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Abstract

Chemokines play diverse and fundamental roles in the immune system and human disease,

which has prompted their structural and functional characterisation. Production of recombi-

nant chemokines that are folded and bioactive is vital to their study but is limited by the strin-

gent requirements of a native N-terminus for receptor activation and correct disulphide

bonding required to stabilise the chemokine fold. Even when expressed as fusion proteins,

overexpression of chemokines in E. coli tends to result in the formation of inclusion bodies,

generating the additional steps of solubilisation and refolding. Here we present a novel

method for producing soluble chemokines in relatively large amounts via a simple two-step

purification procedure with no requirements for refolding. CXCL8 produced by this method

has the correct chemokine fold as determined by NMR spectroscopy and in chemotaxis

assays was indistinguishable from commercially available chemokines. We believe that this

protocol significantly streamlines the generation of recombinant chemokines.

Introduction

Chemokines are key players in the recruitment and retention of leukocytes at tissue locations

and function by activating specific G protein-coupled receptors (GPCRs) [1]. Over the last 30

years, chemokines have been the focus of much global research, since together with their

receptors, they have been implicated in the pathogenesis of several clinically important dis-

eases, ranging from atherosclerosis to HIV-infection [2]. Recombinant chemokine production

has been key to these efforts but is not without challenges. Methods that focus on chemical

synthesis or expression in E. coli typically yield unfolded, reduced, and inactive chemokines,

necessitating refolding steps that can be time consuming and challenging to optimise. Genera-

tion of the native N-terminus of a chemokine, essential for activity, is a stringent requirement

since truncation or extension can severely affect receptor activation. In mammalian hosts, a

signal peptide of around 20 amino acids is typically cleaved to liberate the mature chemokine

with full agonist activity. This process has to be mimicked in prokaryotic expression systems.
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Pioneering studies by the groups of Ian Clark-Lewis and colleagues championed the use of

solid-phase peptide sequencing. In particular, studies of the CXC chemokine CXCL8 (formerly

known as interleukin-8) highlighted a requirement for the chemokine N-terminus for full ago-

nist activity [3–5]. Expression of chemokines incorporating an N-terminal 6-Histidine tag

such as those expressed in the pET23a vector [6] allows for simple purification by IMAC but

the N-terminal extension generally leads to a loss of bio-activity. A classic example of this is

the molecule Met-RANTES, a recombinant form of the chemokine CCL5 produced by

Amanda Proudfoot and colleagues, which by virtue of the retained N-terminal methionine res-

idue was serendipitously found to be a potent antagonist of multiple chemokine receptors,

including the HIV-1 receptor CCR5 [7, 8]. Thioredoxin fusion has been utilised to promote

disulphide bonding and generate the native chemokine N-terminus through Factor Xa medi-

ated cleavage [9–12]. However, application of the thioredoxin fusion more widely is limited by

the promiscuity of Factor Xa, which is prone to cutting at cryptic secondary sites in the protein

of interest [13].

Recent advances, such as those published by the groups of Brian Volkman and Tracey Han-

del, have utilised E. coli expression systems in which an N-terminal SUMO partner is fused to

the mature chemokine sequence [14, 15]. The SUMO partner can be readily and specifically

cleaved by ubiquitin like protease-1 (ULP1), if an SMT3 cleavage site is incorporated upstream

of the native N-terminal sequence. However, despite this advance, overexpression of SUMO-

chemokine fusion proteins typically results in their appearance as insoluble aggregates within

E. coli inclusion bodies, requiring a subsequent refolding step that can be inefficient and lead

to reduced yields.

Interleukin-8 (IL-8 or CXCL8) is a member of the ELR+ CXC chemokine family and has

been studied extensively, [16–19]. CXCL8 acts as a major recruitment factor for neutrophils

expressing the chemokine receptors CXCR1 and CXCR2 on their surface [20] Interestingly,

CXCL8 has been reported to undergo post-translational modification, notably N-terminal

truncation by endogenous peptidases, which can markedly affect the potency and efficacy at

both CXCR1 and CXCR2 reviewed by Vanheule and colleagues [21]. The 72 amino acid vari-

ant of CXCL8, CXCL8 (6–77), has been most extensively studied and is the predominant form

isolated by activated PBMCs [22].

CXCL8 exists dynamically as a monomer or homodimer at low and high concentrations,

respectively, with distinct recruitment profiles observed [23]. The high-resolution structure of

CXCL8 has been determined by solution NMR and X-ray crystallography with the concentra-

tions required for these studies associated with CXCL8 dimerization [24, 25]. The structure of

the monomer subunit within the dimer encompasses an N-terminal loop followed by three

antiparallel β-strands, and a C-terminal α-helix. Mutations that trap the monomeric or

dimeric state have been structurally characterised and are consistent with the earlier studies,

showing that the monomeric form differs with some disorder observed in the C-terminal helix

[26].

Here we describe an optimised protocol for the purification of chemokines, using CXCL8

(6–77) as an exemplar, without additional refolding requirements. A recombinant

SUMO-CXCL8 fusion protein was purified to homogeneity from the soluble lysate of E. coli
Shuffle T7 Express cells via IMAC (immobilized metal affinity chromatography). Cleavage of

the SUMO tag was efficient, and a second IMAC step resulted in the purification of CXCL8

with a native N-terminus. The chemokine produced by this protocol was shown to be correctly

folded by NMR spectroscopy with bio-activity indistinguishable from that of commercially

available CXCL8 as demonstrated by chemotaxis assays. This method could be applicable to

wider chemokine production efforts, with the rapidity of this protocol (expression and
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purification of the construct takes 5 days) a distinct advantage over traditional recombinant

refolding approaches.

Materials and methods

Materials

All materials were purchased from Sigma-Aldrich (Poole, UK) unless otherwise stated.

Recombinant CXCL8 (6–77) and a human IL-8/CXCL8 DuoSet ELISA kit were purchased

from BioTechne (Abingdon, UK). The pCI-CXCR1 construct was a kind gift of GlaxoSmithK-

line (Stevenage, UK). Oligonucleotide production and Sanger sequencing services were pro-

vided by MWG-Biotech (Ebersberg, Germany).

Expression and purification of ULP1

Saccharomyces cerevisiae Ubiquitin-like-specific protease 1 (ULP1) was expressed in pET-28a,

a gift from Dr Zhihao Wang and Dr Bing Liu. The construct covers residues 403 to 621 and is

in-frame with the N-terminal His-tag and thrombin cleavage site in the vector. ULP1 was

expressed in BL21(DE3) cells grown at 37˚C until an optical density at 600 nm of 0.6 to 0.8,

induced with 1 mM IPTG for 4 hours, and harvested by centrifugation (5000 x g for 15 min-

utes). Pellets were resuspended in 20 mM Tris.HCl pH 8.0, 350 mM NaCl, 20 mM imidazole,

5% glycerol, 1mM β-mercaptoethanol and sonicated. Cell lysate was clarified at 38000 x g for

45 minutes and loaded on a 5ml HisTrap FF crude column (GE Healthcare) pre-equilibrated

with lysis buffer. The column was washed with 10 column volumes of lysis buffer and ULP1

was eluted in lysis buffer with 300 mM imidazole. The eluate was applied to an S75 16/600 (GE

Healthcare) size exclusion column equilibrated with 20 mM Tris.HCl, 150 mM NaCl, 1 mM

Dithiothreitol (DTT) for further purification.

Generation, expression and purification of CXCL8

The pUC19 CXCL8 construct was a gift from Dr Joost Openheim (Addgene plasmid #17610),

[27]. The cDNA sequence encoding the mature 72 amino acid chemokine (6–77) was ampli-

fied by the primers SUMO3-CXCL8 Forward: 5’-CAG CAG CAG ACG GGA GGT AGT
GCT AAA GAA CTT AGA TGT CAG-3’ and SUMO3-CXCL8 Reverse: 5’-CTC GAA
TTC GGA TCC TCA TGA ATT CTC AGC CCT CTT CAA AAA-3’ using CloneAmpTM

HiFi Premix (Takara Bio Europe SAS, Saint-Germain-en-Laye, France) according to the man-

ufacturer’s instructions. Using the same premix, the pSUMO-3 vector (Lifesensors Inc, Mal-

vern, USA) was linearized using the primers SUMO3 Forward: 5’-TGA GGA TCC GAA
TTC GAG CTC-3’ and SUMO3 Reverse 5’-ACC TCC CGT CTG CTG CTG G-3’. PCR

products underwent DpnI fast digestion (ThermoFisher Scientific, Paisley, UK) prior to liga-

tion using the In-Fusion HD system (Takara). The authenticity of the pSUMO-3-CXCL8 open

reading frame was verified by Sanger sequencing on both strands of the plasmid (MWG Euro-

fins, Ebersberg Germany).

The pSUMO3-CXCL8 plasmid was subsequently introduced into chemically competent

Shuffle T7 Express E coli (New England Biolabs, Hitchin, UK) and following selection, colonies

were grown in LB media or minimal medium containing 15NH4Cl a as the sole nitrogen

source, both supplemented with carbenicillin. Cells were grown at 30˚C until an optical den-

sity at 600 nm of 0.6 to 0.8 was reached, then protein production induced with 1 mM isopro-

pyl-β-D-thiogalactoside (IPTG), grown for 4 hours at 30˚C, and finally harvested by

centrifugation at 5000 x g for 15 minutes.
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Bacterial pellets were resuspended in buffer A (20 mM Na phosphate pH 6.7, 500 mM

NaCl, 20 mM imidazole) supplemented with a cOmpleteTM Mini, EDTA-free Protease Inhibi-

tor tablet (Roche, Welyn Garden City, UK) and sonicated. Cell lysates were clarified by centri-

fugation at 38000 x g for 45 minutes and loaded onto a 5ml HisTrap FF crude column (Cytiva,

Amersham, UK) pre-equilibrated with buffer A. The column was washed with 5 column vol-

umes of buffer A followed by a gradient over 20 column volumes to 100% buffer B (20 mM Na

phosphate pH 6.7, 500 mM NaCl, 500 mM imidazole). The eluate was dialysed into 20 mM Na

phosphate pH 6.7, 150 mM NaCl, 10% glycerol overnight at 4˚C overnight. ULP1 was dialysed

into the digestion buffer concurrently but separately. SUMO-3 removal was performed by

incubating ULP1:SUMO3-CXCL8 at a ratio of 1:25 at 4˚C for 48 hours with agitation. Separa-

tion of cleaved CXCL8 from the SUMO-3 tag and ULP-1 was achieved by loading the digested

sample onto a 5ml HisTrap FF crude column pre-equilibrated with buffer A and eluting with

buffer A. ULP1, undigested SUMO3-CXCL8 and SUMO3 tag were subsequently eluted from

the column with buffer B.

NMR spectroscopy

1D 1H spectra were recorded on 100 μM CXCL8 in 20 mM Na phosphate pH 6.7, 150 mM

NaCl at 298 K. Spectral assignment of [U-15N]-labelled CXCL8 was performed at 500 μM in 20

mM Na phosphate pH 6.5, 100 mM NaCl, 10% D2O acquired at 298 K. 15N-HSQC,
15N-HSQC-TOCSY and 15N-HSQC-NOESY spectra were recorded and used to obtain the 1H

and 15N assignments [28–30]. Spectra were processed with NMRPipe [31] and analysed using

CCPN Analysis version 2.4 [32]. All spectra were recorded on a Bruker Avance III HD 800

MHz spectrometer equipped with a triple-resonance cryoprobe.

SEC-MALS

All experiments were conducted at room temperature on a system comprising a Wyatt mini-

DAWN TREOS multi-angle light scattering detector and a Wyatt Optilab T-rEX refractive

index detector coupled with a Superdex 75 10/300 GL (G.E. Healthcare). CXCL8 was analysed

at 4.2 mg/ml (0.5 mM) in 20 mM Na phosphate pH 6.5, 100 mM NaCl.

Determination of CXCL8 reactivity and concentration by ELISA

The Human CXCL8 DuoSet ELISA kit (Bio-Techne, Abingdon, UK) was used to determine

both antibody recognition and the accurate concentration of CXCL8 produced in the labora-

tory. The signal detected from diluted CXCL8 samples was compared to commercially avail-

able CXCL8 standards generated by serial dilution from 0.015–2 ng/mL.

Culture and transfection of pre-B cells

The L1.2 pre-B cell line was cultured as previously described in "complete" RPMI consisting of

base RPMI 1640 medium with Glutamax-I, supplemented with 25 mM HEPES, 10% fetal calf

serum, 1 mM sodium pyruvate, 1 mM 2-mercaptoethanol, 1 x non-essential amino acids and 1

x penicillin/streptomycin [33]. Cells were maintained at a density below 1.5x106 cells/mL.

Transient transfection of L1.2 cells with either the pCI-CXCR1 or pCDNA3-CXCR2 con-

structs was carried out as previously described using electroporation [34]. Briefly, 1x107 L1.2

cells were incubated with 10μg of plasmid DNA in 800μl of base RPMI media. Electroporation

was with carried out in a 0.4cm BTX cuvette (VWR, Lutterworth, UK) at 330V and 975μF.

Cells were allowed to recover for twenty minutes prior to seeding at 1x106 cells/mL in
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complete RPMI supplemented with 10mM sodium butyrate. Cells were used for flow cytome-

try and chemotaxis assays 24 h following transfection.

Flow cytometry

Transfected cells were stained with either a PE-conjugated anti-human CXCR1 mAb (Bio-

Techne), or a APC-conjugated anti-human CXCR2 mAb (Biolegend) or relevant conjugated

isotype controls as previously described [34]. Cells were analysed on a FACSCalibur (BD Bio-

sciences, Wokingham, UK) part of the Sir Alexander Fleming Building Flow Cytometry Facil-

ity at Imperial College London. Exclusion of TOPRO-3 and/or forward/side scatted profiles

were used to distinguish live cells from dead cells or cell fragments.

Chemotaxis assays

Chemotaxis assays were carried out using a modified Boyden chamber as previously described

in detail [34]. Briefly, serial dilutions of recombinant CXCL8 (6–77) were generated using che-

motaxis buffer (RPMI + 0.1% BSA) and plated in duplicate in the lower wells of a Chemo TX

101–5 chemotaxis plate (Neuroprobe, MD). The permeable membrane was placed on top and

CXCR1 or CXCR2 transfectants were resuspended to a concentration of 1x107 cells/mL in che-

motaxis buffer of which 20μl were placed on the membrane above the relevant wells. The plate

was placed in a humidified chamber at 37˚C, 5% CO2. Cells were allowed to migrate for 5

hours after which the numbers of migrating cells were enumerated as previously described

using the dye Cell Titer Glo (Promega, Southampton UK) [35]. Data were normalised to the

signal generated from 2x105 cells (input) and expressed as the percentage of cells migrated.

Results

CXCL8 expression and purification

Shuffle T7 Express E. coli facilitates the formation of disulphide bonds in the cytoplasm, typi-

cally yielding more of the desired product than periplasmic expression. This strain was utilised

to overexpress the SUMO-CXCL8 fusion protein, producing a significant quantity of soluble

protein (S1 Fig). Post sonication and lysate clarification, a single nickel affinity purification

step yielded pure SUMO-CXCL8 for tag digestion (Fig 1A). Fractions were pooled following

SDS-PAGE analysis and dialysed. ULP1 was dialysed separately into reducing agent free buffer

to ensure CXCL8 would not be reduced upon digestion. Although ULP1 is a cysteine protease,

efficient cleavage has been observed in the absence of β-mercaptoethanol [36]. However, com-

plete removal of the SUMO-3 tag in the absence of a reducing agent requires a higher ULP1

concentration than under standard buffer conditions. Tag removal was therefore carried out

at a ratio of 1:25 (ULP1:SUMO fusion substrate) and incubated at 4˚C overnight. Re-purifica-

tion of the sample using IMAC facilitated the separation of cleaved, untagged CXCL8 from the

other tagged components in a single affinity step (Fig 1B).

CXCL8 produced in-house is chemotactically active

Plasmids encoding the human CXCL8 receptors CXCR1 and CXCR2 were introduced into the

L1.2 cell line and following overnight treatment with sodium butyrate, cell surface expression

of CXCR1 and CXCR2 was confirmed by flow cytometry (Fig 2A and 2C). CXCR1 and

CXCR2 transfectants were then used to assess the bioactivity of CXCL8 using modified Boyden

chamber chemotaxis assays. The precise concentration of our recombinant CXCL8 (6–77)

produced in-house was determined using a CXCL8 ELISA. Serial dilutions of in-house and

commercially available CXCL8 (6–77) (Bio-Techne) were used in the chemotaxis assays
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(Fig 2B and 2D). Bell-shaped chemotactic responses from both transfectants, typical of such

assays were produced by both in-house and commercially available CXCL8. The efficacy of the

responses from both CXCR1 and CXCR2 transfectant were similar, with approximately 20%

of the transfected cells migrating at the optimal CXCL8 concentration. CXCL8 was found to

induce more potent responses from CXCR1 transfectants than from CXCR2 transfectants,

notably at the lowest concentrations of CXCL8 used. In both chemotaxis assays, the data from

in-house CXCL8 and commercially available CXCL8 were indistinguishable.

Fig 1. Purification of CXCL8. (A) SDS-PAGE analysis of CXCL8-SUMO3 nickel affinity purification. The lanes are

labelled wash (W1 and W2) and elution (E1-E8). (B) SDS-PAGE gel analysis of nickel affinity purification of CXCL8

post SUMO3 tag digestion. The lanes are labelled CXCL8 elution (C1-C3), and elution (E1). CXCL8 is separated in the

wash step from tagged ULP1, undigested CXCL8-SUMO3 and the SUMO3 tag. The molecular weights are as follows;

CXCL8-SUMO3–20 kDa, CXCL8–8.4 kDa and SUMO3–11.7 kDa.

https://doi.org/10.1371/journal.pone.0258270.g001

Fig 2. In-house produced CXCL8 is bioactive as deduced by chemotaxis assays. (A and C) Flow cytometry staining

showing the cell surface expression of CXCR1 and CXCR2 on transfected L1.2 cells. Data are representative of three

independent transfections. (B and D) The relative chemotactic activities of commercially available and in-house

generated CXCL8 on CXCR1 and CXCR2 transfectants. Mean percentage migration is shown together with SEM

(n = 3).

https://doi.org/10.1371/journal.pone.0258270.g002
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NMR analysis of CXCL8

NMR spectroscopy is a robust technique for assessing the folded state of proteins and has been

used extensively to structurally characterise chemokines. One dimensional 1H spectrum was

recorded to assess the folded state of CXCL8 produced in this study (S2 Fig). In aqueous buffer

the spectrum yields well-dispersed amide and methyl regions indicative of a folded sample,

which is consistent with published data of monomeric and dimeric forms [9, 37, 38].

A (1H, 15N) HSQC spectrum of uniformly [U-15N]-labelled CXCL8 recorded at 0.5 mM is

well-resolved, exhibits broad chemical shift dispersion typical of a native globular protein and

is comparable to published spectra of folded CXCL8 (Fig 3) [9, 37, 38]. The spectrum exhibits

83 peaks in line with the expected number of backbone and side chain resonances for this 72

amino acid protein. X-ray crystallographic and NMR analysis have shown that CXCL8 is a

homodimer at μM concentrations up to 2 mM, so it would be expected that a dimer is

observed here [24, 25, 39]. To confirm this dimeric state, Size Exclusion Chromatography in

tandem with Multi-Angle Laser Light Scattering (SEC-MALS) was carried out on CXCL8 at

0.5 mM. A single species was observed during the run, indicating sample homogeneity, with a

molecular weight of 16.5 kDa ± 1.7% reported (S3 Fig). This is in line with the expected molec-

ular weight of the dimeric form of CXCL8 produced in this study (16.7 kDa).

A 1H and 15N sequential assignment of CXCL8 was performed using 15N-HSQC-TOCSY

and 15N-HSQC-NOESY spectra, which was comparable to published data [25, 40]. The assign-

ment covers 99% of the backbone, excluding proline residues and the N-terminal serine resi-

due which could not be assigned. A complete list of the 1H and 15N NMR chemical shifts

assigned in this study are detailed in S1 Table.

The dimer interface of CXCL8 (6–77) was shown to be stabilised by hydrogen bonds

between Strand 1, an anti-parallel β-sheet spanning residues 23 to 30, of each subunit [25].

Intermolecular NOEs were observable in our data, confirming this expected connectivity. We

observed connectivity between 27HN-25HB2 and 25HB3, 29HN-24HA, 25HN-27HN, 25HN-

Fig 3. 1H, 15N-HSQC spectrum of [U-15N]-labelled CXCL8 recorded at 298K. The spectrum is indicative of a folded

sample with well dispersed and resolved peaks. 83 peaks are observed consistent with the expected number of

backbone and side chain resonances. 67 peaks were assigned to the backbone yielding 99% sequence coverage,

excluding the 4 proline residues. The N-terminal serine residue could not be assigned.

https://doi.org/10.1371/journal.pone.0258270.g003
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27HB and 25HN-28HA, in line with the hydrogen bonding pattern elucidated by Clore et al

(1990).

Discussion

Here we present an efficient protocol for expressing soluble CXCL8 as a SUMO fusion in E.

coli Shuffle T7 Express. We detail an effective purification schedule, encompassing nickel affin-

ity purification, ULP1-mediated SUMO tag removal in a non-reducing environment and

reverse IMAC purification separating untagged CXCL8 from the other tagged components.

CXCL8 produced by this method is pure, correctly folded and bioactive, inducing chemotaxis

of CXCR1 and CXCR2 transfectants with identical potency and efficacy to that commercially

available CXCL8. Typically, 15 to 20 mg of CXCL8 are produced by this method per litre of

cell culture.

The pET-32 Xa/LIC expression system, which requires Factor Xa for tag digestion, has been

utilised extensively to produce CXCL8 [9–12]. Both ULP1 and Factor Xa have been employed

to generate the correct N-terminus in recombinant protein production, which is a stringent

requirement of functional chemokine production. However, Factor Xa mediated digestion

often results in cleavage at undesired cryptic sites within the protein of interest, limiting the

wider applicability of this system [13]. ULP1 is highly specific as it recognises the SUMO fold,

a distinct advantage over Factor Xa, and can accommodate any residue at the N-terminus with

the exception of proline [36]. Application of this expression and purification protocol to other

chemokines could provide streamlined recombinant production of these proteins.

It should be noted that chemokines can also be produced via chemical synthesis routes,

which carry considerable advantages over recombinant production, such as the ease of incor-

porating chemical modifications and the ability to generate multiple isoforms in one reaction

schedule [41]. However, folding of the synthesised chemokine still requires optimisation and

there is a requirement for expertise and equipment to run the synthesis cycle.

By producing soluble chemokines that are folded within the host, this methodology may

have utility in the production of chemokines that diverge from the classic chemokine fold,

such as those with an extra disulphide bond distal to the chemokine core. Structural determi-

nation of these recalcitrant proteins has shown them to be highly variable and has utilised

refolding, in the case of CCL21 [42, 43], CCL23 [44] and CCL28 [45], or peptide synthesis

routes, for CCL1 [46] and CCL15 [47]. However, challenging chemokines with an extra disul-

phide bond, such as CXCL16 and CXCL17, remain structurally uncharacterised. Refolding

and synthetic routes have undoubtedly yielded results, but the method outlined here may sim-

plify protein production at the levels required for structural characterisation while eliminating

the requirement for the optimisation of protein refolding.

Supporting information

S1 Raw images. Image 1A is an uncropped gel image corresponding to Fig 1A. Image 1B is

an uncropped gel image corresponding to—Fig 1B. Image S1 relates to S1 Fig. All lanes are

marked in accordance with labelling in the manuscript and any unused lanes are marked with

an X.

(TIF)

S1 Fig. Soluble expression of CXCL8. SDS-PAGE analysis of CXCL8-SUMO3 expression in

Shuffle T7 express E. coli cells in 10 ml M9 minimal media per condition. The lanes are labelled

(1) uninduced control, (2) 0.1 mM IPTG at 16˚C, (3) 0.5 mM IPTG at 16˚C, (4) 1 mM IPTG at
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16˚C, (5) 0.1 mM IPTG at 30˚C, (6) 0.5 mM IPTG at 30˚C and (7) 1 mM IPTG at 30˚C.

(TIF)

S2 Fig. 1D 1H NMR spectrum of CXCL8. 1D 1H NMR spectra of CXCL8 were recorded at

100 μM. The spectrum exhibits well dispersed chemical shifts, indicative of a well-folded sam-

ple.

(TIF)

S3 Fig. SEC-MALS of CXCL8 indicates dimerization. Differential refractive index and molar

mass (g/mol) are plotted against elution volume. The differential refractive index is reported in

blue. The molecular weight was calculated from the black line, which corresponds to the area

of the peak used for this calculation. The reported molecular weight was 16.5 kDa ± 1.7%, in

line with the expected molecular weight of the CXCL8 dimer which is 16.7 kDa.

(TIF)

S1 Table. A complete list of the 1H and 15N NMR chemical shifts assigned in this study.

(DOCX)
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