N is the maximum number of iterations. d

is the searching direction, and λ is the step length.

In the first iteration, the searching direction d0 is equal to the nega-

tive gradient, that isrf x0ð Þ. For other iterations, dk is defined by.

dik ¼ � xik
λk
; if xik þ λk � dik<0

�gik þ βik�1d
i
k�1; otherwise;

(
; (7)

where βk is a scalar. It guarantees that all elements of xkþ1 are

greater than 0.

In this paper, the DYHS method [Eq. (8)] is adopted to calculate

the CG parameter β.

βDYHS
k ¼ max 0;min βDY

k ; βHS
k

� �� �
(8)

βDY
k ¼ jjgk�1 jj2

dTk�1 gk � gk�1ð Þ (9)

βHS
k ¼ gTk gk � gk�1ð Þ

dTk�1 gk � gk�1ð Þ (10)

The DYHS method is a combination of the DY method and the

HS method.28–30

The line search subroutine yields a step length λk that satisfies

the standard Wolfe conditions [Eqs. (11) and (12)],

f xk þ λkdkð Þ≤ f xkð Þ þ λkδgTk dk; (11)

g xk þ λkdkð ÞTdk ≥ θgTk dk; (12)

where gk ¼ rf xkð Þ, δ ¼ 10�4, and θ ¼ 0:9. The first inequation is to

guarantee that the decrease of the target function is proportional to

the tangential decline at least. The second inequation ensures the

slope at λk is not strongly negative.

2.3 | Heterogeneous platform with CPU and GPU

A GPU dose engine is adopted to calculate the dose contribution

matrix φi;j and then the matrix is converted to the most memory effi-

cient sparse matrix format, that is compressed sparse row (CSR)
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format.31 The CSR format uses three arrays to store the nonzero

elements, corresponding column indices and compressed row offsets

which indicate the boundary of each row. The most important com-

puting kernels of the proposed optimizer are sparse matrix dense

vector product (SpMV), gradient calculation, and vector operations.

The SpMV algorithm proposed by bell and Garland is applied to

update dose vector Dk and modified to support gradient calcula-

tion.32 Offloading SpMV and gradient calculation to GPU can always

improve the performance. However, the CPU version of target value

calculation which involves vector operations outperforms the GPU

version when the number of voxels is relatively small. As mentioned

earlier, the doses of corresponding ROIs need to be sorted before

computing the objective function of dose‐volume constraints. Fig-

ure 2 demonstrates the sort performance of CPU (E5 2686V3) and

GPU (NVIDIA Titan V). The single‐threaded version is fastest when

the vector size is smaller than about 6 × 104. Other vector opera-

tions follow the similar performance patterns.

Start

, 

If 

End

Calculate 

Set the negative
value of  to 0.

F I G . 1 . Flow chart of the conjugate gradient method.

F I G . 2 . Comparison between CPU and GPU sort performance.

TAB L E 1 Dose objectives and constraints of the three cases.

Object Constraint

Head & neck case

Target Dmin>7000 cGy, Dmax<7800 cGy

Brainstem Dmax<5000 cGy

Parotid‐l Dmax<3000 cGy

Parotid‐r Dmax<3000 cGy

Spinal Cord Dmax<4000 cGy

Lung case

Target Dmax<6400 cGy, Dmin>6000 cGy

Dose 64 Dmax<6200 cGy

Esophagus D54<3300 cGy

Spinal Cord Dmax<3500 cGy

Fan Dmax<3500 cGy

Lung‐l D2:8<138 cGy, D1:2<721 cGy

Lung‐r D8:5<249 cGy, D4:6<1343 cGy

Prostate case

Target Dmax<5300 cGy, D1<5280 cGy

D98:5>5050 cGy, D99:5>5000 cGy

Rectum D54:4<2664 cGy, D26:5<3692 cGy

Bladder D42:3<2049 cGy, D20:9<3097 cGy

Head of femur‐l D43:9<1219 cGy, D15:2<1754 cGy

Head of femur‐r D41:7<1302 cGy, D16:9<1702 cGy

TAB L E 2 The run times of the three cases (seconds).

Proposed
optimizer (CPU)

Proposed
optimizer (GPU)

Eclipse
optimizer (CPU)

Head &

neck

16 3 75

Lung 105 38 48

Prostate 218 26 474
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2.4 | Patient data

Three cases, one head and neck (H&N) case, one lung case and one

prostate case, are used to test the effectiveness of the proposed

optimizer. For the H&N case treatment plan, the three beams angels

were set to 0°, 90°, and 270°. Setup uncertainties of ±3 mm and

range uncertainties of ±3% relative to the beams' nominal ranges

were assumed. For the lung case treatment plan, the two beams

F I G . 3 . The Dose Volume Histogram (DVH) bands of the dose distributions considering uncertainties for the H&N case with the solid lines
indicating the nominal dose distribution.
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angels were set to 60° and 320°. Setup uncertainties of ±5 mm and

range uncertainties of ±3% relative to the beams' nominal ranges

were assumed. For the prostate case treatment plan, the two beams

angels were set to 90° and 270°. The range and setup uncertainties

were assumed the same as the lung case. The spot space in each

energy slice was 5 mm and was distributed in BEV. The spacing

between energy layers was set to the longitudinal width of the

Bragg peak (at 80% of the peak height). Dose grid was set to

F I G . 4 . The Dose Volume Histogram (DVH) bands of the dose distributions considering uncertainties for the lung case with the solid lines
indicating the nominal dose distribution.
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2 mm × 2 mm in the transverse plane. Dose objectives and con-

strains are listed in Table 1. Since the uncertainties had been taken

into consideration during the robust optimization, we prescribed the

dose objectives based on the CTV.12 The volume of the target of

the H&N case, the lung case and the prostate case are 51.6, 97.7,

and 854.4 cm3, and the voxel number of target and OARs in the

H&N case, the lung case, and the prostate case are 159882,

4600764, and 389493 (all nine conditions are included). The spots

F I G . 5 . The Dose Volume Histogram (DVH) bands of the dose distributions considering uncertainties for the prostate case with the solid
lines indicating the nominal dose distribution.
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number of the H&N case, the lung case, and the prostate case are

19978, 11844, and 99408.

3 | RESULTS

To test the effectiveness of the robust optimizer, the results were

compared with Varian Eclipse (version 13.3). The robustness of the

treatment plan was quantified by computing the worst‐case dose

distribution for each approach. Dose Volume Histograms (DVHs) for

the reference structures of interest corresponding to different uncer-

tainty situations (e.g., setup, range) were demonstrated along with

the DVH in the nominal situation. The “band” of the DVHs showed

the robustness of the treatment plan when considering uncertainties,

and the wider DVH band meant the greater plan sensitivity.

The proposed optimizer was deployed to a workstation consist-

ing of Intel Xeon 2686V3 (18 cores, 36 threads), 64.0GB DDR4

2133 MHz (quad‐channel), and NVIDIA Titan RTX while the Varian

workstation had 2 Intel Xeon E5 2620V3 (12 cores, 24 threads),

32.0GB DDR4 2133 MHz, and NVIDIA M4000. Varian Eclipse (ver-

sion 13.3) did not support GPU acceleration.

Table 2 lists the run times of the three cases (the times of dose

calculation are not included). Figure 3 shows the DVH bands of the

CTV, brain stem, and spinal cord for the head and neck cancer case;

Fig. 4 shows the DVH bands of the CTV, esophagus, and spinal cord

for the lung case and Fig. 5 shows the DVH bands of the CTV, blad-

der, and rectum for the prostate case. Obviously, the DVH bands of

the proposed optimizer are narrower than Varian Eclipse's, indicating

that the proposed optimizer is less sensitive to setup and range

uncertainties. In addition, the proposed optimizer achieves better

OAR protection. For example, the maximum dose of the brainstem

of the proposed optimizer is much lower than the maximum dose of

Varian Eclipse. Figures 6–8 demonstrate the transverse dose distri-

butions of the H&N case, lung case, and prostate cased. It is clear

that dose distributions of robustly optimized plans are less sensitive

to range and setup uncertainties compared with PTV‐based plans.

4 | DISCUSSION

Compared with photon radiotherapy, the physical properties of pro-

ton beam (steep Bragg peak) determine that the proton dose distri-

butions are more sensitive to the uncertainties. For IMPT, the

treatment plan obtains the desired dose distribution for the target

and the organs at risk by optimizing weight of the proton spots on

the multiple energy layers. It is necessary to consider the impact of

uncertainties when evaluating the proton radiotherapy plans. In this

paper, the worst dose distribution considering the range and setup

F I G . 6 . Dose distributions in the
transverse plane for the H&N case. Left
panels: PTV‐based optimization. Right
panels: robust optimization. Top row: with
nominal range and nominal position.
Bottom row: with 3% range overshoot and
patient shifted inferiorly by 3 mm. CTV:
purple color wash.
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uncertainties was calculated as a criterion to evaluate the robustness

of proton radiotherapy plans. This paper proposed a fast robust opti-

mizer, which considering the nominal range, increased and shortened

range and setup uncertainties.

For the H&N case, the desired dose of CTV is less than

7800 cGy. The worst plan generated by the proposed optimizer

nearly meets the constraint with the maximum dose 7827 cGy while

the worst plan of Varian Eclipse exceeds the constraint with the

maximum dose 8195 cGy. The maximum dose of the spinal cord in

worst plan of Varian Eclipse is 4850 cGy while the maximum dose

generated by the proposed optimizer is 3992 cGy. For the lung case,

the worst plan of Varian Eclipse does not satisfy the constraint of

the spinal cord Dmax<3500 cGyð Þ with the maximum dose

3691 cGy. Besides, for the prostate case, the DVH bands of the pro-

posed optimizer are much narrower than Varian Eclipse's.

The objective function of the proposed optimizer is a function of

all nine dose distributions. At each iteration, the proposed optimizer

involves nine uncertainty conditions rather than only the worst condi-

tion. Consequently, the memory footprint is much larger than commer-

cial treatment planning systems. In contrast, the objective function of

Eclipse is a function of the nominal, the minimum, the maximum dose

distributions. In fact, Eclipse consumed less than 3GB memory for all

cases while the proposed optimizer used more than 10GB. Although

the proposed optimizer consumed huge memory, Figs. 3–5 indicates it

can generate plans that are less sensitive to uncertainties and have

better OAR protection. From Table 2, it means that the performance

of the proposed optimizer is highly competitive against Varian Eclipse.

For the H&N case, the GPU version of the proposed optimizer is 25

times faster than Varian Eclipse. For the lung case, the proposed opti-

mizer is slightly faster than Varian Eclipse. For the prostate case, the

GPU version of the proposed optimizer is 18 times faster than Varian

Eclipse. For the H&N case and the lung case, the GPU version achieves

approximately 3× speedup than the CPU version.

The performance bottleneck of the proposed optimizer is SpMV

which is used to update the dose and gradient vectors. Given the

memory bound property of SpMV, system bandwidth is the most

important hardware specification. The bandwidth of quad‐channel
DDR4 2133 MHz is around 60GB/s while Titan V peaks around

500 GB/s. However, PCIe 3.0 × 16 has about 16 GB/s which limits

data transfer between CPU and GPU. Accordingly, dose contribution

matrix should not be accessed across the PCIe slot in the iterative

process. Additionally, technologies such as CUDA unified memory

may cause performance downgrade. In general, the robust proposed

optimizer can exploit high memory bandwidth of GPU to accelerate

SpMV and fall back to CPU with high memory capacity for extreme

cases.

F I G . 7 . Dose distributions in the
transverse plane for the lung case. Left
panels: PTV‐based optimization. Right
panels: robust optimization. Top row: with
nominal range and nominal position.
Bottom row: with 3% range overshoot and
patient shifted inferiorly by 3 mm. CTV:
purple color wash.
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5 | CONCLUSIONS

The proposed robust optimizer can greatly improve the robustness

of the proton plan to compensate for the range and setup uncertain-

ties. Compared with the Varian Eclipse (version 13.3), the proposed

fast robust optimizer can improve the high dose uniformity of the

target, meanwhile, protect the OARs. Based on a CPU‐GPU parallel

platform, the robust optimization process can be completed in sev-

eral minutes, which greatly improves the competitiveness of the pro-

posed optimizer. In the future, we are going to extend the fast

robust optimizer to compensate for the deformation of anatomical

structures, respiratory movement, and so on.
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